forked from byliutao/1Prompt1Story
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
224 lines (179 loc) · 8.88 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import gradio as gr
import diffusers
import random
import json
diffusers.utils.logging.set_verbosity_error()
import torch
from PIL import Image
import numpy as np
from unet.unet_controller import UNetController
from main import load_unet_controller
from unet import utils
# Global flag to control interruption
interrupt_flag = False
def main_gradio(model_path, id_prompt, frame_prompt_list, precision, seed, window_length, alpha_weaken, beta_weaken, alpha_enhance, beta_enhance, ipca_drop_out, use_freeu, use_same_init_noise):
global interrupt_flag
interrupt_flag = False # Reset the flag at the start of the function
if seed == -1:
seed = random.randint(0, 2**32 - 1)
frame_prompt_list = frame_prompt_list.split(",")
pipe, _ = utils.load_pipe_from_path(model_path, "cuda:1", torch.float16 if precision == "fp16" else torch.float32, precision)
if interrupt_flag:
print("Generation interrupted")
del pipe
torch.cuda.empty_cache()
if 'story_image' not in locals():
empty_image = Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
yield empty_image
return
unet_controller = load_unet_controller(pipe, "cuda:1")
unet_controller.Alpha_enhance = alpha_enhance
unet_controller.Beta_enhance = beta_enhance
unet_controller.Alpha_weaken = alpha_weaken
unet_controller.Beta_weaken = beta_weaken
unet_controller.Ipca_dropout = ipca_drop_out
unet_controller.Is_freeu_enabled = use_freeu
unet_controller.Use_same_init_noise = use_same_init_noise
import os
from datetime import datetime
current_time = datetime.now().strftime("%Y%m%d%H")
current_time_ = datetime.now().strftime("%M%S")
save_dir = os.path.join(".", f'result/{current_time}/{current_time_}_gradio_seed{seed}')
os.makedirs(save_dir, exist_ok=True)
generate = torch.Generator().manual_seed(seed)
if unet_controller.Use_ipca is True:
unet_controller.Store_qkv = True
original_prompt_embeds_mode = unet_controller.Prompt_embeds_mode
unet_controller.Prompt_embeds_mode = "original"
_ = pipe(id_prompt, generator=generate, unet_controller=unet_controller).images
unet_controller.Prompt_embeds_mode = original_prompt_embeds_mode
unet_controller.Store_qkv = False
max_window_length = utils.get_max_window_length(unet_controller, id_prompt, frame_prompt_list)
window_length = min(window_length, max_window_length)
if window_length < len(frame_prompt_list):
movement_lists = utils.circular_sliding_windows(frame_prompt_list, window_length)
else:
movement_lists = [movement for movement in frame_prompt_list]
story_image_list = []
generate = torch.Generator().manual_seed(seed)
unet_controller.id_prompt = id_prompt
for index, movement in enumerate(frame_prompt_list):
if interrupt_flag:
print("Generation interrupted")
del pipe
torch.cuda.empty_cache()
if 'story_image' not in locals():
empty_image = Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
yield empty_image
return
if unet_controller is not None:
if window_length < len(frame_prompt_list):
unet_controller.frame_prompt_suppress = movement_lists[index][1:]
unet_controller.frame_prompt_express = movement_lists[index][0]
gen_propmts = [f'{id_prompt} {" ".join(movement_lists[index])}']
else:
unet_controller.frame_prompt_suppress = movement_lists[:index] + movement_lists[index+1:]
unet_controller.frame_prompt_express = movement_lists[index]
gen_propmts = [f'{id_prompt} {" ".join(movement_lists)}']
else:
gen_propmts = f'{id_prompt} {movement}'
print(f"suppress: {unet_controller.frame_prompt_suppress}")
print(f"express: {unet_controller.frame_prompt_express}")
print(f'id_prompt: {id_prompt}')
print(f"gen_propmts: {gen_propmts}")
if unet_controller is not None and unet_controller.Use_same_init_noise is True:
generate = torch.Generator().manual_seed(seed)
images = pipe(gen_propmts, generator=generate, unet_controller=unet_controller).images
story_image_list.append(images[0])
story_image = np.concatenate(story_image_list, axis=1)
story_image = Image.fromarray(story_image.astype(np.uint8))
yield story_image
import os
images[0].save(os.path.join(save_dir, f'{id_prompt} {unet_controller.frame_prompt_express}.jpg'))
story_image.save(os.path.join(save_dir, 'story_image.jpg'))
import gc
del pipe
gc.collect()
torch.cuda.empty_cache()
# Gradio interface
def gradio_interface():
global interrupt_flag
with gr.Blocks() as demo:
gr.Markdown("### Consistent Image Generation with 1Prompt1Story")
# Load JSON data
with open('./resource/example.json', 'r') as f:
data = json.load(f)
# Extract id_prompts and frame_prompts
id_prompts = [item['id_prompt'] for item in data['combinations']]
frame_prompts = [", ".join(item['frame_prompt_list']) for item in data['combinations']]
# Input fields
id_prompt = gr.Dropdown(
label="ID Prompt",
choices=id_prompts,
value=id_prompts[0],
allow_custom_value=True
)
frame_prompt_list = gr.Dropdown(
label="Frame Prompts (comma-separated)",
choices=frame_prompts,
value=frame_prompts[0],
allow_custom_value=True
)
model_path = gr.Dropdown(
label="Model Path",
choices=["stabilityai/stable-diffusion-xl-base-1.0", "RunDiffusion/Juggernaut-X-v10", "playgroundai/playground-v2.5-1024px-aesthetic", "SG161222/RealVisXL_V4.0", "RunDiffusion/Juggernaut-XI-v11", "SG161222/RealVisXL_V5.0"],
value="playgroundai/playground-v2.5-1024px-aesthetic",
allow_custom_value=True
)
with gr.Row():
seed = gr.Slider(label="Seed (set -1 for random seed)", minimum=-1, maximum=10000, value=-1, step=1)
window_length = gr.Slider(label="Window Length", minimum=1, maximum=20, value=10, step=1)
with gr.Row():
alpha_weaken = gr.Number(label="Alpha Weaken", value=UNetController.Alpha_weaken, interactive=True, step=0.01)
beta_weaken = gr.Number(label="Beta Weaken", value=UNetController.Beta_weaken, interactive=True, step=0.01)
alpha_enhance = gr.Number(label="Alpha Enhance", value=UNetController.Alpha_enhance, interactive=True, step=0.001)
beta_enhance = gr.Number(label="Beta Enhance", value=UNetController.Beta_enhance, interactive=True, step=0.1)
with gr.Row():
ipca_drop_out = gr.Number(label="Ipca Dropout", value=UNetController.Ipca_dropout, interactive=True, step=0.1, minimum=0, maximum=1)
precision = gr.Dropdown(label="Precision", choices=["fp16", "fp32"], value="fp16")
use_freeu = gr.Dropdown(label="Use FreeU", choices=[False, True], value=UNetController.Is_freeu_enabled)
use_same_init_noise = gr.Dropdown(label="Use Same Init Noise", choices=[True, False], value=UNetController.Use_same_init_noise)
reset_button = gr.Button("Reset to Default")
def reset_values():
return UNetController.Alpha_weaken, UNetController.Beta_weaken, UNetController.Alpha_enhance, UNetController.Beta_enhance, UNetController.Ipca_dropout, "fp16", UNetController.Is_freeu_enabled, UNetController.Use_same_init_noise
reset_button.click(
fn=reset_values,
inputs=[],
outputs=[alpha_weaken, beta_weaken, alpha_enhance, beta_enhance, ipca_drop_out, precision, use_freeu, use_same_init_noise]
)
# Output
output_gallery = gr.Image()
# Buttons
generate_button = gr.Button("Generate Images (click me!)")
gr.Markdown(
"""
<div style="text-align: center; font-size: 1.2em; font-weight: bold; margin-top: 0px;">
Images will be generated one by one. Please be patient.
</div>
""",
)
interrupt_button = gr.Button("Interrupt")
def interrupt_generation():
global interrupt_flag
interrupt_flag = True
interrupt_button.click(
fn=interrupt_generation,
inputs=[],
outputs=[]
)
generate_button.click(
fn=main_gradio,
inputs=[
model_path, id_prompt, frame_prompt_list, precision, seed, window_length, alpha_weaken, beta_weaken, alpha_enhance, beta_enhance, ipca_drop_out, use_freeu, use_same_init_noise
],
outputs=output_gallery
)
return demo
if __name__ == "__main__":
demo = gradio_interface()
demo.launch()