You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The :class:`~watts.PluginGCMat` class enables simulations with Argonne's global
480
+
critical materials agent-based model (GCMat). This code simulates dynamic
481
+
economic markets that are composed of agents who have complex decision-making
482
+
behaviors, and interact with and influence each other, possibly indirectly
483
+
through market signals.
484
+
485
+
The GCMat plugin requires a template input file that can be templated as follows:
486
+
487
+
.. code-block:: jinja
488
+
489
+
region final demand agent final demand product reference product unit 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
490
+
final demand U U U tonnes 111847.841748839 112977.61792812 114118.805988 115271.5212 116435.88 117612 118800 120000 121200 122412 123636.12 124872.4812 126121.206012 127382.41807212 128656.242252841 {{final_demand_2025}} {{final_demand_2026}} {{final_demand_2027}} {{final_demand_2028}} {{final_demand_2029}} {{final_demand_2030}}
491
+
492
+
China final demand U U shares of total 0.107142857142857 0.106698999696878 0.112674964564139 0.114434523188336 0.116194081812533 0.1278 0.1299 0.132 0.1341 0.1362 0.1383 0.1404 0.1425 0.1446 0.1467 {{china_2025}} {{china_2026}} {{china_2027}} {{china_2028}} {{china_2029}} {{china_2030}}
493
+
494
+
US final demand U U shares of total 0.206589879692216 0.201409879668034 0.199574650237538 0.196450274218913 0.194620873740305 0.193447312012611 0.190358597294858 0.187635077997256 0.185744587021863 0.183688235605066 0.180393178767648 0.177208294866757 0.174389224194135 0.171923735369984 0.169723351626385 {{us_2025}} {{us_2026}} {{us_2027}} {{us_2028}} {{us_2029}} {{us_2030}}
495
+
496
+
Europe final demand U U shares of total 0.16491345183516 0.160710857760063 0.154355276635327 0.149054613139685 0.145906896593099 0.143775880528747 0.141896860630669 0.140266791187998 0.138026220404039 0.135574967728323 0.132758006582095 0.130102830325263 0.127653579579804 0.125407763844851 0.123338987757727 {{eu_2025}} {{eu_2026}} {{eu_2027}} {{eu_2028}} {{eu_2029}} {{eu_2030}}
497
+
498
+
ROW final demand U U shares of total 0.521353811330767 0.531180262874025 0.533394108562996 0.539080588452066 0.543278147354063 0.535073807414382 0.536243130077473 0.536734120790743 0.541204905572035 0.541712831061545 0.548846808065192 0.554835894215335 0.556026422605261 0.556024685007383 0.556929270113103 {{row_2025}} {{row_2026}} {{row_2027}} {{row_2028}} {{row_2029}} {{row_2030}}
499
+
500
+
501
+
The GCMat plugin can be instantiated with the following command line::
This example provides a demonstration for using WATTS to explore supply chain dynamics and uncertainty with GCMat under nuclear scenarios of Uranium fuel demand growth or shrinkage, supply disruptions.
6
+
7
+
## Code(s)
8
+
9
+
- GCMat
10
+
- Java (GCMat dependency)
11
+
- Repast Simphony agent-based modeling toolkit
12
+
13
+
## Keywords
14
+
15
+
- Rare Earths Supply Chain
16
+
- Agent Based Modeling
17
+
- Dynamic economic markets
18
+
19
+
## File descriptions
20
+
21
+
-[__watts_exec.py__](watts_exec.py): WATTS workflow for this example. This is the file to execute to run the problem described above.
22
+
-[__gcmat_template__](gcmat_template.txt): Templated GCMat model for the Uranium demand of nuclear scenarios.
0 commit comments