-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
63 lines (54 loc) · 1.91 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from matplotlib import style
def main():
# scale = [0, 0.01, 0.02, 0.03, 0.04, 0.05]
# nsfiair = [96.05, 97.11, 97.46, 97.46, 97.58, 97.56]
# vae = [98.5, 98.5, 98.5, 96.9, 96.3, 93.1]
# style.use("seaborn")
# fig, plot = plt.subplots(figsize=(6, 4), dpi=200)
# plot.plot(scale, nsfiair, label="NoSINN", marker="v")
# plot.plot(scale, vae, label="CVAE", marker="s")
# plot.set_xlabel(r"$\sigma$")
# plot.set_ylabel("Accuracy")
# plot.set_title("CMNIST")
# plot.set_ylim(90, 100)
# plot.legend()
# fig.savefig(Path(".") / "cmnist.pdf")
# plt.show()
# df = pd.read_csv("/its/home/mb715/DOcuments/Fairness/FINN/results/adult/adult_cae.csv")
# relevant_columns = [
# "Mix_fact", "Accuracy",
# "prob_pos_sex_Male_0-sex_Male_1",
# "TPR_sex_Male_0-sex_Male_1"
# ]
# df = df[relevant_columns]
# df = df.rename(columns={
# "Mix_fact": "Mixing factor",
# "prob_pos_sex_Male_0-sex_Male_1": "DP",
# "TPR_sex_Male_0-sex_Male_1": "EO"
# })
# latex = df.to_latex(
# index=False,
# float_format="{:0.4f}".format)
# print(latex)
df = pd.read_csv(
"/its/home/mb715/Documents/Fairness/FINN/results/celeba/celeba_naive_baseline_pred_y_25epochs.csv"
)
relevant_columns = ["Accuracy", "prob_pos_sens_0-sens_1", "TPR_sens_0-sens_1"]
df = df[relevant_columns]
df = df.rename(
columns={
# "Mix_fact": "Mixing factor",
"prob_pos_sens_0-sens_1": "DP",
"TPR_sens_0-sens_1": "EO",
}
)
print(len(df))
df.insert(0, "Mixing factor", np.arange(0, 0.9, 0.1), True)
latex = df.to_latex(index=False, float_format="{:0.4f}".format)
print(latex)
if __name__ == "__main__":
main()