-
Notifications
You must be signed in to change notification settings - Fork 319
/
Copy pathtrain.py
179 lines (150 loc) · 5.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from __future__ import print_function
import sys
if len(sys.argv) != 4:
print('Usage:')
print('python train.py datacfg cfgfile weightfile')
exit()
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torchvision import datasets, transforms
from torch.autograd import Variable
import dataset
import random
import math
from utils import *
from cfg import parse_cfg
from region_loss import RegionLoss
from darknet import Darknet
# Training settings
datacfg = sys.argv[1]
cfgfile = sys.argv[2]
weightfile = sys.argv[3]
data_options = read_data_cfg(datacfg)
net_options = parse_cfg(cfgfile)[0]
trainlist = data_options['train']
testlist = data_options['valid']
backupdir = data_options['backup']
nsamples = file_lines(trainlist)
batch_size = int(net_options['batch'])
max_batches = int(net_options['max_batches'])
learning_rate = float(net_options['learning_rate'])
momentum = float(net_options['momentum'])
#Train parameters
max_epochs = max_batches*batch_size/nsamples+1
use_cuda = True
seed = 22222
eps = 1e-5
epoch_step = 120 # epochs to change lr
lr_step = 0.1
num_workers = 8
save_interval = 15 # epoches
dot_interval = 70 # batches
# Test parameters
conf_thresh = 0.25
nms_thresh = 0.4
iou_thresh = 0.5
###############
torch.manual_seed(seed)
if use_cuda:
torch.cuda.manual_seed(seed)
model = Darknet(cfgfile)
region_loss = model.loss
model.load_weights(weightfile)
model.print_network()
init_epoch = model.seen / nsamples
kwargs = {'num_workers': num_workers, 'pin_memory': True} if use_cuda else {}
test_loader = torch.utils.data.DataLoader(
dataset.listDataset(testlist, shape=(model.width, model.height),
shuffle=False,
transform=transforms.Compose([
transforms.ToTensor(),
]), train=False),
batch_size=batch_size, shuffle=False, **kwargs)
if use_cuda:
model = torch.nn.DataParallel(model).cuda()
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum)
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = learning_rate * (lr_step ** (epoch // epoch_step))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if epoch % epoch_step == 0:
logging('lr = %f' % (lr))
def train(epoch):
train_loader = torch.utils.data.DataLoader(
dataset.listDataset(trainlist, shape=(model.module.width, model.module.height),
shuffle=True,
transform=transforms.Compose([
transforms.ToTensor(),
]), train=True, seen=model.module.seen),
batch_size=batch_size, shuffle=False, **kwargs)
logging('epoch %d : processed %d samples' % (epoch, epoch * len(train_loader.dataset)))
model.train()
adjust_learning_rate(optimizer, epoch)
for batch_idx, (data, target) in enumerate(train_loader):
if (batch_idx+1) % dot_interval == 0:
sys.stdout.write('.')
if use_cuda:
data = data.cuda()
#target= target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = region_loss(output, target)
loss.backward()
optimizer.step()
print('')
if (epoch+1) % save_interval == 0:
logging('save weights to %s/%06d.weights' % (backupdir, epoch+1))
model.module.seen = (epoch + 1) * len(train_loader.dataset)
model.module.save_weights('%s/%06d.weights' % (backupdir, epoch+1))
def test(epoch):
def truths_length(truths):
for i in range(50):
if truths[i][1] == 0:
return i
model.eval()
num_classes = model.module.num_classes
anchors = model.module.anchors
num_anchors = model.module.num_anchors
total = 0.0
proposals = 0.0
correct = 0.0
for batch_idx, (data, target) in enumerate(test_loader):
if use_cuda:
data = data.cuda()
data = Variable(data, volatile=True)
output = model(data).data
all_boxes = get_region_boxes(output, conf_thresh, num_classes, anchors, num_anchors)
for i in range(output.size(0)):
boxes = all_boxes[i]
boxes = nms(boxes, nms_thresh)
truths = target[i].view(-1, 5)
num_gts = truths_length(truths)
total = total + num_gts
for i in range(len(boxes)):
if boxes[i][4] > conf_thresh:
proposals = proposals+1
for i in range(num_gts):
box_gt = [truths[i][1], truths[i][2], truths[i][3], truths[i][4], 1.0, 1.0, truths[i][0]]
best_iou = 0
for j in range(len(boxes)):
iou = bbox_iou(box_gt, boxes[j], x1y1x2y2=False)
best_iou = max(iou, best_iou)
if best_iou > iou_thresh and boxes[j][6] == box_gt[6]:
correct = correct+1
precision = 1.0*correct/(proposals+eps)
recall = 1.0*correct/(total+eps)
fscore = 2.0*precision*recall/(precision+recall+eps)
logging("precision: %f, recall: %f, fscore: %f" % (precision, recall, fscore))
evaluate = False
if evaluate:
print('evaluating ...')
test(0)
else:
for epoch in range(init_epoch, max_epochs):
train(epoch)
test(epoch)