-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRelFacts.v
785 lines (723 loc) · 37 KB
/
RelFacts.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
(* if we do not remove the dependency on Syntax, we can't compile this until we fix syntax *)
Require Import Lists.List Lists.ListSet Vector Arith.PeanoNat Bool.Sumbool JMeq Common Syntax
FunctionalExtensionality ProofIrrelevance Eqdep_dec EqdepFacts Omega Syntax AbstractRelation Util.
Module Facts (Sql : SQL).
Import Db.
Import Sql.
(*** XXX: currently in Translation2V, needs to be shared (e.g. in Facts.v) ***)
Lemma eq_memb_dep m n (e : m = n) : forall (S1 : Rel.R m) (S2 : Rel.R n) r1 r2,
S1 ~= S2 -> r1 ~= r2 -> Rel.memb S1 r1 = Rel.memb S2 r2.
Proof.
rewrite e. intros. rewrite H, H0. reflexivity.
Qed.
Lemma eq_times_dep m1 m2 n1 n2 (e1 : m1 = n1) (e2 : m2 = n2) :
forall (R1 : Rel.R m1) (R2 : Rel.R m2) (S1 : Rel.R n1) (S2 : Rel.R n2),
R1 ~= S1 -> R2 ~= S2 -> Rel.times R1 R2 ~= Rel.times S1 S2.
Proof.
rewrite e1, e2. intros. rewrite H, H0. reflexivity.
Qed.
Lemma p_ext_dep m n (e : m = n) : forall (S1 : Rel.R m) (S2 : Rel.R n),
(forall r1 r2, r1 ~= r2 -> Rel.memb S1 r1 = Rel.memb S2 r2) -> S1 ~= S2.
Proof.
rewrite e. intros. apply eq_JMeq. apply Rel.p_ext.
intro. apply H. reflexivity.
Qed.
Lemma eq_rsum_dep : forall m1 m2 n1 n2 : nat,
m1 = m2 ->
n1 = n2 ->
forall (r1 : Rel.R m1) (r2 : Rel.R m2) (f : Rel.T m1 -> Rel.R n1) (g : Rel.T m2 -> Rel.R n2),
r1 ~= r2 -> f ~= g -> Rel.rsum r1 f ~= Rel.rsum r2 g.
Proof.
intros; subst. rewrite H1, H2. reflexivity.
Qed.
Lemma eq_T_eqb_iff {m} {n} (t1 t2 : Rel.T m) (t3 t4 : Rel.T n) :
(t1 = t2 <-> t3 = t4) -> Rel.T_eqb t1 t2 = Rel.T_eqb t3 t4.
Proof.
destruct (Rel.T_eqb t1 t2) eqn:e1; destruct (Rel.T_eqb t3 t4) eqn:e2; intuition; auto.
+ rewrite <- e2. symmetry. apply Rel.T_eqb_eq. apply H0. apply Rel.T_eqb_eq. exact e1.
+ rewrite <- e1. apply Rel.T_eqb_eq. apply H1. apply Rel.T_eqb_eq. exact e2.
Qed.
Lemma sum_ext m n R (f g : Rel.T m -> Rel.T n) :
(forall x, f x = g x) -> Rel.sum R f = Rel.sum R g.
Proof.
intro. apply Rel.p_ext. intro.
do 2 rewrite Rel.p_sum. repeat f_equal. extensionality x.
destruct (Rel.T_eqb (g x) t) eqn:e; rewrite <- H in e; exact e.
Qed.
Lemma memb_sum_tech {m} {n} (R : Rel.R m) (f : Rel.T m -> Rel.T n) l1 :
NoDup l1 -> forall l2, incl l2 (Rel.supp R) -> NoDup l2 ->
(forall t u, List.In t l1 -> List.In u (Rel.supp R) -> f u = t -> List.In u l2) ->
(forall u, List.In u l2 -> List.In (f u) l1) ->
list_sum (List.map (Rel.memb (Rel.sum R f)) l1) = list_sum (List.map (Rel.memb R) l2).
Proof.
elim l1.
+ intros. replace l2 with (@List.nil (Rel.T m)). reflexivity.
destruct l2; auto. contradiction (H3 t). left. reflexivity.
+ intros t l1' IH Hl1' l2 Hsupp Hl2 H1 H2. simpl.
replace (list_sum (List.map (Rel.memb R) l2)) with
(list_sum (List.map (Rel.memb R) (filter (fun x => Rel.T_eqb (f x) t) l2)) +
list_sum (List.map (Rel.memb R) (filter (fun x => negb (Rel.T_eqb (f x) t)) l2))).
- f_equal.
* rewrite Rel.p_sum. apply (list_sum_ext Nat.eq_dec).
generalize (Rel.p_nodup _ R) l2 Hsupp Hl2 H1; clear l2 Hsupp Hl2 H1 H2; elim (Rel.supp R).
++ simpl. intros _ l2 Hincl. replace l2 with (@List.nil (Rel.T m)). reflexivity.
destruct l2; auto. contradiction (Hincl t0). left. reflexivity.
++ intros x l3' IHin Hnodup l2 Hincl Hl2 H1 y. simpl. destruct (Rel.T_eqb (f x) t) eqn:Heq; simpl.
-- destruct (Nat.eq_dec (Rel.memb R x) y); simpl.
** assert (exists n, count_occ Nat.eq_dec
(List.map (Rel.memb R) (filter (fun x0 : Rel.T m => Rel.T_eqb (f x0) t) l2)) y = S n).
apply count_occ_In_Sn. rewrite <- e. apply in_map. apply filter_In. split; auto.
eapply H1. left. reflexivity. left. reflexivity. apply Rel.T_eqb_eq. exact Heq.
destruct H. rewrite (count_occ_rmone_r _ _ _ _ _ H). f_equal.
transitivity (count_occ Nat.eq_dec (List.map (Rel.memb R)
(filter (fun x1 => Rel.T_eqb (f x1) t) (rmone _ (Rel.T_dec _) x l2))) y).
+++ apply IHin.
--- inversion Hnodup. exact H4.
--- eapply incl_rmone; assumption.
--- apply nodup_rmone. exact Hl2.
--- intros. apply in_rmone_neq.
*** inversion Hnodup. intro. rewrite H8 in H6. contradiction H6.
*** eapply H1. exact H0. right. exact H2. exact H3.
+++ apply map_filter_tech. exact Heq. rewrite e. reflexivity.
eapply H1. left. reflexivity. left. reflexivity. apply Rel.T_eqb_eq. exact Heq.
** replace (count_occ Nat.eq_dec (List.map (Rel.memb R) (filter (fun x0 => Rel.T_eqb (f x0) t) l2)) y)
with (count_occ Nat.eq_dec (List.map (Rel.memb R) (filter (fun x0 => Rel.T_eqb (f x0) t) (rmone _ (Rel.T_dec _) x l2))) y).
apply IHin.
+++ inversion Hnodup. exact H3.
+++ eapply incl_rmone; assumption.
+++ apply nodup_rmone. exact Hl2.
+++ intros. apply in_rmone_neq.
--- inversion Hnodup. intro. rewrite H7 in H5. contradiction H5.
--- eapply H1. exact H. right. exact H0. exact H2.
+++ apply count_occ_map_filter_rmone_tech. exact n0.
-- replace (count_occ Nat.eq_dec (List.map (Rel.memb R) (filter (fun x0 => Rel.T_eqb (f x0) t) l2)) y)
with (count_occ Nat.eq_dec (List.map (Rel.memb R) (filter (fun x0 => Rel.T_eqb (f x0) t) (rmone _ (Rel.T_dec _) x l2))) y). apply IHin.
*** inversion Hnodup. exact H3.
*** eapply incl_rmone; assumption.
*** apply nodup_rmone. exact Hl2.
*** intros. apply in_rmone_neq.
+++ inversion Hnodup. intro. rewrite H7 in H5. contradiction H5.
+++ eapply H1. exact H. right. exact H0. exact H2.
*** rewrite filter_rmone_false. reflexivity. exact Heq.
* apply IH.
++ inversion Hl1'; assumption.
++ intro x. intro Hx. apply Hsupp.
destruct (proj1 (filter_In (fun x => negb (Rel.T_eqb (f x) t)) x l2) Hx). exact H.
++ apply NoDup_filter. exact Hl2.
++ intros. apply filter_In. split.
-- eapply H1. right. exact H. exact H0. exact H3.
-- apply Bool.negb_true_iff. destruct (Rel.T_dec _ (f u) t).
** inversion Hl1'. rewrite <- e in H6. rewrite H3 in H6. contradiction H6.
** destruct (Rel.T_eqb (f u) t) eqn:ed; auto. contradiction n0. apply Rel.T_eqb_eq. exact ed.
++ intros. assert (List.In u l2 /\ negb (Rel.T_eqb (f u) t) = true).
-- apply (proj1 (filter_In (fun x => negb (Rel.T_eqb (f x) t)) u l2) H).
-- destruct H0. assert (f u <> t). intro.
pose (H4' := proj2 (Rel.T_eqb_eq _ (f u) t) H4); clearbody H4'.
rewrite H4' in H3. discriminate H3.
pose (H2' := H2 _ H0); clearbody H2'. inversion H2'; auto. contradiction H4. symmetry. exact H5.
- elim l2; auto.
intros x l2' IHin. simpl. destruct (Rel.T_eqb (f x) t); simpl.
* rewrite <- IHin. omega.
* rewrite <- IHin. omega.
Qed.
Lemma card_sum : forall m n (f : Rel.T m -> Rel.T n) S, Rel.card (Rel.sum S f) = Rel.card S.
Proof.
intros. unfold Rel.card. do 2 rewrite Rel.p_sum.
rewrite filter_true. rewrite filter_true.
+ apply memb_sum_tech.
- apply Rel.p_nodup.
- apply incl_refl.
- apply Rel.p_nodup.
- intros. exact H0.
- intros. assert (Rel.memb (Rel.sum S f) (f u) > 0).
* rewrite Rel.p_sum. rewrite (count_occ_list_sum Nat.eq_dec (Rel.memb S u)).
++ apply lt_plus_trans. apply Rel.p_fs_r. exact H.
++ apply count_occ_In. apply in_map. apply filter_In; split; auto.
apply Rel.T_eqb_eq. reflexivity.
* apply Rel.p_fs. exact H0.
+ intros. apply Rel.T_eqb_eq. reflexivity.
+ intros. apply Rel.T_eqb_eq. reflexivity.
Qed.
Lemma Rel_times_Rone n (r : Rel.R n) : Rel.times r Rel.Rone ~= r.
Proof.
apply p_ext_dep. omega.
intros t1 t2 et1t2.
enough (forall t0, t1 = append t2 t0 -> Rel.memb (Rel.times r Rel.Rone) t1 = Rel.memb r t2).
apply (H (Vector.nil _)). symmetry. apply JMeq_eq. apply (JMeq_trans (vector_append_nil_r _)).
symmetry. exact et1t2.
intros. rewrite H. rewrite (Rel.p_times _ _ _ _ _ _ _ eq_refl).
eapply (case0 (fun x => Rel.memb r t2 * Rel.memb Rel.Rone x = Rel.memb r t2) _ t0). Unshelve. simpl. rewrite Rel.p_one. omega.
Qed.
Lemma Rel_sum_sum n1 n2 n3 (r : Rel.R n1)
(f : Rel.T n1 -> Rel.T n2) (g : Rel.T n2 -> Rel.T n3)
: Rel.sum (Rel.sum r f) g = Rel.sum r (fun x => g (f x)).
Proof.
apply Rel.p_ext. intro.
repeat rewrite Rel.p_sum. apply memb_sum_tech.
+ apply NoDup_filter. apply Rel.p_nodup.
+ unfold incl. intros. destruct (proj1 (filter_In _ _ _) H). exact H0.
+ apply NoDup_filter. apply Rel.p_nodup.
+ intros. apply filter_In. destruct (proj1 (filter_In _ _ _) H). split; intuition.
rewrite H1. exact H3.
+ intros. apply filter_In. destruct (proj1 (filter_In _ _ _) H). split; intuition.
assert (Rel.memb (Rel.sum r f) (f u) > 0).
* rewrite Rel.p_sum. rewrite (count_occ_list_sum Nat.eq_dec (Rel.memb r u)).
++ apply lt_plus_trans. apply Rel.p_fs_r. exact H0.
++ apply count_occ_In. apply in_map. apply filter_In; split; auto.
apply Rel.T_eqb_eq. reflexivity.
* apply Rel.p_fs. exact H2.
Qed.
Lemma eq_sum_dep m1 m2 n1 n2 (e1 : m1 = m2) (e2 : n1 = n2) :
forall (r1 : Rel.R m1) (r2 : Rel.R m2) (f : Rel.T m1 -> Rel.T n1) (g : Rel.T m2 -> Rel.T n2),
r1 ~= r2 -> f ~= g -> Rel.sum r1 f ~= Rel.sum r2 g.
Proof.
rewrite e1, e2. intros. rewrite H, H0. reflexivity.
Qed.
Lemma eq_sel_dep m n (e : m = n) :
forall (r1 : Rel.R m) (r2 : Rel.R n) (p : Rel.T m -> bool) (q : Rel.T n -> bool),
r1 ~= r2 -> p ~= q -> Rel.sel r1 p ~= Rel.sel r2 q.
Proof.
rewrite e. intros. rewrite H, H0. reflexivity.
Qed.
Lemma sel_true {n} (S : Rel.R n) p : (forall r, List.In r (Rel.supp S) -> p r = true) -> Rel.sel S p = S.
Proof.
intro. apply Rel.p_ext. intro. destruct (p t) eqn:ept.
+ rewrite Rel.p_selt; auto.
+ rewrite Rel.p_self; auto. destruct (Rel.memb S t) eqn:eSt; auto.
erewrite H in ept. discriminate ept.
apply Rel.p_fs. rewrite eSt. omega.
Qed.
Lemma sel_false {n} (S : Rel.R n) p : (forall r, List.In r (Rel.supp S) -> p r = false) -> Rel.sel S p = Rel.Rnil.
Proof.
intro. apply Rel.p_ext. intro. rewrite Rel.p_nil. destruct (p t) eqn:ept.
+ rewrite Rel.p_selt; auto. destruct (Rel.memb S t) eqn:eSt; auto.
erewrite H in ept. discriminate ept.
apply Rel.p_fs. rewrite eSt. omega.
+ rewrite Rel.p_self; auto.
Qed.
Lemma eq_memb_dep_elim1 : forall (P : nat -> Prop) m n (S1:Rel.R m) (S2 : Rel.R n) r2,
m = n -> S1 ~= S2 ->
(forall r1, r1 ~= r2 -> P (Rel.memb S1 r1)) ->
P (Rel.memb S2 r2).
Proof.
intros. generalize S1, H0, H1. clear S1 H0 H1.
rewrite H. intros. rewrite <- H0.
apply H1. reflexivity.
Qed.
Lemma sum_ext_dep m1 m2 n1 n2 R1 R2 (f : Rel.T m1 -> Rel.T m2) (g : Rel.T n1 -> Rel.T n2) :
m1 = n1 -> m2 = n2 -> R1 ~= R2 -> (forall x y, x ~= y -> f x ~= g y) -> Rel.sum R1 f ~= Rel.sum R2 g.
Proof.
intros. subst. rewrite H1. apply eq_JMeq. apply Rel.p_ext. intro.
do 2 rewrite Rel.p_sum. repeat f_equal. extensionality x.
rewrite (H2 x x). reflexivity. reflexivity.
Qed.
Lemma sum_ext_dep_elim1 m1 m2 n1 n2 f1 f2 (R2 : Rel.R m2) (P: forall n, Rel.R n -> Prop) :
m1 = m2 -> n1 = n2 -> f1 ~= f2 ->
(forall (R1 : Rel.R m1), R1 ~= R2 -> P n1 (Rel.sum R1 f1)) ->
P n2 (Rel.sum R2 f2).
Proof.
intros; subst. rewrite <- H1. apply H2. reflexivity.
Qed.
Lemma filter_supp_eq_tech n (al : list (Rel.T n)) x (Hal : NoDup al) :
(List.In x al -> filter (fun x0 => Rel.T_eqb x0 x) al = x::List.nil)
/\ (~List.In x al -> filter (fun x0 => Rel.T_eqb x0 x) al = List.nil).
Proof.
induction Hal.
+ split; intro.
contradiction H. reflexivity.
+ destruct IHHal. split; intro.
- inversion H2. simpl. replace (Rel.T_eqb x0 x) with true.
rewrite H3. f_equal. apply H1. rewrite <- H3. exact H.
symmetry. apply Rel.T_eqb_eq. exact H3.
simpl. replace (Rel.T_eqb x0 x) with false. apply H0. exact H3.
destruct (Rel.T_eqb x0 x) eqn:e; intuition. replace x with x0 in H3. contradiction H.
apply Rel.T_eqb_eq. exact e.
- simpl. replace (Rel.T_eqb x0 x) with false. apply H1. intro. apply H2. right. exact H3.
destruct (Rel.T_eqb x0 x) eqn:e; intuition. replace x with x0 in H2. contradiction H2. left. reflexivity.
apply Rel.T_eqb_eq. exact e.
Qed.
Lemma filter_supp_elim n R r (P : list (Rel.T n) -> Prop) :
(List.In r (Rel.supp R) -> P (r::List.nil)) ->
(~ List.In r (Rel.supp R) -> P List.nil) ->
P (filter (fun (x0 : Rel.T n) => Rel.T_eqb x0 r) (Rel.supp R)).
Proof.
destruct (filter_supp_eq_tech _ (Rel.supp R) r (Rel.p_nodup _ R)).
destruct (List.in_dec (Rel.T_dec _) r (Rel.supp R)); intros.
rewrite H. apply H1. exact i. exact i.
rewrite H0. apply H2. exact n0. exact n0.
Qed.
Lemma filter_supp_elim' m n R r (P : list (Rel.T (m+n)) -> Prop) :
(List.In (flip r) (Rel.supp R) -> P (flip r::List.nil)) ->
(~ List.In (flip r) (Rel.supp R) -> P List.nil) ->
P (filter (fun x0 => Rel.T_eqb (flip x0) r) (Rel.supp R)).
Proof.
replace (fun x0 => Rel.T_eqb (flip x0) r) with (fun x0 => Rel.T_eqb x0 (flip r)). apply filter_supp_elim.
extensionality x0. apply eq_T_eqb_iff. split; intro.
+ symmetry. apply flip_inv. symmetry. exact H.
+ apply flip_inv. exact H.
Qed.
Lemma p_ext' :
forall m n, forall e : m = n, forall r : Rel.R m, forall s : Rel.R n,
(forall t, Rel.memb r t = Rel.memb s (eq_rect _ _ t _ e)) -> r ~= s.
intros m n e. rewrite e. simpl.
intros. rewrite (Rel.p_ext n r s). constructor. exact H.
Qed.
Lemma eq_sel m n (e : m = n) : forall (S1 : Rel.R m) (S2 : Rel.R n) p q,
(forall r1 r2, r1 ~= r2 -> Rel.memb S1 r1 = Rel.memb S2 r2) ->
(forall r1 r2, r1 ~= r2 -> p r1 = q r2) ->
Rel.sel S1 p ~= Rel.sel S2 q.
Proof.
rewrite e. intros.
apply eq_JMeq. f_equal.
+ apply Rel.p_ext. intro. apply H. reflexivity.
+ extensionality r. apply H0. reflexivity.
Qed.
Lemma eq_card_dep m n (e : m = n) : forall (S1 : Rel.R m) (S2 : Rel.R n),
S1 ~= S2 -> Rel.card S1 = Rel.card S2.
Proof.
rewrite e. intros. rewrite H. reflexivity.
Qed.
Lemma pred_impl_fs_sel n S p q :
(forall (t : Rel.T n), p t = true -> q t = true) ->
forall x, Rel.memb (Rel.sel S p) x <= Rel.memb (Rel.sel S q) x.
Proof.
intros Hpq x. destruct (p x) eqn:ep.
+ rewrite (Rel.p_selt _ _ _ _ ep). rewrite (Rel.p_selt _ _ _ _ (Hpq _ ep)). reflexivity.
+ rewrite (Rel.p_self _ _ _ _ ep). intuition.
Qed.
(*******)
Lemma sum_id : forall m n (f : Rel.T m -> Rel.T n) r,
m = n ->
(forall x, f x ~= x) ->
Rel.sum r f ~= r.
Proof.
intros. subst. apply eq_JMeq. eapply Rel.p_ext.
intros v. rewrite Rel.p_sum.
replace (fun x => Rel.T_eqb (f x) v) with (fun v' => Rel.T_eqb v' v).
eapply filter_supp_elim; simpl; intro.
+ omega.
+ destruct (or_eq_lt_n_O (Rel.memb r v)); intuition.
contradiction H. apply Rel.p_fs. exact H1.
+ extensionality v'. rewrite H0. reflexivity.
Qed.
Lemma rsum_id : forall m n (f : Rel.T m -> Rel.R n) r,
m = n ->
(forall x, f x ~= Rel.Rsingle x) ->
Rel.rsum r f ~= r.
Proof.
intros. enough (exists (g : Rel.T m -> Rel.T n), forall x, g x ~= x).
decompose record H1. rename x into g; rename H2 into Hg. clear H1.
eapply (trans_JMeq _ (sum_id _ _ _ _ H Hg)). Unshelve.
subst. exists (fun x => x); intuition.
apply eq_JMeq; apply Rel.p_ext. intro.
rewrite Rel.p_rsum. rewrite Rel.p_sum.
induction (Rel.supp r); intuition.
simpl. subst. rewrite H0, Hg, IHl.
destruct (Rel.T_dec _ a t).
+ rewrite e, (proj2 (Rel.T_eqb_eq _ _ _) eq_refl), Rel.p_single. simpl. omega.
+ enough (Rel.T_eqb a t = false). rewrite H, Rel.p_single_neq. omega.
exact n0. destruct (Rel.T_eqb a t) eqn:e. contradiction n0. apply (proj1 (Rel.T_eqb_eq _ _ _)). exact e.
reflexivity.
Qed.
Lemma Rel_Rone_times n (r : Rel.R n) : Rel.times Rel.Rone r ~= r.
Proof.
apply p_ext_dep. omega.
intros t1 t2 et1t2.
enough (forall t0, t1 = append t0 t2 -> Rel.memb (Rel.times Rel.Rone r) t1 = Rel.memb r t2).
apply (H (Vector.nil _)). symmetry. apply JMeq_eq.
symmetry. exact et1t2.
intros. rewrite H. rewrite (Rel.p_times _ _ _ _ _ _ _ eq_refl).
eapply (case0 (fun x => Rel.memb Rel.Rone x * Rel.memb r t2 = Rel.memb r t2) _ t0). Unshelve. simpl. rewrite Rel.p_one. omega.
Qed.
(* maybe derive from another result: R_sum r (fun Vl => R_single x) = R.sum r (fun Vl => x). *)
Lemma rsum_single : forall n (r : Rel.R n), Rel.rsum r (fun Vl => Rel.Rsingle Vl) ~= r.
Proof.
intros. apply rsum_id; intuition.
Qed.
(*
Lemma memb_sum_tech_r {m} {n} (R : Rel.R m) (f : Rel.T m -> Rel.T n) x l1 :
NoDup l1 -> forall l2, incl l2 (Rel.supp R) -> NoDup l2 ->
(forall t u, List.In t l1 -> List.In u (Rel.supp R) -> List.In t (Rel.supp (f u)) -> List.In u l2) ->
(forall u, List.In u l2 -> List.Incl (Rel.supp (f u)) l1) ->
list_sum (List.map (fun t => Rel.memb (Rel.rsum R f) t * Rel.memb (g t) x) l1)
= list_sum (List.map (fun u => Rel.memb R u * Rel.memb (Rel.rsum (f t) g) x) l2).
Proof.
elim l1.
+ intros. replace l2 with (@List.nil (Rel.T m)). reflexivity.
destruct l2; auto. contradiction (H3 t). left. reflexivity.
+ intros t l1' IH Hl1' l2 Hsupp Hl2 H1 H2. simpl.
replace (list_sum (List.map (Rel.memb R) l2)) with
(list_sum (List.map (Rel.memb R) (filter (fun x => Rel.T_eqb (f x) t) l2)) +
list_sum (List.map (Rel.memb R) (filter (fun x => negb (Rel.T_eqb (f x) t)) l2))).
- f_equal.
* rewrite Rel.p_sum. apply (list_sum_ext Nat.eq_dec).
generalize (Rel.p_nodup _ R) l2 Hsupp Hl2 H1; clear l2 Hsupp Hl2 H1 H2; elim (Rel.supp R).
++ simpl. intros _ l2 Hincl. replace l2 with (@List.nil (Rel.T m)). reflexivity.
destruct l2; auto. contradiction (Hincl t0). left. reflexivity.
++ intros x l3' IHin Hnodup l2 Hincl Hl2 H1 y. simpl. destruct (Rel.T_eqb (f x) t) eqn:Heq; simpl.
-- destruct (Nat.eq_dec (Rel.memb R x) y); simpl.
** assert (exists n, count_occ Nat.eq_dec
(List.map (Rel.memb R) (filter (fun x0 : Rel.T m => Rel.T_eqb (f x0) t) l2)) y = S n).
apply count_occ_In_Sn. rewrite <- e. apply in_map. apply filter_In. split; auto.
eapply H1. left. reflexivity. left. reflexivity. apply Rel.T_eqb_eq. exact Heq.
destruct H. rewrite (count_occ_rmone_r _ _ _ _ _ H). f_equal.
transitivity (count_occ Nat.eq_dec (List.map (Rel.memb R)
(filter (fun x1 => Rel.T_eqb (f x1) t) (rmone _ (Rel.T_dec _) x l2))) y).
+++ apply IHin.
--- inversion Hnodup. exact H4.
--- eapply incl_rmone; assumption.
--- apply nodup_rmone. exact Hl2.
--- intros. apply in_rmone_neq.
*** inversion Hnodup. intro. rewrite H8 in H6. contradiction H6.
*** eapply H1. exact H0. right. exact H2. exact H3.
+++ apply map_filter_tech. exact Heq. rewrite e. reflexivity.
eapply H1. left. reflexivity. left. reflexivity. apply Rel.T_eqb_eq. exact Heq.
** replace (count_occ Nat.eq_dec (List.map (Rel.memb R) (filter (fun x0 => Rel.T_eqb (f x0) t) l2)) y)
with (count_occ Nat.eq_dec (List.map (Rel.memb R) (filter (fun x0 => Rel.T_eqb (f x0) t) (rmone _ (Rel.T_dec _) x l2))) y).
apply IHin.
+++ inversion Hnodup. exact H3.
+++ eapply incl_rmone; assumption.
+++ apply nodup_rmone. exact Hl2.
+++ intros. apply in_rmone_neq.
--- inversion Hnodup. intro. rewrite H7 in H5. contradiction H5.
--- eapply H1. exact H. right. exact H0. exact H2.
+++ apply count_occ_map_filter_rmone_tech. exact n0.
-- replace (count_occ Nat.eq_dec (List.map (Rel.memb R) (filter (fun x0 => Rel.T_eqb (f x0) t) l2)) y)
with (count_occ Nat.eq_dec (List.map (Rel.memb R) (filter (fun x0 => Rel.T_eqb (f x0) t) (rmone _ (Rel.T_dec _) x l2))) y). apply IHin.
*** inversion Hnodup. exact H3.
*** eapply incl_rmone; assumption.
*** apply nodup_rmone. exact Hl2.
*** intros. apply in_rmone_neq.
+++ inversion Hnodup. intro. rewrite H7 in H5. contradiction H5.
+++ eapply H1. exact H. right. exact H0. exact H2.
*** rewrite filter_rmone_false. reflexivity. exact Heq.
* apply IH.
++ inversion Hl1'; assumption.
++ intro x. intro Hx. apply Hsupp.
destruct (proj1 (filter_In (fun x => negb (Rel.T_eqb (f x) t)) x l2) Hx). exact H.
++ apply NoDup_filter. exact Hl2.
++ intros. apply filter_In. split.
-- eapply H1. right. exact H. exact H0. exact H3.
-- apply Bool.negb_true_iff. destruct (Rel.T_dec _ (f u) t).
** inversion Hl1'. rewrite <- e in H6. rewrite H3 in H6. contradiction H6.
** destruct (Rel.T_eqb (f u) t) eqn:ed; auto. contradiction n0. apply Rel.T_eqb_eq. exact ed.
++ intros. assert (List.In u l2 /\ negb (Rel.T_eqb (f u) t) = true).
-- apply (proj1 (filter_In (fun x => negb (Rel.T_eqb (f x) t)) u l2) H).
-- destruct H0. assert (f u <> t). intro.
pose (H4' := proj2 (Rel.T_eqb_eq _ (f u) t) H4); clearbody H4'.
rewrite H4' in H3. discriminate H3.
pose (H2' := H2 _ H0); clearbody H2'. inversion H2'; auto. contradiction H4. symmetry. exact H5.
- elim l2; auto.
intros x l2' IHin. simpl. destruct (Rel.T_eqb (f x) t); simpl.
* rewrite <- IHin. omega.
* rewrite <- IHin. omega.
Qed.
*)
Lemma list_sum_plus {A} (f g : A -> nat) l :
list_sum (List.map (fun x => f x + g x) l) = list_sum (List.map f l) + list_sum (List.map g l).
Proof.
induction l; intuition.
simpl. rewrite IHl. omega.
Qed.
Lemma list_sum_times_l {A} n (f : A -> nat) l :
list_sum (List.map (fun x => n * f x) l) = n * list_sum (List.map f l).
Proof.
induction l; intuition.
simpl. rewrite IHl. rewrite mult_plus_distr_l. reflexivity.
Qed.
Lemma list_sum_append l1 l2 : list_sum (l1 ++ l2) = list_sum l1 + list_sum l2.
Proof.
induction l1; simpl; intuition.
Qed.
Lemma NoDup_remove {A} (a:A) l1 l2 : NoDup (l1 ++ a :: l2) -> NoDup (l1 ++ l2).
Proof.
induction l1; simpl; intros.
+ inversion H; intuition.
+ constructor. inversion H. intro; apply H2.
apply in_or_app. destruct (in_app_or _ _ _ H4).
left; assumption. right; right; assumption.
apply IHl1. inversion H. intuition.
Qed.
Lemma rsum_rsum_list_sum {A} (l1 l2 : list A) f:
NoDup l1 -> NoDup l2 -> incl l2 l1 ->
(forall x, List.In x l1 -> ~ List.In x l2 -> f x = 0) ->
list_sum (List.map f l1) = list_sum (List.map f l2).
Proof.
intros. generalize dependent l1; induction l2.
+ induction l1; simpl; intuition. rewrite H2. apply IHl1. inversion H; intuition.
intro. intro. inversion H3.
intros. apply H2; intuition. left. reflexivity.
intro. inversion H3.
+ simpl. intros. enough (List.In a l1). decompose record (in_split _ _ H3). rewrite H5.
rewrite map_app, list_sum_append. simpl.
rewrite (plus_comm (f a)). rewrite plus_assoc. rewrite <- list_sum_append, <- map_app.
rewrite plus_comm. f_equal. apply IHl2.
- inversion H0; intuition.
- rewrite H5 in H. apply (NoDup_remove _ _ _ H).
- enough (forall A (y z : A) la lb lc, List.In y la -> y <> z -> incl la (lb ++ z :: lc) -> List.In y (lb ++ lc)).
intro. intro. eapply (H4 _ a0 a). apply H6. inversion H0; intro; subst. contradiction H9.
intro. intro. enough (List.In a1 (a::l2)).
generalize (H1 _ H8). rewrite H5; intuition.
right; exact H7.
intros B y z la. induction la; simpl; intros. contradiction H4.
destruct H4. subst. enough (List.In y (lb ++ z :: lc)).
induction lb in H4 |- *; simpl. simpl in H4. destruct H4; subst; intuition.
simpl in H4. destruct H4. intuition. right. apply IHlb. exact H4.
apply H7. left; reflexivity.
apply IHla. exact H4. exact H6. intro. intro. apply H7. right. exact H8.
- intros. apply H2. rewrite H5. apply in_or_app. destruct (in_app_or _ _ _ H4).
left; exact H7. right; right; exact H7.
intro. destruct H7. subst. induction x in H, H4, H3. inversion H. contradiction H5.
apply IHx. simpl in H; inversion H; exact H7.
apply in_or_app; right; left; reflexivity.
inversion H4. rewrite H1 in H. inversion H. contradiction H7. apply in_or_app; right; left; reflexivity.
exact H1.
contradiction H6.
- apply H1. left; reflexivity.
Qed.
Lemma incl_supp_rsum {m n} a (r : Rel.R m) (f : Rel.T m -> Rel.R n) :
List.In a (Rel.supp r) -> incl (Rel.supp (f a)) (Rel.supp (Rel.rsum r f)).
Proof.
repeat intro. apply Rel.p_fs. rewrite Rel.p_rsum.
generalize (Rel.p_fs_r _ _ _ H0). intro.
decompose record (in_split _ _ H). rewrite H3.
rewrite map_app, list_sum_append.
replace (list_sum (List.map (fun t0 => Rel.memb r t0 * Rel.memb (f t0) a0) (a :: x0)))
with (Rel.memb r a * Rel.memb (f a) a0 + list_sum (List.map (fun t0 => Rel.memb r t0 * Rel.memb (f t0) a0) x0)).
2: { reflexivity. }
rewrite plus_assoc. rewrite plus_comm. rewrite plus_assoc. change 0 with (0 + 0).
apply plus_le_lt_compat. omega.
unfold lt. change 1 with (1*1). apply mult_le_compat.
apply Rel.p_fs_r. exact H.
apply Rel.p_fs_r. exact H0.
Qed.
Lemma rsum_rsum_tech {m n o} (r : Rel.R m) (f : Rel.T m -> Rel.R n) (g : Rel.T n -> Rel.R o) (t : Rel.T o)
: forall l, incl l (Rel.supp r) ->
list_sum (List.map (fun x =>
list_sum (List.map (fun y =>
Rel.memb r y * Rel.memb (f y) x) l)
* Rel.memb (g x) t) (Rel.supp (Rel.rsum r f)))
= list_sum (List.map (fun z =>
Rel.memb r z * list_sum (List.map (fun w =>
Rel.memb (f z) w * Rel.memb (g w) t) (Rel.supp (f z)))) l).
Proof.
induction l; simpl. induction (Rel.supp (Rel.rsum r f)); intuition. intro.
transitivity
(list_sum (List.map (fun x =>
Rel.memb r a * Rel.memb (f a) x * Rel.memb (g x) t
+ list_sum (List.map (fun y : Rel.T m => Rel.memb r y * Rel.memb (f y) x) l) * Rel.memb (g x) t)
(Rel.supp (Rel.rsum r f)))).
1: { f_equal. f_equal. extensionality x. rewrite mult_plus_distr_r. reflexivity. }
rewrite (list_sum_plus (fun x => Rel.memb r a * Rel.memb (f a) x * Rel.memb (g x) t)
(fun x => list_sum (List.map (fun y => Rel.memb r y * Rel.memb (f y) x) l) * Rel.memb (g x) t)).
rewrite IHl. f_equal.
transitivity (list_sum (List.map (fun x =>
Rel.memb r a * (Rel.memb (f a) x * Rel.memb (g x) t)) (Rel.supp (Rel.rsum r f)))).
1: { f_equal. f_equal. extensionality x. rewrite mult_assoc. reflexivity. }
rewrite (list_sum_times_l (Rel.memb r a) (fun x => Rel.memb (f a) x * Rel.memb (g x) t)).
f_equal.
apply rsum_rsum_list_sum. apply Rel.p_nodup. apply Rel.p_nodup.
apply incl_supp_rsum. apply H. left; reflexivity.
intros. replace (Rel.memb (f a) x) with 0. omega.
destruct (or_eq_lt_n_O (Rel.memb (f a) x)). omega.
generalize (Rel.p_fs _ _ _ H2). intro. contradiction H1.
repeat intro. apply H. right. exact H0.
Qed.
Lemma rsum_rsum {m n o} (r : Rel.R m) (f : Rel.T m -> Rel.R n) (g: Rel.T n -> Rel.R o)
: Rel.rsum (Rel.rsum r f) g = Rel.rsum r (fun x => Rel.rsum (f x) g).
Proof.
apply Rel.p_ext; intro.
repeat rewrite Rel.p_rsum.
transitivity
(list_sum (List.map (fun x =>
list_sum (List.map (fun y =>
Rel.memb r y * Rel.memb (f y) x) (Rel.supp r))
* Rel.memb (g x) t) (Rel.supp (Rel.rsum r f)))).
1: { f_equal. f_equal. extensionality x. rewrite Rel.p_rsum. reflexivity. }
transitivity
(list_sum (List.map (fun z => Rel.memb r z *
list_sum (List.map (fun w => Rel.memb (f z) w * Rel.memb (g w) t) (Rel.supp (f z)))) (Rel.supp r))).
2: { f_equal. f_equal. extensionality z. rewrite Rel.p_rsum. reflexivity. }
apply rsum_rsum_tech.
apply incl_refl.
Qed.
Lemma sel_rsum {m n} (r : Rel.R m) (p : Rel.T n -> bool) (f : Rel.T m -> Rel.R n)
: Rel.sel (Rel.rsum r f) p = Rel.rsum r (fun x => (Rel.sel (f x) p)).
Proof.
apply Rel.p_ext; intro. destruct (p t) eqn:ep.
+ rewrite Rel.p_selt. repeat rewrite Rel.p_rsum.
induction (Rel.supp r); intuition.
simpl. rewrite Rel.p_selt. intuition. exact ep. exact ep.
+ rewrite Rel.p_self. rewrite Rel.p_rsum. induction (Rel.supp r); intuition.
simpl. rewrite IHl, Rel.p_self. omega. exact ep. exact ep.
Qed.
Lemma eq_sum_rsum {m n} r (f : Rel.T m -> Rel.T n) : Rel.sum r f = Rel.rsum r (fun x => Rel.Rsingle (f x)).
Proof.
apply Rel.p_ext; intro. rewrite Rel.p_sum, Rel.p_rsum. induction (Rel.supp r); intuition.
simpl. destruct (Rel.T_dec _ (f a) t).
+ rewrite e, (proj2 (Rel.T_eqb_eq _ _ _) eq_refl), Rel.p_single. simpl. omega.
+ enough (Rel.T_eqb (f a) t = false). rewrite H, Rel.p_single_neq. omega.
exact n0. destruct (Rel.T_eqb (f a) t) eqn:e. contradiction n0. apply (proj1 (Rel.T_eqb_eq _ _ _)). exact e.
reflexivity.
Qed.
Lemma sel_times_single {m n} (r : Rel.R m) (x : Rel.T n) p :
Rel.sel (Rel.times r (Rel.Rsingle x)) p = Rel.times (Rel.sel r (fun Vl => p (append Vl x))) (Rel.Rsingle x).
Proof.
apply Rel.p_ext; intro. decompose record (exists_vector_append _ _ _ _ t eq_refl). destruct (p t) eqn:ep.
+ rewrite Rel.p_selt.
repeat rewrite (Rel.p_times _ _ _ _ _ _ _ (JMeq_eq H0)).
destruct (Rel.T_dec _ x x1).
- subst. rewrite Rel.p_selt. reflexivity. exact ep.
- rewrite Rel.p_single_neq. omega. exact n0.
- exact ep.
+ rewrite Rel.p_self. rewrite (Rel.p_times _ _ _ _ _ _ _ (JMeq_eq H0)).
destruct (Rel.T_dec _ x x1).
- subst. rewrite Rel.p_self. omega. exact ep.
- rewrite Rel.p_single_neq. omega. exact n0.
- exact ep.
Qed.
(*********)
Lemma filter_false A p (l : list A) :
(forall x, List.In x l -> p x = false) -> filter p l = List.nil.
Proof.
elim l. auto.
intros h t IH Hp. simpl. rewrite Hp.
+ apply IH. intros. apply Hp. right. exact H.
+ left. reflexivity.
Qed.
Lemma sum_append : forall m n o (f : Rel.T m -> Rel.T n) r (t : Rel.T o),
n = m + o ->
(forall x, f x ~= append x t) ->
Rel.sum r f ~= Rel.times r (Rel.Rsingle t).
Proof.
intros. subst. apply eq_JMeq. eapply Rel.p_ext.
intros v. rewrite Rel.p_sum.
replace (fun x => Rel.T_eqb (f x) v) with (fun v' => Rel.T_eqb (append v' t) v).
decompose record (exists_vector_append _ _ _ _ v eq_refl). rename x into v1. rename x0 into v2.
rewrite H1, (Rel.p_times _ _ _ _ _ v1 v2 eq_refl).
destruct (Rel.T_dec _ t v2).
+ replace (fun v' => Rel.T_eqb (append v' t) (append v1 v2)) with (fun v' => Rel.T_eqb v' v1).
rewrite e, Rel.p_single. eapply filter_supp_elim; simpl; intro.
- omega.
- destruct (or_eq_lt_n_O (Rel.memb r v1)); intuition.
contradiction H. apply Rel.p_fs. exact H2.
- extensionality v'. rewrite e. destruct (Rel.T_dec _ v' v1).
rewrite (proj2 (Rel.T_eqb_eq _ _ _) e0); symmetry. apply (proj2 (Rel.T_eqb_eq _ _ _)).
rewrite e0. reflexivity.
replace (Rel.T_eqb v' v1) with false. symmetry.
destruct (Rel.T_dec _ (append v' v2) (append v1 v2)). decompose record (vec_append_inj e0).
contradiction (n H).
destruct (Rel.T_eqb (append v' v2) (append v1 v2)) eqn:eapp.
rewrite (proj1 (Rel.T_eqb_eq _ _ _) eapp) in n0. contradiction n0. reflexivity.
reflexivity.
symmetry. destruct (Rel.T_eqb v' v1) eqn:e0.
rewrite (proj1 (Rel.T_eqb_eq _ _ _) e0) in n. contradiction n. reflexivity.
reflexivity.
+ rewrite filter_false. replace (Rel.memb (Rel.Rsingle t) v2) with 0. simpl; omega.
rewrite Rel.p_single_neq. reflexivity. exact n.
intros v' Hv'. destruct (Rel.T_eqb (append v' t) (append v1 v2)) eqn:eapp.
decompose record (vec_append_inj (proj1 (Rel.T_eqb_eq _ _ _) eapp)). contradiction n.
reflexivity.
+ extensionality v'. rewrite H0. reflexivity.
Qed.
Lemma rsum_append : forall m n o (f : Rel.T m -> Rel.R n) r (t : Rel.T o),
n = m + o ->
(forall x, f x ~= Rel.Rsingle (append x t)) ->
Rel.rsum r f ~= Rel.times r (Rel.Rsingle t).
Proof.
intros; subst. erewrite <- (sum_append _ _ _ (fun x => append x t)).
rewrite eq_sum_rsum. replace f with (fun (x:Rel.T m) => Rel.Rsingle (append x t)).
reflexivity. extensionality v. rewrite H0. reflexivity.
reflexivity.
intuition.
Qed.
Lemma supp_single_aux {A} (t : A) (l : list A) :
(forall (x y:A), {x = y} + {x <> y}) ->
List.In t l ->
(forall u, t <> u -> ~ List.In u l) ->
NoDup l ->
l = t::List.nil.
Proof.
intros. destruct l.
+ inversion H.
+ destruct (X a t).
- subst. destruct l; intuition.
destruct (X a t); subst.
inversion H1. contradiction H4. left. reflexivity.
exfalso. apply (H0 a). intuition. right; left; reflexivity.
- contradiction (H0 a). intuition. left; reflexivity.
Qed.
Lemma supp_single : forall n (t : Rel.T n), Rel.supp (Rel.Rsingle t) = t::List.nil.
Proof.
intros. apply supp_single_aux. apply (Rel.T_dec _).
apply Rel.p_fs. rewrite Rel.p_single. omega.
intros. intro. generalize (Rel.p_fs_r _ _ _ H0). rewrite Rel.p_single_neq. omega.
assumption.
apply Rel.p_nodup.
Qed.
Lemma rsum_from_single : forall m n t (f : Rel.T m -> Rel.R n),
Rel.rsum (Rel.Rsingle t) f = f t.
Proof.
intros. apply Rel.p_ext. intro. rewrite Rel.p_rsum.
replace (Rel.supp (Rel.Rsingle t)) with (t::List.nil).
simpl. rewrite Rel.p_single. omega.
symmetry; apply supp_single.
Qed.
Lemma rsum_times_single {m n o} (r : Rel.R m) (x : Rel.T n) (f : Rel.T (m + n) -> Rel.R o) :
Rel.rsum (Rel.times r (Rel.Rsingle x)) f = Rel.rsum r (fun Vl => f (append Vl x)).
Proof.
replace (Rel.times r (Rel.Rsingle x)) with (Rel.rsum r (fun v => Rel.Rsingle (append v x))).
rewrite rsum_rsum. f_equal.
extensionality Vl. apply rsum_from_single.
apply JMeq_eq. apply rsum_append. reflexivity. intuition.
Qed.
Lemma flatnat_plus : forall x y, Rel.flatnat (x + y) = max (Rel.flatnat x) (Rel.flatnat y).
Proof.
intros. destruct x; destruct y; simpl; reflexivity.
Qed.
Lemma flatnat_times : forall x y, Rel.flatnat (x * y) = min (Rel.flatnat x) (Rel.flatnat y).
Proof.
intros. destruct x; destruct y; simpl; intuition.
replace (x * 0) with 0. reflexivity. omega.
Qed.
Lemma flatnat_flatnat : forall x, Rel.flatnat (Rel.flatnat x) = Rel.flatnat x.
Proof.
intros. destruct x; reflexivity.
Qed.
Lemma flat_rsum_flat {m n} (r : Rel.R m) (fr : Rel.T m -> Rel.R n) :
Rel.flat (Rel.rsum r (fun Vl => Rel.flat (fr Vl))) = Rel.flat (Rel.rsum r (fun Vl => fr Vl)).
Proof.
apply Rel.p_ext; intro. repeat rewrite Rel.p_flat. repeat rewrite Rel.p_rsum.
induction (Rel.supp r); intuition.
simpl. repeat rewrite flatnat_plus. rewrite IHl. f_equal.
rewrite Rel.p_flat. repeat rewrite flatnat_times. f_equal.
apply flatnat_flatnat.
Qed.
Lemma flat_Rsingle n (v : Rel.T n) : Rel.flat (Rel.Rsingle v) = Rel.Rsingle v.
Proof.
apply Rel.p_ext; intros. rewrite Rel.p_flat.
destruct (Rel.T_dec _ v t).
+ rewrite e. rewrite Rel.p_single. reflexivity.
+ rewrite Rel.p_single_neq; intuition.
Qed.
Lemma sum_Rone_Rsingle n (f : Rel.T 0 -> Rel.T n) : Rel.sum Rel.Rone f = Rel.Rsingle (f (Vector.nil _)).
Proof.
apply Rel.p_ext; intro. rewrite Rel.p_sum. replace (Rel.supp Rel.Rone) with (Vector.nil Rel.V ::List.nil).
destruct (Rel.T_dec _ (f (nil _)) t).
+ rewrite e. rewrite Rel.p_single.
simpl. rewrite e. simpl. rewrite (proj2 (Rel.T_eqb_eq _ _ _) eq_refl). simpl. rewrite Rel.p_one. omega.
+ rewrite Rel.p_single_neq. simpl. destruct (Rel.T_eqb (f (nil _)) t) eqn:e; simpl; intuition.
contradiction n0. apply Rel.T_eqb_eq. exact e. exact n0.
+ enough (forall x y z, Rel.supp Rel.Rone <> x::y::z).
enough (Rel.supp Rel.Rone <> List.nil).
destruct (Rel.supp Rel.Rone). contradiction H0. reflexivity.
destruct l. eapply (Vector.case0 (fun x => _ = x :: _)). reflexivity.
contradiction (H t0 t1 l). reflexivity.
intro. enough (List.In (nil _) (Rel.supp Rel.Rone)). rewrite H0 in H1; exact H1.
apply Rel.p_fs. rewrite Rel.p_one. omega.
intros. intro. generalize (Rel.p_nodup _ Rel.Rone).
rewrite H. eapply (Vector.case0 (fun a => NoDup (a :: _) -> False)).
eapply (Vector.case0 (fun a => NoDup (_ :: a :: _) -> False)). intro.
inversion H0. contradiction H3. simpl. left. reflexivity.
Qed.
End Facts.