-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpenrose-legacy.c
506 lines (414 loc) · 13.5 KB
/
penrose-legacy.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
/* penrose-legacy.c: legacy Penrose tile generator.
*
* Works by choosing a small patch from a recursively expanded large
* region of tiling, using one of the two algorithms described at
*
* https://www.chiark.greenend.org.uk/~sgtatham/quasiblog/aperiodic-tilings/
*
* This method of generating Penrose tiling fragments is superseded by
* the completely different algorithm in penrose.c, using the other
* algorithm in that article (the 'combinatorial coordinates' one). We
* keep the legacy algorithm around only for interpreting Loopy game
* IDs generated by older versions of the code.
*/
#include <assert.h>
#include <string.h>
#ifdef NO_TGMATH_H
# include <math.h>
#else
# include <tgmath.h>
#endif
#include <stdio.h>
#include "puzzles.h" /* for malloc routines, and PI */
#include "penrose-legacy.h"
/* -------------------------------------------------------
* 36-degree basis vector arithmetic routines.
*/
/* Imagine drawing a
* ten-point 'clock face' like this:
*
* -E
* -D | A
* \ | /
* -C. \ | / ,B
* `-._\|/_,-'
* ,-' /|\ `-.
* -B' / | \ `C
* / | \
* -A | D
* E
*
* In case the ASCII art isn't clear, those are supposed to be ten
* vectors of length 1, all sticking out from the origin at equal
* angular spacing (hence 36 degrees). Our basis vectors are A,B,C,D (I
* choose them to be symmetric about the x-axis so that the final
* translation into 2d coordinates will also be symmetric, which I
* think will avoid minor rounding uglinesses), so our vector
* representation sets
*
* A = (1,0,0,0)
* B = (0,1,0,0)
* C = (0,0,1,0)
* D = (0,0,0,1)
*
* The fifth vector E looks at first glance as if it needs to be
* another basis vector, but in fact it doesn't, because it can be
* represented in terms of the other four. Imagine starting from the
* origin and following the path -A, +B, -C, +D: you'll find you've
* traced four sides of a pentagram, and ended up one E-vector away
* from the origin. So we have
*
* E = (-1,1,-1,1)
*
* This tells us that we can rotate any vector in this system by 36
* degrees: if we start with a*A + b*B + c*C + d*D, we want to end up
* with a*B + b*C + c*D + d*E, and we substitute our identity for E to
* turn that into a*B + b*C + c*D + d*(-A+B-C+D). In other words,
*
* rotate_one_notch_clockwise(a,b,c,d) = (-d, d+a, -d+b, d+c)
*
* and you can verify for yourself that applying that operation
* repeatedly starting with (1,0,0,0) cycles round ten vectors and
* comes back to where it started.
*
* The other operation that may be required is to construct vectors
* with lengths that are multiples of phi. That can be done by
* observing that the vector C-B is parallel to E and has length 1/phi,
* and the vector D-A is parallel to E and has length phi. So this
* tells us that given any vector, we can construct one which points in
* the same direction and is 1/phi or phi times its length, like this:
*
* divide_by_phi(vector) = rotate(vector, 2) - rotate(vector, 3)
* multiply_by_phi(vector) = rotate(vector, 1) - rotate(vector, 4)
*
* where rotate(vector, n) means applying the above
* rotate_one_notch_clockwise primitive n times. Expanding out the
* applications of rotate gives the following direct representation in
* terms of the vector coordinates:
*
* divide_by_phi(a,b,c,d) = (b-d, c+d-b, a+b-c, c-a)
* multiply_by_phi(a,b,c,d) = (a+b-d, c+d, a+b, c+d-a)
*
* and you can verify for yourself that those two operations are
* inverses of each other (as you'd hope!).
*
* Having done all of this, testing for equality between two vectors is
* a trivial matter of comparing the four integer coordinates. (Which
* it _wouldn't_ have been if we'd kept E as a fifth basis vector,
* because then (-1,1,-1,1,0) and (0,0,0,0,1) would have had to be
* considered identical. So leaving E out is vital.)
*/
struct vector { int a, b, c, d; };
static vector v_origin(void)
{
vector v;
v.a = v.b = v.c = v.d = 0;
return v;
}
/* We start with a unit vector of B: this means we can easily
* draw an isoceles triangle centred on the X axis. */
#ifdef TEST_VECTORS
static vector v_unit(void)
{
vector v;
v.b = 1;
v.a = v.c = v.d = 0;
return v;
}
#endif
#define COS54 0.5877852
#define SIN54 0.8090169
#define COS18 0.9510565
#define SIN18 0.3090169
/* These two are a bit rough-and-ready for now. Note that B/C are
* 18 degrees from the x-axis, and A/D are 54 degrees. */
double penrose_legacy_vx(vector *vs, int i)
{
return (vs[i].a + vs[i].d) * COS54 +
(vs[i].b + vs[i].c) * COS18;
}
double penrose_legacy_vy(vector *vs, int i)
{
return (vs[i].a - vs[i].d) * SIN54 +
(vs[i].b - vs[i].c) * SIN18;
}
static vector v_trans(vector v, vector trans)
{
v.a += trans.a;
v.b += trans.b;
v.c += trans.c;
v.d += trans.d;
return v;
}
static vector v_rotate_36(vector v)
{
vector vv;
vv.a = -v.d;
vv.b = v.d + v.a;
vv.c = -v.d + v.b;
vv.d = v.d + v.c;
return vv;
}
static vector v_rotate(vector v, int ang)
{
int i;
assert((ang % 36) == 0);
while (ang < 0) ang += 360;
ang = 360-ang;
for (i = 0; i < (ang/36); i++)
v = v_rotate_36(v);
return v;
}
#ifdef TEST_VECTORS
static vector v_scale(vector v, int sc)
{
v.a *= sc;
v.b *= sc;
v.c *= sc;
v.d *= sc;
return v;
}
#endif
static vector v_growphi(vector v)
{
vector vv;
vv.a = v.a + v.b - v.d;
vv.b = v.c + v.d;
vv.c = v.a + v.b;
vv.d = v.c + v.d - v.a;
return vv;
}
static vector v_shrinkphi(vector v)
{
vector vv;
vv.a = v.b - v.d;
vv.b = v.c + v.d - v.b;
vv.c = v.a + v.b - v.c;
vv.d = v.c - v.a;
return vv;
}
#ifdef TEST_VECTORS
static const char *v_debug(vector v)
{
static char buf[255];
sprintf(buf,
"(%d,%d,%d,%d)[%2.2f,%2.2f]",
v.a, v.b, v.c, v.d, v_x(&v,0), v_y(&v,0));
return buf;
}
#endif
/* -------------------------------------------------------
* Tiling routines.
*/
static vector xform_coord(vector vo, int shrink, vector vtrans, int ang)
{
if (shrink < 0)
vo = v_shrinkphi(vo);
else if (shrink > 0)
vo = v_growphi(vo);
vo = v_rotate(vo, ang);
vo = v_trans(vo, vtrans);
return vo;
}
#define XFORM(n,o,s,a) vs[(n)] = xform_coord(v_edge, (s), vs[(o)], (a))
static int penrose_p2_small(penrose_legacy_state *state, int depth, int flip,
vector v_orig, vector v_edge);
static int penrose_p2_large(penrose_legacy_state *state, int depth, int flip,
vector v_orig, vector v_edge)
{
vector vv_orig, vv_edge;
#ifdef DEBUG_PENROSE
{
vector vs[3];
vs[0] = v_orig;
XFORM(1, 0, 0, 0);
XFORM(2, 0, 0, -36*flip);
state->new_tile(state, vs, 3, depth);
}
#endif
if (flip > 0) {
vector vs[4];
vs[0] = v_orig;
XFORM(1, 0, 0, -36);
XFORM(2, 0, 0, 0);
XFORM(3, 0, 0, 36);
state->new_tile(state, vs, 4, depth);
}
if (depth >= state->max_depth) return 0;
vv_orig = v_trans(v_orig, v_rotate(v_edge, -36*flip));
vv_edge = v_rotate(v_edge, 108*flip);
penrose_p2_small(state, depth+1, flip,
v_orig, v_shrinkphi(v_edge));
penrose_p2_large(state, depth+1, flip,
vv_orig, v_shrinkphi(vv_edge));
penrose_p2_large(state, depth+1, -flip,
vv_orig, v_shrinkphi(vv_edge));
return 0;
}
static int penrose_p2_small(penrose_legacy_state *state, int depth, int flip,
vector v_orig, vector v_edge)
{
vector vv_orig;
#ifdef DEBUG_PENROSE
{
vector vs[3];
vs[0] = v_orig;
XFORM(1, 0, 0, 0);
XFORM(2, 0, -1, -36*flip);
state->new_tile(state, vs, 3, depth);
}
#endif
if (flip > 0) {
vector vs[4];
vs[0] = v_orig;
XFORM(1, 0, 0, -72);
XFORM(2, 0, -1, -36);
XFORM(3, 0, 0, 0);
state->new_tile(state, vs, 4, depth);
}
if (depth >= state->max_depth) return 0;
vv_orig = v_trans(v_orig, v_edge);
penrose_p2_large(state, depth+1, -flip,
v_orig, v_shrinkphi(v_rotate(v_edge, -36*flip)));
penrose_p2_small(state, depth+1, flip,
vv_orig, v_shrinkphi(v_rotate(v_edge, -144*flip)));
return 0;
}
static int penrose_p3_small(penrose_legacy_state *state, int depth, int flip,
vector v_orig, vector v_edge);
static int penrose_p3_large(penrose_legacy_state *state, int depth, int flip,
vector v_orig, vector v_edge)
{
vector vv_orig;
#ifdef DEBUG_PENROSE
{
vector vs[3];
vs[0] = v_orig;
XFORM(1, 0, 1, 0);
XFORM(2, 0, 0, -36*flip);
state->new_tile(state, vs, 3, depth);
}
#endif
if (flip > 0) {
vector vs[4];
vs[0] = v_orig;
XFORM(1, 0, 0, -36);
XFORM(2, 0, 1, 0);
XFORM(3, 0, 0, 36);
state->new_tile(state, vs, 4, depth);
}
if (depth >= state->max_depth) return 0;
vv_orig = v_trans(v_orig, v_edge);
penrose_p3_large(state, depth+1, -flip,
vv_orig, v_shrinkphi(v_rotate(v_edge, 180)));
penrose_p3_small(state, depth+1, flip,
vv_orig, v_shrinkphi(v_rotate(v_edge, -108*flip)));
vv_orig = v_trans(v_orig, v_growphi(v_edge));
penrose_p3_large(state, depth+1, flip,
vv_orig, v_shrinkphi(v_rotate(v_edge, -144*flip)));
return 0;
}
static int penrose_p3_small(penrose_legacy_state *state, int depth, int flip,
vector v_orig, vector v_edge)
{
vector vv_orig;
#ifdef DEBUG_PENROSE
{
vector vs[3];
vs[0] = v_orig;
XFORM(1, 0, 0, 0);
XFORM(2, 0, 0, -36*flip);
state->new_tile(state, vs, 3, depth);
}
#endif
if (flip > 0) {
vector vs[4];
vs[0] = v_orig;
XFORM(1, 0, 0, -36);
XFORM(3, 0, 0, 0);
XFORM(2, 3, 0, -36);
state->new_tile(state, vs, 4, depth);
}
if (depth >= state->max_depth) return 0;
/* NB these two are identical to the first two of p3_large. */
vv_orig = v_trans(v_orig, v_edge);
penrose_p3_large(state, depth+1, -flip,
vv_orig, v_shrinkphi(v_rotate(v_edge, 180)));
penrose_p3_small(state, depth+1, flip,
vv_orig, v_shrinkphi(v_rotate(v_edge, -108*flip)));
return 0;
}
/* -------------------------------------------------------
* Utility routines.
*/
double penrose_legacy_side_length(double start_size, int depth)
{
return start_size / pow(PHI, depth);
}
/*
* It turns out that an acute isosceles triangle with sides in ratio 1:phi:phi
* has an incentre which is conveniently 2*phi^-2 of the way from the apex to
* the base. Why's that convenient? Because: if we situate the incentre of the
* triangle at the origin, then we can place the apex at phi^-2 * (B+C), and
* the other two vertices at apex-B and apex-C respectively. So that's an acute
* triangle with its long sides of unit length, covering a circle about the
* origin of radius 1-(2*phi^-2), which is conveniently enough phi^-3.
*
* (later mail: this is an overestimate by about 5%)
*/
int penrose_legacy(penrose_legacy_state *state, int which, int angle)
{
vector vo = v_origin();
vector vb = v_origin();
vo.b = vo.c = -state->start_size;
vo = v_shrinkphi(v_shrinkphi(vo));
vb.b = state->start_size;
vo = v_rotate(vo, angle);
vb = v_rotate(vb, angle);
if (which == PENROSE_P2)
return penrose_p2_large(state, 0, 1, vo, vb);
else
return penrose_p3_small(state, 0, 1, vo, vb);
}
/*
* We're asked for a MxN grid, which just means a tiling fitting into roughly
* an MxN space in some kind of reasonable unit - say, the side length of the
* two-arrow edges of the tiles. By some reasoning in a previous email, that
* means we want to pick some subarea of a circle of radius 3.11*sqrt(M^2+N^2).
* To cover that circle, we need to subdivide a triangle large enough that it
* contains a circle of that radius.
*
* Hence: start with those three vectors marking triangle vertices, scale them
* all up by phi repeatedly until the radius of the inscribed circle gets
* bigger than the target, and then recurse into that triangle with the same
* recursion depth as the number of times you scaled up. That will give you
* tiles of unit side length, covering a circle big enough that if you randomly
* choose an orientation and coordinates within the circle, you'll be able to
* get any valid piece of Penrose tiling of size MxN.
*/
#define INCIRCLE_RADIUS 0.22426 /* phi^-3 less 5%: see above */
void penrose_legacy_calculate_size(
int which, int tilesize, int w, int h,
double *required_radius, int *start_size, int *depth)
{
double rradius, size;
int n = 0;
/*
* Fudge factor to scale P2 and P3 tilings differently. This
* doesn't seem to have much relevance to questions like the
* average number of tiles per unit area; it's just aesthetic.
*/
if (which == PENROSE_P2)
tilesize = tilesize * 3 / 2;
else
tilesize = tilesize * 5 / 4;
rradius = tilesize * 3.11 * sqrt((double)(w*w + h*h));
size = tilesize;
while ((size * INCIRCLE_RADIUS) < rradius) {
n++;
size = size * PHI;
}
*start_size = (int)size;
*depth = n;
*required_radius = rradius;
}