-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpcst.py
131 lines (114 loc) · 3.47 KB
/
pcst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
import networkx as nx
def pcst_greedy(g, r):
"""
edge cost key: 'c'
node penalty key: 'p'
"""
F = set()
C = set()
Ct = {}
d = {}
lmbd = {}
w = {}
labels = {}
for v in g.nodes_iter():
C.add((v,))
Ct[(v,)] = v
d[v] = 0
lmbd[(v,)] = (1 if v != r else 0)
w[(v,)] = 0
labels[v] = None
while True:
any_active_component = np.array([lmbd[c] for c in C]).any()
if not any_active_component:
break
eps_1 = float('inf')
min_cp, min_cq, edge, min_root = None, None, None, None
for cp in C:
for cq in C:
if cp != cq:
for i in cp:
j = Ct[cq]
if g.has_edge(i, j):
if lmbd[cq] == 1:
tmp = g[i][j]['c'] - d[j]
if eps_1 > tmp:
eps_1 = tmp
edge = (i, j)
min_cp = cp
min_cq = cq
min_root = Ct[cp]
eps_2 = float('inf')
for c in C:
if lmbd[c] == 1:
tmp = sum([g.node[i]['p'] for i in c]) - w[c]
if tmp < eps_2:
eps_2 = tmp
min_c = c
eps = min(eps_1, eps_2)
for c in C:
if lmbd[c]:
w[c] += eps
d[Ct[c]] += eps
# print('eps: ', eps)
if eps_1 < eps_2:
# print('chose edge ({}, {})'.format(*edge))
# merge two components
F.add(edge)
C.remove(min_cp)
C.remove(min_cq)
c = min_cp + min_cq
C.add(c)
Ct[c] = min_root
w[c] = w[min_cp] + w[min_cq]
lmbd[c] = (0 if r in c else 1)
else:
# print('deactivate {})'.format(min_c, ))
# deactivate
lmbd[min_c] = 0
for v in min_c:
if labels[v] is None:
labels[v] = min_c
t = nx.DiGraph()
t.add_edges_from(F)
for n in t.nodes_iter():
t.node[n]['p'] = g.node[n]['p']
for i, j in t.edges_iter():
t[i][j]['c'] = g[i][j]['c']
edges = t.edges()
for i, j in edges:
if not nx.has_path(t, r, j):
t.remove_edge(i, j)
nodes = t.nodes()
for n in nodes:
if t.degree(n) == 0:
t.remove_node(n)
return t, list(set(g.nodes()) - set(t.nodes()))
def solve_budget_using_binary_search(g, r, B, eps=0.1):
"""node reward are uniform
"""
graph_edge_cost = lambda g: sum(
(g[i][j]['c'] for i, j in g.edges_iter())
)
edge_cost_sum = graph_edge_cost(g)
lmbd1, lmbd2 = 0, edge_cost_sum
cost = edge_cost_sum
while np.abs(lmbd2 - lmbd1) > eps:
lmbd = np.mean([lmbd1, lmbd2])
# print('lambda: ', lmbd)
for n in g.nodes_iter():
g.node[n]['p'] = lmbd
t, x = pcst_greedy(g, r)
cost = graph_edge_cost(t)
reward = sum(g.node[n]['p'] for n in t.nodes_iter())
# print('cost:', cost)
# print('reward:', reward / lmbd)
# print()
if cost > B:
lmbd2 = lmbd
elif cost < B:
lmbd1 = lmbd
else:
return t
return t