-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcore.py
425 lines (352 loc) · 12.7 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import numpy as np
import networkx as nx
from scipy import sparse as sp
from tqdm import tqdm
from scipy.sparse import diags, issparse
from scipy.sparse.linalg import eigs, spsolve, cg
from numpy import linalg as LA
try:
import cvxpy as cp
except:
pass
from helpers import (
signed_laplacian,
signed_normalized_laplacian,
prepare_seed_vector,
prepare_seed_vector_sparse,
degree_diag,
is_rank_one,
sbr_by_threshold,
flatten,
neg_adj, pos_adj
)
def query_graph(g, seeds, kappa=0.9, solver='cg', max_iter=30, tol=1e-3, verbose=0, return_details=False):
"""wrapper from different solvers"""
assert solver in {'sp', 'sdp', 'cg'}
assert kappa > 0, 'kappa should be non-negative'
assert kappa < 1, 'kappa should be < 1'
args = (g, seeds)
kwargs = dict(kappa=kappa, verbose=verbose)
if solver == 'sp':
return query_graph_using_sparse_linear_solver(
*args, **kwargs, solver='sp', max_iter=max_iter, return_details=return_details
)
elif solver == 'cg':
n_attempts = 0
while True and n_attempts <= 5:
try:
n_attempts += 1
return query_graph_using_sparse_linear_solver(
*args, **kwargs, solver='cg', max_iter=max_iter, tol=tol, return_details=return_details
)
except RuntimeError:
continue
raise RuntimeError('cg error and attempted 5 times')
elif solver == 'sdp':
return query_graph_using_dense_matrix(*args, **kwargs)
raise ValueError('unknown solver name', solver)
def query_graph_using_dense_matrix(g, seeds, kappa=0.9, verbose=0):
n = g.number_of_nodes()
L = signed_laplacian(g).A
D = degree_diag(g).A
s = prepare_seed_vector(seeds, D)
# requirement check
_, v1 = eigs(np.real(L), k=1, which='SM')
assert not np.isclose((s.T @ np.real(v1))[0, 0], 0)
DsDsT = (D @ s) @ (D @ s).T
X = cp.Variable((n, n))
constraints = [
X >> 0,
cp.trace(D @ X) == 1,
cp.trace(DsDsT @ X) >= kappa
]
prob = cp.Problem(cp.Minimize(cp.trace(L @ X)), constraints)
opt_val = prob.solve()
if verbose > 0:
print("is rank one? ", is_rank_one(X.value, False))
x_opt = X.value[0, :]
return x_opt, opt_val
def query_graph_using_sparse_linear_solver(
g, seeds,
kappa=0.9,
solver='cg',
max_iter=40,
tol=1e-3,
ub=None,
L=None,
A=None,
D=None,
verbose=0,
return_details=False
):
"""
more scalable approach by solving a sparse linear system
return:
- x_opt: np.ndarray
- opt_val: float
"""
if solver == 'sp':
print('WARNING: using "sp", note that "cg" is faster')
if L is None:
L = signed_laplacian(g)
if A is None:
A = nx.adj_matrix(g, weight='sign')
if D is None:
D = degree_diag(g)
s = prepare_seed_vector_sparse(seeds, D)
if verbose > 0:
print('matrices loading done')
lb = - g.number_of_edges() * 2
if ub is None:
Ln = signed_normalized_laplacian(A)
lambda1 = eigs(Ln, k=1, which='SM')[0][0] # the smallest eigen value
ub = np.real(lambda1)
if verbose > 0:
print('found lambda_1=', lambda1)
else:
if verbose > 0:
print('using given ub={}'.format(ub))
assert ub >= 0, 'ub should be non-negative'
b = D @ s
n_steps = 0
converged = False
while n_steps <= max_iter:
n_steps += 1
alpha = np.real((ub + lb) / 2)
A = L - alpha * D
# linear system solver
if solver == 'cg':
if issparse(b):
# cg requires b to be dense
b = b.A
y, info = cg(A, b)
if info != 0:
raise RuntimeError('cg error, info=', info)
elif solver == 'sp':
y = spsolve(A, b)
else:
raise ValueError('unknown solver', solver)
y /= LA.norm(y, 2)
y = diags(1 / np.sqrt(D.diagonal())) @ y[:, None]
# assert np.isclose((y.T @ D @ y)[0, 0], 1), 'y not normalized w.r.t D'
gap = np.real((np.sqrt(kappa) - y.T @ D @ s)[0, 0])
if n_steps % 5 == 0 and verbose > 0:
print('at iteration {} (alpha={:.5f})'.format(n_steps, alpha))
print("residual: sqrt(kappa) - y' D s={}".format(gap))
if gap > -tol and gap < 0:
converged = True
if verbose > 0:
print("""terminates after {} iterations:
- alpha={:.5f}
- residual={:.5f}""".format(n_steps, alpha, gap))
break
if gap < 0:
lb = alpha
else:
ub = alpha
y = y.T # make it row
ret = flatten(y), y @ L @ y.T
if return_details:
details = dict(
gap=gap,
ub=ub,
lb=lb,
alpha=alpha,
converged=converged,
n_iters=n_steps,
lambda1=lambda1
)
return ret + (details, )
else:
return ret
def sweep_on_x(g, x, top_k=-1, verbose=0):
"""
g: the graph
x: the node score vector
top_k: the number of threshold to consider, -1 to consider all
"""
ts = np.sort(np.abs(x)) # avoid very small threshold
if top_k > 0:
if verbose > 0:
print('sweep on top {}'.format(top_k))
ts = ts[-top_k:] # use large absolute thresholds
iters = (tqdm(ts) if verbose > 0 else ts)
sbr_list = [sbr_by_threshold(g, x, t) for t in iters]
best_t = ts[np.argmin(sbr_list)]
best_sbr = np.min(sbr_list)
if verbose > 0:
print('best_t:', best_t)
c1, c2 = np.nonzero(x <= -best_t)[0], np.nonzero(x >= best_t)[0]
C = np.nonzero(np.abs(x) >= best_t)[0]
if verbose > 0:
print('comm1:', c1)
print('comm2:', c2)
return c1, c2, C, best_t, best_sbr, ts, sbr_list
def _add_by_order(seq1, seq2, order, x, verbose=0):
"""
subroutine to be used by sweep_on_x_fast
Given:
seq1: values (can be pos/neg cut/internal-degree) ordered by x at each threshold
seq2: values ordered by -x at each threshold
order: node orders by |x|
all parameters have equal length, n (number of nodes in graph)
given some positive threshold t, denote the set of nodes above t as V1(t) and below -t as V2(t),
we want to calcualte val1(V1(t)) + val2(V2(t)) at all thresholds t,
where val1(V1(t)) means \sum_{v \in V1(t)} val1(v) and val2(V2(t)) means similarly
Return:
val1(V1(t)) + val2(V2(t)) at all thresholds t: length = n
"""
res = np.ones(seq1.shape)
nodes1, nodes2 = set(np.nonzero(x > 0)[0]), set(np.nonzero(x < 0)[0])
i, j, k = -1, -1, -1
for n in order:
if n in nodes1:
i += 1
if verbose > 0:
print('-> set 1: i=', i)
if n in nodes2:
j += 1
if verbose > 0:
print('-> set 2: j=', j)
k += 1
if verbose > 0:
print('current position: ', k)
val1 = (seq1[i] if i >= 0 else 0)
val2 = (seq2[j] if j >= 0 else 0)
res[k] = val1 + val2
if verbose > 0:
print('res[{}]={}'.format(k, res[k]))
return res
def sweep_on_x_fast(g, x, top_k=-1, A=None, return_details=False, verbose=0):
"""
sweep on x in one go (no iteration on thresholds)
returns:
C1, C2, C, best_t, best_beta, ts, beta_array
"""
if A is None:
A = nx.adj_matrix(g, weight='sign')
pos_A, neg_A = pos_adj(A), neg_adj(A)
# calculate volume
abs_order = np.argsort(np.abs(x))[::-1]
# print('abs_order', abs_order)
pos_A_by_abs = pos_A[abs_order, :][:, abs_order]
neg_A_by_abs = neg_A[abs_order, :][:, abs_order]
pos_vol_by_abs = np.cumsum(flatten(pos_A_by_abs.sum(axis=1)))
neg_vol_by_abs = np.cumsum(flatten(neg_A_by_abs.sum(axis=1)))
vol_by_abs = pos_vol_by_abs + neg_vol_by_abs
# print('pos_vol_by_abs', pos_vol_by_abs)
# print('neg_vol_by_abs', neg_vol_by_abs)
# print('vol_by_abs', vol_by_abs)
##### calculate the cut by abs(x)
# = cut(V1 \cup V2, complement of V1 \cup V2)
pos_A_by_abs_lower = sp.tril(pos_A_by_abs)
neg_A_by_abs_lower = sp.tril(neg_A_by_abs)
pos_cut_by_abs = pos_vol_by_abs - np.cumsum(2*flatten(pos_A_by_abs_lower.sum(axis=1)))
neg_cut_by_abs = neg_vol_by_abs - np.cumsum(2*flatten(neg_A_by_abs_lower.sum(axis=1)))
cut_by_abs = pos_cut_by_abs + neg_cut_by_abs
# print('abs_order', abs_order)
# print('pos_cut_by_abs', pos_cut_by_abs)
# print('neg_cut_by_abs', neg_cut_by_abs)
# print('cut_by_abs', cut_by_abs)
# print('neg_cut', neg_cut)
##### calculate negative/positive degree **inside**
# node order by x from high to low
pos_order = np.argsort(np.maximum(x, 0))[::-1]
# node order by -x from high to low
neg_order = np.argsort(np.maximum(-x, 0))[::-1]
# print('pos order', pos_order)
# print('neg order', neg_order)
# pos nodes on top
neg_A_1 = neg_A[pos_order, :][:, pos_order]
neg_A_lower_1 = sp.tril(neg_A_1)
neg_at_k_1 = flatten(2 * neg_A_lower_1.sum(axis=1))
neg_inside_1 = np.cumsum(neg_at_k_1)
# neg nodes on top
neg_A_2 = neg_A[neg_order, :][:, neg_order]
neg_A_lower_2 = sp.tril(neg_A_2)
neg_at_k_2 = flatten(2 * neg_A_lower_2.sum(axis=1))
neg_inside_2 = np.cumsum(neg_at_k_2)
# print('neg_inside_1', neg_inside_1)
# print('neg_inside_2', neg_inside_2)
pos_A_1 = pos_A[pos_order, :][:, pos_order]
pos_A_lower_1 = sp.tril(pos_A_1)
pos_at_k_1 = flatten(2 * pos_A_lower_1.sum(axis=1))
pos_inside_1 = np.cumsum(pos_at_k_1)
pos_A_2 = pos_A[neg_order, :][:, neg_order]
pos_A_lower_2 = sp.tril(pos_A_2)
pos_at_k_2 = flatten(2 * pos_A_lower_2.sum(axis=1))
pos_inside_2 = np.cumsum(pos_at_k_2)
# print('pos order', pos_order)
# print('neg order', neg_order)
# print('pos_at_k_1', flatten(pos_at_k_1))
# print('pos_at_k_2', flatten(pos_at_k_2))
# print('pos_inside_1', pos_inside_1)
# print('pos_inside_2', pos_inside_2)
######## positive cut on V1 and V2
pos_vol_1 = np.cumsum(flatten(pos_A_1.sum(axis=1)))
pos_vol_2 = np.cumsum(flatten(pos_A_2.sum(axis=1)))
pos_cut_1 = pos_vol_1 - pos_inside_1
pos_cut_2 = pos_vol_2 - pos_inside_2
# print('pos_cut_1', pos_cut_1)
# print('pos_cut_2', pos_cut_2)
####### the elixir #######
####### positive V1 and V2 in between #######
pos_cut_1_and_2 = _add_by_order(pos_cut_1, pos_cut_2, abs_order, x)
pos_between_1_2 = pos_cut_1_and_2 - pos_cut_by_abs
# count the negative inside V1 and V2 separately and then add up
neg_inside_1_2 = _add_by_order(neg_inside_1, neg_inside_2, abs_order, x)
beta_array = (pos_between_1_2 + neg_inside_1_2 + cut_by_abs) / vol_by_abs
# print('beta:', beta_array)
if top_k == -1:
top_k = beta_array.shape[0]
assert top_k >= 1
beta_array = beta_array[:top_k]
best_idx = np.argmin(beta_array)
best_beta = np.min(beta_array)
# print('best position: ', best_idx+1)
C = abs_order[:best_idx+1]
C1 = C[x[C] > 0]
C2 = C[x[C] < 0]
ts = np.sort(np.abs(x))[::-1][:top_k]
best_t = ts[best_idx]
ret = (C1, C2, C, best_t, best_beta, ts, beta_array)
if verbose > 0:
print('pos_order', pos_order)
print('neg_order', neg_order)
print('abs_order', abs_order)
print('pos_vol_by_abs', pos_vol_by_abs)
print('neg_vol_by_abs', neg_vol_by_abs)
print('vol_by_abs', vol_by_abs)
print('pos_cut_by_abs', pos_cut_by_abs)
print('neg_cut_by_abs', neg_cut_by_abs)
print('neg_inside_1', neg_inside_1)
print('neg_inside_2', neg_inside_2)
print('pos_inside_1', pos_inside_1)
print('pos_inside_2', pos_inside_2)
print('pos_cut_1', pos_cut_1)
print('pos_cut_2', pos_cut_2)
print('pos_between_1_2', pos_between_1_2)
print('neg_inside_1_2', neg_inside_1_2)
if return_details:
details = dict(
pos_A=pos_A,
neg_A=neg_A,
pos_order=pos_order,
neg_order=neg_order,
abs_order=abs_order,
pos_vol_by_abs=pos_vol_by_abs,
neg_vol_by_abs=neg_vol_by_abs,
pos_cut_by_abs=pos_cut_by_abs,
neg_cut_by_abs=neg_cut_by_abs,
neg_inside_1=neg_inside_1,
neg_inside_2=neg_inside_2,
pos_inside_1=pos_inside_1,
pos_inside_2=pos_inside_2,
pos_cut_1=pos_cut_1,
pos_cut_2=pos_cut_2,
pos_between_1_2=pos_between_1_2,
neg_inside_1_2=neg_inside_1_2
)
return ret + (details, )
else:
return ret