-
-
Notifications
You must be signed in to change notification settings - Fork 13.6k
/
Copy pathBlackbox.py
330 lines (291 loc) · 14.8 KB
/
Blackbox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
from __future__ import annotations
from aiohttp import ClientSession
import re
import json
import random
import string
from pathlib import Path
from typing import Optional
from ..typing import AsyncResult, Messages, ImagesType
from ..requests.raise_for_status import raise_for_status
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..image import to_data_uri
from ..cookies import get_cookies_dir
from .helper import format_prompt, format_image_prompt
from ..providers.response import JsonConversation, ImageResponse
from ..errors import ModelNotSupportedError
class Conversation(JsonConversation):
validated_value: str = None
chat_id: str = None
message_history: Messages = []
def __init__(self, model: str):
self.model = model
class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
label = "Blackbox AI"
url = "https://www.blackbox.ai"
api_endpoint = "https://www.blackbox.ai/api/chat"
working = True
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = "BLACKBOXAI"
default_vision_model = default_model
default_image_model = 'ImageGeneration'
image_models = [default_image_model]
vision_models = [default_vision_model, 'GPT-4o', 'o3-mini', 'Gemini-PRO', 'gemini-1.5-flash', 'llama-3.1-8b', 'llama-3.1-70b', 'llama-3.1-405b', 'Gemini-Flash-2.0']
premium_models = ['GPT-4o', 'o1', 'o3-mini', 'Gemini-PRO', 'Claude-Sonnet-3.5']
userSelectedModel = ['DeepSeek-V3', 'DeepSeek-R1', 'BLACKBOXAI-PRO', 'Meta-Llama-3.3-70B-Instruct-Turbo', 'Mistral-Small-24B-Instruct-2501', 'DeepSeek-LLM-Chat-(67B)', 'DBRX-Instruct', 'Qwen-QwQ-32B-Preview', 'Nous-Hermes-2-Mixtral-8x7B-DPO', 'Gemini-Flash-2.0'] + premium_models
agentMode = {
'DeepSeek-V3': {'mode': True, 'id': "deepseek-chat", 'name': "DeepSeek-V3"},
'DeepSeek-R1': {'mode': True, 'id': "deepseek-reasoner", 'name': "DeepSeek-R1"},
'Meta-Llama-3.3-70B-Instruct-Turbo': {'mode': True, 'id': "meta-llama/Llama-3.3-70B-Instruct-Turbo", 'name': "Meta-Llama-3.3-70B-Instruct-Turbo"},
'Mistral-Small-24B-Instruct-2501': {'mode': True, 'id': "mistralai/Mistral-Small-24B-Instruct-2501", 'name': "Mistral-Small-24B-Instruct-2501"},
'DeepSeek-LLM-Chat-(67B)': {'mode': True, 'id': "deepseek-ai/deepseek-llm-67b-chat", 'name': "DeepSeek-LLM-Chat-(67B)"},
'DBRX-Instruct': {'mode': True, 'id': "databricks/dbrx-instruct", 'name': "DBRX-Instruct"},
'Qwen-QwQ-32B-Preview': {'mode': True, 'id': "Qwen/QwQ-32B-Preview", 'name': "Qwen-QwQ-32B-Preview"},
'Nous-Hermes-2-Mixtral-8x7B-DPO': {'mode': True, 'id': "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", 'name': "Nous-Hermes-2-Mixtral-8x7B-DPO"},
'Gemini-Flash-2.0': {'mode': True, 'id': "Gemini/Gemini-Flash-2.0", 'name': "Gemini-Flash-2.0"},
}
trendingAgentMode = {
"o1": {'mode': True, 'id': 'o1'},
"o3-mini": {'mode': True, 'id': 'o3-mini'},
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
"llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405"},
'Python Agent': {'mode': True, 'id': "Python Agent"},
'Java Agent': {'mode': True, 'id': "Java Agent"},
'JavaScript Agent': {'mode': True, 'id': "JavaScript Agent"},
'HTML Agent': {'mode': True, 'id': "HTML Agent"},
'Google Cloud Agent': {'mode': True, 'id': "Google Cloud Agent"},
'Android Developer': {'mode': True, 'id': "Android Developer"},
'Swift Developer': {'mode': True, 'id': "Swift Developer"},
'Next.js Agent': {'mode': True, 'id': "Next.js Agent"},
'MongoDB Agent': {'mode': True, 'id': "MongoDB Agent"},
'PyTorch Agent': {'mode': True, 'id': "PyTorch Agent"},
'React Agent': {'mode': True, 'id': "React Agent"},
'Xcode Agent': {'mode': True, 'id': "Xcode Agent"},
'BLACKBOXAI-PRO': {'mode': True, 'id': "BLACKBOXAI-PRO"},
'Heroku Agent': {'mode': True, 'id': "Heroku Agent"},
'Godot Agent': {'mode': True, 'id': "Godot Agent"},
'Go Agent': {'mode': True, 'id': "Go Agent"},
'Gitlab Agent': {'mode': True, 'id': "Gitlab Agent"},
'Git Agent': {'mode': True, 'id': "Git Agent"},
'Flask Agent': {'mode': True, 'id': "Flask Agent"},
'Firebase Agent': {'mode': True, 'id': "Firebase Agent"},
'FastAPI Agent': {'mode': True, 'id': "FastAPI Agent"},
'Erlang Agent': {'mode': True, 'id': "Erlang Agent"},
'Electron Agent': {'mode': True, 'id': "Electron Agent"},
'Docker Agent': {'mode': True, 'id': "Docker Agent"},
'DigitalOcean Agent': {'mode': True, 'id': "DigitalOcean Agent"},
'Bitbucket Agent': {'mode': True, 'id': "Bitbucket Agent"},
'Azure Agent': {'mode': True, 'id': "Azure Agent"},
'Flutter Agent': {'mode': True, 'id': "Flutter Agent"},
'Youtube Agent': {'mode': True, 'id': "Youtube Agent"},
'builder Agent': {'mode': True, 'id': "builder Agent"},
}
models = list(dict.fromkeys([default_model, *userSelectedModel, *image_models, *list(agentMode.keys()), *list(trendingAgentMode.keys())]))
model_aliases = {
"blackboxai": "BLACKBOXAI",
"gemini-1.5-flash": "gemini-1.5-flash",
"deepseek-v3": "DeepSeek-V3",
"deepseek-r1": "DeepSeek-R1",
"llama-3.3-70b": "Meta-Llama-3.3-70B-Instruct-Turbo",
"mixtral-small-28b": "Mistral-Small-24B-Instruct-2501",
"deepseek-chat": "DeepSeek-LLM-Chat-(67B)",
"dbrx-instruct": "DBRX-Instruct",
"qwq-32b": "Qwen-QwQ-32B-Preview",
"hermes-2-dpo": "Nous-Hermes-2-Mixtral-8x7B-DPO",
"gemini-2.0-flash": "Gemini-Flash-2.0",
"blackboxai-pro": "BLACKBOXAI-PRO",
"flux": "ImageGeneration",
}
@classmethod
def get_models(cls) -> list[str]:
models = super().get_models()
filtered = [m for m in models if m not in cls.premium_models]
filtered += [f"{m} (Premium)" for m in cls.premium_models]
return filtered
@classmethod
def get_model(cls, model: str, **kwargs) -> str:
try:
model = super().get_model(model, **kwargs)
return model.split(" (Premium)")[0]
except ModelNotSupportedError:
base_model = model.split(" (Premium)")[0]
if base_model in cls.premium_models:
return base_model
raise
@classmethod
async def fetch_validated(cls, url: str = "https://www.blackbox.ai", force_refresh: bool = False) -> Optional[str]:
cache_file = Path(get_cookies_dir()) / 'blackbox.json'
if not force_refresh and cache_file.exists():
try:
with open(cache_file, 'r') as f:
data = json.load(f)
if data.get('validated_value'):
return data['validated_value']
except Exception as e:
print(f"Error reading cache: {e}")
js_file_pattern = r'static/chunks/\d{4}-[a-fA-F0-9]+\.js'
uuid_pattern = r'["\']([0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12})["\']'
def is_valid_context(text: str) -> bool:
return any(char + '=' in text for char in 'abcdefghijklmnopqrstuvwxyz')
async with ClientSession() as session:
try:
async with session.get(url) as response:
if response.status != 200:
return None
page_content = await response.text()
js_files = re.findall(js_file_pattern, page_content)
for js_file in js_files:
js_url = f"{url}/_next/{js_file}"
async with session.get(js_url) as js_response:
if js_response.status == 200:
js_content = await js_response.text()
for match in re.finditer(uuid_pattern, js_content):
start = max(0, match.start() - 10)
end = min(len(js_content), match.end() + 10)
context = js_content[start:end]
if is_valid_context(context):
validated_value = match.group(1)
cache_file.parent.mkdir(exist_ok=True)
try:
with open(cache_file, 'w') as f:
json.dump({'validated_value': validated_value}, f)
except Exception as e:
print(f"Error writing cache: {e}")
return validated_value
except Exception as e:
print(f"Error retrieving validated_value: {e}")
return None
@classmethod
def generate_id(cls, length: int = 7) -> str:
chars = string.ascii_letters + string.digits
return ''.join(random.choice(chars) for _ in range(length))
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
prompt: str = None,
proxy: str = None,
images: ImagesType = None,
top_p: float = None,
temperature: float = None,
max_tokens: int = None,
conversation: Conversation = None,
return_conversation: bool = False,
**kwargs
) -> AsyncResult:
model = cls.get_model(model)
headers = {
'accept': '*/*',
'accept-language': 'en-US,en;q=0.9',
'content-type': 'application/json',
'origin': 'https://www.blackbox.ai',
'referer': 'https://www.blackbox.ai/',
'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36'
}
async with ClientSession(headers=headers) as session:
if model in "ImageGeneration":
prompt = format_image_prompt(messages, prompt)
data = {
"query": format_image_prompt(messages, prompt),
"agentMode": True
}
headers['content-type'] = 'text/plain;charset=UTF-8'
async with session.post(
"https://www.blackbox.ai/api/image-generator",
json=data,
proxy=proxy,
headers=headers
) as response:
await raise_for_status(response)
response_json = await response.json()
if "markdown" in response_json:
image_url_match = re.search(r'!\[.*?\]\((.*?)\)', response_json["markdown"])
if image_url_match:
image_url = image_url_match.group(1)
yield ImageResponse(images=[image_url], alt=format_image_prompt(messages, prompt))
return
if conversation is None or not hasattr(conversation, "chat_id"):
conversation = Conversation(model)
conversation.validated_value = await cls.fetch_validated()
conversation.chat_id = cls.generate_id()
conversation.message_history = []
current_messages = []
for i, msg in enumerate(messages):
msg_id = conversation.chat_id if i == 0 and msg["role"] == "user" else cls.generate_id()
current_msg = {
"id": msg_id,
"content": msg["content"],
"role": msg["role"]
}
current_messages.append(current_msg)
if images is not None:
current_messages[-1]['data'] = {
"imagesData": [
{
"filePath": f"/{image_name}",
"contents": to_data_uri(image)
}
for image, image_name in images
],
"fileText": "",
"title": ""
}
data = {
"messages": current_messages,
"agentMode": cls.agentMode.get(model, {}) if model in cls.agentMode else {},
"id": conversation.chat_id,
"previewToken": None,
"userId": None,
"codeModelMode": True,
"trendingAgentMode": cls.trendingAgentMode.get(model, {}) if model in cls.trendingAgentMode else {},
"isMicMode": False,
"userSystemPrompt": None,
"maxTokens": max_tokens,
"playgroundTopP": top_p,
"playgroundTemperature": temperature,
"isChromeExt": False,
"githubToken": "",
"clickedAnswer2": False,
"clickedAnswer3": False,
"clickedForceWebSearch": False,
"visitFromDelta": False,
"isMemoryEnabled": False,
"mobileClient": False,
"userSelectedModel": model if model in cls.userSelectedModel else None,
"validated": conversation.validated_value,
"imageGenerationMode": False,
"webSearchModePrompt": False,
"deepSearchMode": False,
"domains": None,
"vscodeClient": False,
"codeInterpreterMode": False,
"customProfile": {
"name": "",
"occupation": "",
"traits": [],
"additionalInfo": "",
"enableNewChats": False
},
"session": None,
"isPremium": False,
"subscriptionCache": None,
"beastMode": False,
"webSearchMode": False
}
async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
await raise_for_status(response)
full_response = []
async for chunk in response.content.iter_any():
if chunk:
chunk_text = chunk.decode()
full_response.append(chunk_text)
yield chunk_text
if return_conversation:
full_response_text = ''.join(full_response)
conversation.message_history.append({"role": "assistant", "content": full_response_text})
yield conversation