-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathrun_text2text_csl.py
348 lines (269 loc) · 12.7 KB
/
run_text2text_csl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
"""
This script provides an example to wrap TencentPretrain for text-to-text fine-tuning.
"""
import sys
import os
import random
import argparse
import torch
from rouge import Rouge
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from uer.model_saver import save_model
from uer.decoders import *
from uer.targets import *
from finetune.run_classifier import *
rouge = Rouge()
class Text2text(torch.nn.Module):
def __init__(self, args):
super(Text2text, self).__init__()
self.embedding = str2embedding[args.embedding](args, len(args.tokenizer.vocab))
self.encoder = str2encoder[args.encoder](args)
self.tgt_embedding = str2embedding[args.tgt_embedding](args, len(args.tokenizer.vocab))
self.decoder = str2decoder[args.decoder](args)
self.target = LmTarget(args, len(args.tokenizer.vocab))
if args.tie_weights:
self.target.output_layer.weight = self.embedding.word_embedding.weight
if args.share_embedding:
self.tgt_embedding.word_embedding.weight = self.embedding.word_embedding.weight
def encode(self, src, seg):
emb = self.embedding(src, seg)
memory_bank = self.encoder(emb, seg)
return memory_bank
def decode(self, src, memory_bank, tgt):
tgt_in, tgt_out, _ = tgt
decoder_emb = self.tgt_embedding(tgt_in, None)
hidden = self.decoder(memory_bank, decoder_emb, (src,))
output = self.target.output_layer(hidden)
return output
def forward(self, src, tgt, seg, memory_bank=None, only_use_encoder=False):
if only_use_encoder:
return self.encode(src, seg)
if memory_bank is not None:
return self.decode(src, memory_bank, tgt)
tgt_in, tgt_out, _ = tgt
memory_bank = self.encode(src, seg)
output = self.decode(src, memory_bank, tgt)
if tgt_out is None:
return None, output
else:
decoder_emb = self.tgt_embedding(tgt_in, None)
hidden = self.decoder(memory_bank, decoder_emb, (seg,))
loss = self.target(hidden, tgt_out, seg)[0]
return loss, output
def read_dataset(args, path):
dataset, columns = [], {}
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
line = line[:-1].split('\t')
if len(line) == 3:
text = line[0] + SEP_TOKEN + line[1]
label = line[2]
else:
text, label = line[0], line[1]
src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text) + [SEP_TOKEN])
tgt_in = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(label) + [SEP_TOKEN])
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]
seg = [1] * len(src)
if len(src) > args.seq_length:
src = src[: args.seq_length]
seg = seg[: args.seq_length]
if len(tgt_in) > args.tgt_seq_length:
tgt_in = tgt_in[: args.tgt_seq_length]
tgt_out = tgt_in[1:] + [PAD_ID]
while len(src) < args.seq_length:
src.append(PAD_ID)
seg.append(0)
while len(tgt_in) < args.tgt_seq_length:
tgt_in.append(PAD_ID)
tgt_out.append(PAD_ID)
dataset.append((src, tgt_in, tgt_out, seg))
return dataset
def batch_loader(batch_size, src, tgt_in, tgt_out, seg):
instances_num = src.size()[0]
for i in range(instances_num // batch_size):
src_batch = src[i * batch_size : (i + 1) * batch_size, :]
tgt_in_batch = tgt_in[i * batch_size : (i + 1) * batch_size, :]
tgt_out_batch = tgt_out[i * batch_size : (i + 1) * batch_size, :]
seg_batch = seg[i * batch_size : (i + 1) * batch_size, :]
yield src_batch, tgt_in_batch, tgt_out_batch, seg_batch, None
if instances_num > instances_num // batch_size * batch_size:
src_batch = src[instances_num // batch_size * batch_size :, :]
tgt_in_batch = tgt_in[instances_num // batch_size * batch_size :, :]
tgt_out_batch = tgt_out[instances_num // batch_size * batch_size :, :]
seg_batch = seg[instances_num // batch_size * batch_size :, :]
yield src_batch, tgt_in_batch, tgt_out_batch, seg_batch, None
def train_model(args, model, optimizer, scheduler, src_batch, tgt_in_batch, tgt_out_batch, seg_batch):
model.zero_grad()
src_batch = src_batch.to(args.device)
tgt_in_batch = tgt_in_batch.to(args.device)
tgt_out_batch = tgt_out_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
loss, _ = model(src_batch, (tgt_in_batch, tgt_out_batch, src_batch), seg_batch)
if torch.cuda.device_count() > 1:
loss = torch.mean(loss)
if args.fp16:
with args.amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
scheduler.step()
return loss
def evaluate(args, dataset):
src = torch.LongTensor([example[0] for example in dataset])
tgt_in = torch.LongTensor([example[1] for example in dataset])
tgt_out = torch.LongTensor([example[2] for example in dataset])
seg = torch.LongTensor([example[3] for example in dataset])
generated_sentences = []
args.model.eval()
for i, (src_batch, tgt_in_batch, tgt_out_batch, seg_batch, _) in enumerate(batch_loader(args.batch_size, src, tgt_in, tgt_out, seg)):
src_batch = src_batch.to(args.device)
tgt_in_batch = torch.zeros(tgt_in_batch.size()[0],1, dtype = torch.long, device = args.device)
for j in range(tgt_in_batch.size()[0]):
tgt_in_batch[j][-1] = args.tokenizer.vocab.get(CLS_TOKEN)
seg_batch = seg_batch.to(args.device)
with torch.no_grad():
memory_bank = args.model(src_batch, None, seg_batch, only_use_encoder=True)
for _ in range(args.tgt_seq_length):
tgt_out_batch = tgt_in_batch
with torch.no_grad():
outputs = args.model(src_batch, (tgt_in_batch, tgt_out_batch, src_batch), None, memory_bank=memory_bank)
next_token_logits = outputs[:, -1]
next_tokens = torch.argmax(next_token_logits, dim=1).unsqueeze(1)
tgt_in_batch = torch.cat([tgt_in_batch, next_tokens], dim=1)
for j in range(len(outputs)):
sentence = " ".join([args.tokenizer.inv_vocab[token_id.item()] for token_id in tgt_in_batch[j][1:]])
generated_sentences.append(sentence)
if args.metrics == 0:
labels = {}
labels_num = 0
for example in dataset:
label = "".join([args.tokenizer.inv_vocab[token_id] for token_id in example[2][:-2]]).split(SEP_TOKEN)[0]
if not labels.get(label, None):
labels[label] = labels_num
labels_num += 1
confusion_matrix = torch.zeros(labels_num, labels_num, dtype=torch.long)
correct = 0
#print(labels)
for i, example in enumerate(dataset):
tgt = example[2]
tgt_token = " ".join([args.tokenizer.inv_vocab[token_id] for token_id in tgt[:-2]])
generated_sentences[i] = generated_sentences[i].split(SEP_TOKEN)[0]
pred = "".join(generated_sentences[i].split(' '))
gold = "".join(tgt_token.split(SEP_TOKEN)[0].split(' '))
pred = normlize_output(pred, list(labels.keys()))
#print(pred, gold)
if pred in labels.keys():
confusion_matrix[labels[pred], labels[gold]] += 1
if pred == gold:
correct += 1
args.logger.info("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(correct / len(dataset), correct, len(dataset)))
return correct / len(dataset)
elif args.metrics == 1:
r_l = 0
for i, example in enumerate(dataset):
label = " ".join([args.tokenizer.inv_vocab[token_id] for token_id in example[2][:-2]]).split(SEP_TOKEN)[0]
score = rouge.get_scores(hyps=generated_sentences[i], refs=label)
r_l += score[0]['rouge-l']['f']
args.logger.info("Rouge-L. {:.4f} ".format(r_l / len(dataset)))
return r_l / len(dataset)
elif args.metrics == 2:
bp = 0
for i, example in enumerate(dataset):
label = "".join([args.tokenizer.inv_vocab[token_id] for token_id in example[2][:-2]]).split(SEP_TOKEN)[0].split('_')
pred = "".join(generated_sentences[i].split(' ')).split('_')
#print(pred, label)
bp += bpref(pred, label)
args.logger.info("Bpref. {:.4f} ".format(bp / len(dataset)))
return bp / len(dataset)
def bpref(pred, gold):
score, n ,p = 0, 0, 0
for word in pred:
if word in gold:
score += (1 - n / len(pred))
p += 1
else:
n += 1
if p != 0:
return score / p
else:
return score
def normlize_output(pred, labels):
scores = torch.ones(len(labels))
try:
for i, label in enumerate(labels):
scores[i] = rouge.get_scores(hyps=pred, refs=label)[0]['rouge-l']['f']
return labels[torch.argmax(scores).item()]
except:
return random.choice(labels)
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
finetune_opts(parser)
tokenizer_opts(parser)
parser.add_argument("--tgt_seq_length", type=int, default=32,
help="Output sequence length.")
parser.add_argument("--metrics", type=int, default=0,
help="0: Accuracy for classification. 1: Rouge-L for summarization, 2: Bpref. for keyword generation")
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
set_seed(args.seed)
# Build tokenizer.
args.tokenizer = str2tokenizer[args.tokenizer](args)
# Build classification model.
model = Text2text(args)
# Load or initialize parameters.
load_or_initialize_parameters(args, model)
# Get logger.
args.logger = init_logger(args)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
# Training phase.
trainset = read_dataset(args, args.train_path)
instances_num = len(trainset)
batch_size = args.batch_size
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1
args.logger.info("Batch size: {}".format(batch_size))
args.logger.info("The number of training instances: {}".format(instances_num))
optimizer, scheduler = build_optimizer(args, model)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
args.amp = amp
if torch.cuda.device_count() > 1:
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
args.model = model
total_loss, result, best_result = 0.0, 0.0, 0.0
args.logger.info("Start training.")
for epoch in range(1, args.epochs_num + 1):
random.shuffle(trainset)
src = torch.LongTensor([example[0] for example in trainset])
tgt_in = torch.LongTensor([example[1] for example in trainset])
tgt_out = torch.LongTensor([example[2] for example in trainset])
seg = torch.LongTensor([example[3] for example in trainset])
model.train()
for i, (src_batch, tgt_in_batch, tgt_out_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt_in, tgt_out, seg)):
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_in_batch, tgt_out_batch, seg_batch)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps))
total_loss = 0.0
result = evaluate(args, read_dataset(args, args.dev_path))
if result > best_result:
best_result = result
save_model(model, args.output_model_path)
# Evaluation phase.
if args.test_path is not None:
args.logger.info("Test set evaluation.")
if torch.cuda.device_count() > 1:
args.model.module.load_state_dict(torch.load(args.output_model_path))
else:
args.model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, read_dataset(args, args.test_path))
if __name__ == "__main__":
main()