-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathvfn_train.py
208 lines (180 loc) · 9.19 KB
/
vfn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 20 18:05:41 2016
@author: jan
"""
import tensorflow as tf
import numpy as np
import time
import imp
import network as nw
tabulate_available = False
try:
imp.find_module('tabulate')
tabulate_available = True
except ImportError:
pass
if tabulate_available:
from tabulate import tabulate
import argparse
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
# Defaults are not specified since both keys are required.
features={
'image_raw': tf.FixedLenFeature([], tf.string),
})
image = tf.decode_raw(features['image_raw'], tf.uint8)
image = tf.reshape(image, [227, 227, 6])
# Convert from [0, 255] -> [-0.5, 0.5] floats.
image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
return tf.split(image, 2, 2) # 3rd dimension two parts
def read_and_decode_aug(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
# Defaults are not specified since both keys are required.
features={
'image_raw': tf.FixedLenFeature([], tf.string),
})
image = tf.decode_raw(features['image_raw'], tf.uint8)
image = tf.image.random_flip_left_right(tf.reshape(image, [227, 227, 6]))
# Convert from [0, 255] -> [-0.5, 0.5] floats.
image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
image = tf.image.random_brightness(image, 0.01)
image = tf.image.random_contrast(image, 0.95, 1.05)
return tf.split(image, 2, 2) # 3rd dimension two parts
def inputs(filename, batch_size, num_epochs = None, shuffle = False, aug=False):
with tf.name_scope('input'):
filename_queue = tf.train.string_input_producer(
[filename], num_epochs=num_epochs)
# Even when reading in multiple threads, share the filename
# queue.
if aug:
crop, full = read_and_decode_aug(filename_queue)
else:
crop, full = read_and_decode(filename_queue)
if shuffle:
crops, fulls = tf.train.shuffle_batch( [crop, full], batch_size=batch_size,
num_threads=4, capacity=2000 + 4 * batch_size,
enqueue_many = False, min_after_dequeue=1000)
else:
crops, fulls = tf.train.batch([crop, full], batch_size = batch_size,
num_threads = 1, capacity=100 + 3 * batch_size,
allow_smaller_final_batch=False)
# Ensures a minimum amount of shuffling of examples.
# min_after_dequeue=1000)
return tf.concat([crops, fulls], 0)
# Helper Functions
def count_tfrecords(path):
cnt = 0
for record in tf.python_io.tf_record_iterator(path):
cnt+=1
return cnt
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--embedding_dim", help="Embedding dimension before mapping to one-dimensional score", type=int, default = 1000)
parser.add_argument("--validation_interval", help="Number of iterations after which validation is run", type=int, default = 500)
parser.add_argument("--batch_train", help="Batch size for training", type=int, default=100)
parser.add_argument("--batch_val", help="Batch size for validation", type=int, default=14)
parser.add_argument("--checkpoint_interval", help="Number of iterations after which a checkpoint file is written", type=int, default=1000)
parser.add_argument("--total_steps", help="Number of total training iterations", type=int, default=15000)
parser.add_argument("--initial_lr", help="Initial learning rate", type=float, default=0.01)
parser.add_argument("--momentum", help="Momentum coefficient", type=float, default=0.9)
parser.add_argument("--step_size", help="Number of steps after which the learning rate is reduced", type=int, default=10000)
parser.add_argument("--step_factor", help="Reduction factor for the learning rate", type=float, default=0.2)
parser.add_argument("--initial_parameters", help="Path to initial parameter file", type=str, default="alexnet.npy")
parser.add_argument("--ranking_loss", help="Type of ranking loss", type=str, choices=['ranknet', 'svm'], default='svm')
parser.add_argument("--checkpoint_name", help="Name of the checkpoint files", type=str, default='view_finding_network')
parser.add_argument("--spp", help="Whether to use spatial pyramid pooling in the last layer or not", type=str2bool, default=True)
parser.add_argument("--pooling", help="Which pooling function to use", type=str, choices=['max', 'avg'], default='max')
parser.add_argument("--augment", help="Whether to augment training data or not", type=str2bool, default=True)
parser.add_argument("--training_db", help="Path to training database", type=str, default='trn.tfrecords')
parser.add_argument("--validation_db", help="Path to validation database", type=str, default='val.tfrecords')
args = parser.parse_args()
embedding_dim = args.embedding_dim
validation_interval = args.validation_interval
batch_size_trn = args.batch_train
batch_size_val = args.batch_val
checkpoint_interval = args.checkpoint_interval
total_steps = args.total_steps
validation_instances = count_tfrecords(args.validation_db)
initial_lr = args.initial_lr
momentum_coeff = args.momentum
step_size = args.step_size
step_factor = args.step_factor
parameter_path = args.initial_parameters
ranking_loss = args.ranking_loss
experiment_name = args.ranking_loss
spp = args.spp
augment_training_data = args.augment
parameter_table = [["Initial parameters", parameter_path],
["Ranking loss", ranking_loss], ["SPP", spp], ["Pooling", args.pooling],
['Experiment', experiment_name],
['Embedding dim', embedding_dim], ['Batch size', batch_size_trn],
['Initial LR', initial_lr], ['Momentum', momentum_coeff],
['LR Step size', step_size], ['LR Step factor', step_factor],
['Total Steps', total_steps]]
training_images = inputs(args.training_db, batch_size_trn, None, True, augment_training_data)
test_images = inputs(args.validation_db, batch_size_val, None, False)
net_data = np.load(parameter_path).item()
var_dict= nw.get_variable_dict(net_data)
with tf.variable_scope("ranker") as scope:
feature_vec = nw.build_alexconvnet(training_images, var_dict, embedding_dim, spp, args.pooling)
L, p = nw.loss(feature_vec, nw.build_loss_matrix(batch_size_trn), ranking_loss)
scope.reuse_variables()
val_feature_vec = nw.build_alexconvnet(test_images, var_dict, embedding_dim, spp, args.pooling)
L_val, p_val = nw.loss(val_feature_vec, nw.build_loss_matrix(batch_size_val), ranking_loss)
lr = tf.Variable(initial_lr)
opt = tf.train.AdamOptimizer()
grads = opt.compute_gradients(L)
apply_grad_op = opt.apply_gradients(grads)
init = tf.global_variables_initializer()
saver = tf.train.Saver(tf.global_variables(), max_to_keep=10)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
sess.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
current_lr = initial_lr
validation_history = np.zeros(shape=(total_steps/validation_interval, 3))
if tabulate_available:
def generate_validation_history(step, tbl):
return tabulate(tbl, headers=['Step', 'LR', 'Loss'])
print tabulate(parameter_table)
for step in range(total_steps+1):
if step % step_size == 0 and step > 0:
current_lr *= step_factor
print "Learning Rate: {}".format(current_lr)
if step % checkpoint_interval == 0:
saver.save(sess, 'snapshots/ranker_{}_{}.ckpt'.format(experiment_name, embedding_dim), global_step=step)
t0 = time.time()
_, loss_val = sess.run([apply_grad_op, L])
t1 = time.time()
print "Iteration {}: L={:0.4f} dT={:0.3f}".format(step, loss_val, t1-t0)
if step % validation_interval == 0 and step > 0:
val_avg = 0.0
for k in range(validation_instances/batch_size_val):
val_loss = sess.run([L_val])[0]
val_avg+=val_loss
val_avg /= float(validation_instances/batch_size_val)
validation_history[step / validation_interval - 1] = (step, current_lr, val_avg)
if tabulate_available:
print generate_validation_history(step/validation_instances, validation_history)
else:
print "\tValidation: L={:0.4f}".format(val_avg)
np.savez("{}_history.npz".format(experiment_name), validation=validation_history)
if tabulate_available:
print tabulate(parameter_table)
sess.close()