|
| 1 | +# Experimental features |
| 2 | + |
| 3 | +This section contains documentation for experimental Zarr Python features. The features described here are exciting and potentially useful, but also volatile -- we might change them at any time. Take this into account if you consider depending on these features. |
| 4 | + |
| 5 | +## `CacheStore` |
| 6 | + |
| 7 | +Zarr Python 3.1.4 adds `zarr.experimental.cache_store.CacheStore` provides a dual-store caching implementation |
| 8 | +that can be wrapped around any Zarr store to improve performance for repeated data access. |
| 9 | +This is particularly useful when working with remote stores (e.g., S3, HTTP) where network |
| 10 | +latency can significantly impact data access speed. |
| 11 | + |
| 12 | +The CacheStore implements a cache that uses a separate Store instance as the cache backend, |
| 13 | +providing persistent caching capabilities with time-based expiration, size-based eviction, |
| 14 | +and flexible cache storage options. It automatically evicts the least recently used items |
| 15 | +when the cache reaches its maximum size. |
| 16 | + |
| 17 | +Because the `CacheStore` uses an ordinary Zarr `Store` object as the caching layer, you can reuse the data stored in the cache later. |
| 18 | + |
| 19 | +> **Note:** The CacheStore is a wrapper store that maintains compatibility with the full |
| 20 | +> `zarr.abc.store.Store` API while adding transparent caching functionality. |
| 21 | +
|
| 22 | +## Basic Usage |
| 23 | + |
| 24 | +Creating a CacheStore requires both a source store and a cache store. The cache store |
| 25 | +can be any Store implementation, providing flexibility in cache persistence: |
| 26 | + |
| 27 | +```python exec="true" session="experimental" source="above" result="ansi" |
| 28 | +import zarr |
| 29 | +from zarr.storage import LocalStore |
| 30 | +import numpy as np |
| 31 | +from tempfile import mkdtemp |
| 32 | +from zarr.experimental.cache_store import CacheStore |
| 33 | + |
| 34 | +# Create a local store and a separate cache store |
| 35 | +local_store_path = mkdtemp(suffix='.zarr') |
| 36 | +source_store = LocalStore(local_store_path) |
| 37 | +cache_store = zarr.storage.MemoryStore() # In-memory cache |
| 38 | +cached_store = CacheStore( |
| 39 | + store=source_store, |
| 40 | + cache_store=cache_store, |
| 41 | + max_size=256*1024*1024 # 256MB cache |
| 42 | +) |
| 43 | + |
| 44 | +# Create an array using the cached store |
| 45 | +zarr_array = zarr.zeros((100, 100), chunks=(10, 10), dtype='f8', store=cached_store, mode='w') |
| 46 | + |
| 47 | +# Write some data to force chunk creation |
| 48 | +zarr_array[:] = np.random.random((100, 100)) |
| 49 | +``` |
| 50 | + |
| 51 | +The dual-store architecture allows you to use different store types for source and cache, |
| 52 | +such as a remote store for source data and a local store for persistent caching. |
| 53 | + |
| 54 | +## Performance Benefits |
| 55 | + |
| 56 | +The CacheStore provides significant performance improvements for repeated data access: |
| 57 | + |
| 58 | +```python exec="true" session="experimental" source="above" result="ansi" |
| 59 | +import time |
| 60 | + |
| 61 | +# Benchmark reading with cache |
| 62 | +start = time.time() |
| 63 | +for _ in range(100): |
| 64 | + _ = zarr_array[:] |
| 65 | +elapsed_cache = time.time() - start |
| 66 | + |
| 67 | +# Compare with direct store access (without cache) |
| 68 | +zarr_array_nocache = zarr.open(local_store_path, mode='r') |
| 69 | +start = time.time() |
| 70 | +for _ in range(100): |
| 71 | + _ = zarr_array_nocache[:] |
| 72 | +elapsed_nocache = time.time() - start |
| 73 | + |
| 74 | +# Cache provides speedup for repeated access |
| 75 | +speedup = elapsed_nocache / elapsed_cache |
| 76 | +``` |
| 77 | + |
| 78 | +Cache effectiveness is particularly pronounced with repeated access to the same data chunks. |
| 79 | + |
| 80 | + |
| 81 | +## Cache Configuration |
| 82 | + |
| 83 | +The CacheStore can be configured with several parameters: |
| 84 | + |
| 85 | +**max_size**: Controls the maximum size of cached data in bytes |
| 86 | + |
| 87 | +```python exec="true" session="experimental" source="above" result="ansi" |
| 88 | +# 256MB cache with size limit |
| 89 | +cache = CacheStore( |
| 90 | + store=source_store, |
| 91 | + cache_store=cache_store, |
| 92 | + max_size=256*1024*1024 |
| 93 | +) |
| 94 | + |
| 95 | +# Unlimited cache size (use with caution) |
| 96 | +cache = CacheStore( |
| 97 | + store=source_store, |
| 98 | + cache_store=cache_store, |
| 99 | + max_size=None |
| 100 | +) |
| 101 | +``` |
| 102 | + |
| 103 | +**max_age_seconds**: Controls time-based cache expiration |
| 104 | + |
| 105 | +```python exec="true" session="experimental" source="above" result="ansi" |
| 106 | +# Cache expires after 1 hour |
| 107 | +cache = CacheStore( |
| 108 | + store=source_store, |
| 109 | + cache_store=cache_store, |
| 110 | + max_age_seconds=3600 |
| 111 | +) |
| 112 | + |
| 113 | +# Cache never expires |
| 114 | +cache = CacheStore( |
| 115 | + store=source_store, |
| 116 | + cache_store=cache_store, |
| 117 | + max_age_seconds="infinity" |
| 118 | +) |
| 119 | +``` |
| 120 | + |
| 121 | +**cache_set_data**: Controls whether written data is cached |
| 122 | + |
| 123 | +```python exec="true" session="experimental" source="above" result="ansi" |
| 124 | +# Cache data when writing (default) |
| 125 | +cache = CacheStore( |
| 126 | + store=source_store, |
| 127 | + cache_store=cache_store, |
| 128 | + cache_set_data=True |
| 129 | +) |
| 130 | + |
| 131 | +# Don't cache written data (read-only cache) |
| 132 | +cache = CacheStore( |
| 133 | + store=source_store, |
| 134 | + cache_store=cache_store, |
| 135 | + cache_set_data=False |
| 136 | +) |
| 137 | +``` |
| 138 | + |
| 139 | +## Cache Statistics |
| 140 | + |
| 141 | +The CacheStore provides statistics to monitor cache performance and state: |
| 142 | + |
| 143 | +```python exec="true" session="experimental" source="above" result="ansi" |
| 144 | +# Access some data to generate cache activity |
| 145 | +data = zarr_array[0:50, 0:50] # First access - cache miss |
| 146 | +data = zarr_array[0:50, 0:50] # Second access - cache hit |
| 147 | + |
| 148 | +# Get comprehensive cache information |
| 149 | +info = cached_store.cache_info() |
| 150 | +print(info['cache_store_type']) # e.g., 'MemoryStore' |
| 151 | +print(info['max_age_seconds']) |
| 152 | +print(info['max_size']) |
| 153 | +print(info['current_size']) |
| 154 | +print(info['tracked_keys']) |
| 155 | +print(info['cached_keys']) |
| 156 | +print(info['cache_set_data']) |
| 157 | +``` |
| 158 | + |
| 159 | +The `cache_info()` method returns a dictionary with detailed information about the cache state. |
| 160 | + |
| 161 | +## Cache Management |
| 162 | + |
| 163 | +The CacheStore provides methods for manual cache management: |
| 164 | + |
| 165 | +```python exec="true" session="experimental" source="above" result="ansi" |
| 166 | +# Clear all cached data and tracking information |
| 167 | +import asyncio |
| 168 | +asyncio.run(cached_store.clear_cache()) |
| 169 | + |
| 170 | +# Check cache info after clearing |
| 171 | +info = cached_store.cache_info() |
| 172 | +assert info['tracked_keys'] == 0 |
| 173 | +assert info['current_size'] == 0 |
| 174 | +``` |
| 175 | + |
| 176 | +The `clear_cache()` method is an async method that clears both the cache store |
| 177 | +(if it supports the `clear` method) and all internal tracking data. |
| 178 | + |
| 179 | +## Best Practices |
| 180 | + |
| 181 | +1. **Choose appropriate cache store**: Use MemoryStore for fast temporary caching or LocalStore for persistent caching |
| 182 | +2. **Size the cache appropriately**: Set `max_size` based on available storage and expected data access patterns |
| 183 | +3. **Use with remote stores**: The cache provides the most benefit when wrapping slow remote stores |
| 184 | +4. **Monitor cache statistics**: Use `cache_info()` to tune cache size and access patterns |
| 185 | +5. **Consider data locality**: Group related data accesses together to improve cache efficiency |
| 186 | +6. **Set appropriate expiration**: Use `max_age_seconds` for time-sensitive data or "infinity" for static data |
| 187 | + |
| 188 | +## Working with Different Store Types |
| 189 | + |
| 190 | +The CacheStore can wrap any store that implements the `zarr.abc.store.Store` interface |
| 191 | +and use any store type for the cache backend: |
| 192 | + |
| 193 | +### Local Store with Memory Cache |
| 194 | + |
| 195 | +```python exec="true" session="experimental-memory-cache" source="above" result="ansi" |
| 196 | +from zarr.storage import LocalStore, MemoryStore |
| 197 | +from zarr.experimental.cache_store import CacheStore |
| 198 | +from tempfile import mkdtemp |
| 199 | + |
| 200 | +local_store_path = mkdtemp(suffix='.zarr') |
| 201 | +source_store = LocalStore(local_store_path) |
| 202 | +cache_store = MemoryStore() |
| 203 | +cached_store = CacheStore( |
| 204 | + store=source_store, |
| 205 | + cache_store=cache_store, |
| 206 | + max_size=128*1024*1024 |
| 207 | +) |
| 208 | +``` |
| 209 | + |
| 210 | +### Memory Store with Persistent Cache |
| 211 | + |
| 212 | +```python exec="true" session="experimental-local-cache" source="above" result="ansi" |
| 213 | +from tempfile import mkdtemp |
| 214 | +from zarr.storage import MemoryStore, LocalStore |
| 215 | +from zarr.experimental.cache_store import CacheStore |
| 216 | + |
| 217 | +memory_store = MemoryStore() |
| 218 | +local_store_path = mkdtemp(suffix='.zarr') |
| 219 | +persistent_cache = LocalStore(local_store_path) |
| 220 | +cached_store = CacheStore( |
| 221 | + store=memory_store, |
| 222 | + cache_store=persistent_cache, |
| 223 | + max_size=256*1024*1024 |
| 224 | +) |
| 225 | +``` |
| 226 | + |
| 227 | +The dual-store architecture provides flexibility in choosing the best combination |
| 228 | +of source and cache stores for your specific use case. |
| 229 | + |
| 230 | +## Examples from Real Usage |
| 231 | + |
| 232 | +Here's a complete example demonstrating cache effectiveness: |
| 233 | + |
| 234 | +```python exec="true" session="experimental-final" source="above" result="ansi" |
| 235 | +import numpy as np |
| 236 | +import time |
| 237 | +from tempfile import mkdtemp |
| 238 | +import zarr |
| 239 | +import zarr.storage |
| 240 | +from zarr.experimental.cache_store import CacheStore |
| 241 | + |
| 242 | +# Create test data with dual-store cache |
| 243 | +local_store_path = mkdtemp(suffix='.zarr') |
| 244 | +source_store = zarr.storage.LocalStore(local_store_path) |
| 245 | +cache_store = zarr.storage.MemoryStore() |
| 246 | +cached_store = CacheStore( |
| 247 | + store=source_store, |
| 248 | + cache_store=cache_store, |
| 249 | + max_size=256*1024*1024 |
| 250 | +) |
| 251 | +zarr_array = zarr.zeros((100, 100), chunks=(10, 10), dtype='f8', store=cached_store, mode='w') |
| 252 | +zarr_array[:] = np.random.random((100, 100)) |
| 253 | + |
| 254 | +# Demonstrate cache effectiveness with repeated access |
| 255 | +start = time.time() |
| 256 | +data = zarr_array[20:30, 20:30] # First access (cache miss) |
| 257 | +first_access = time.time() - start |
| 258 | + |
| 259 | +start = time.time() |
| 260 | +data = zarr_array[20:30, 20:30] # Second access (cache hit) |
| 261 | +second_access = time.time() - start |
| 262 | + |
| 263 | +# Check cache statistics |
| 264 | +info = cached_store.cache_info() |
| 265 | +assert info['cached_keys'] > 0 # Should have cached keys |
| 266 | +assert info['current_size'] > 0 # Should have cached data |
| 267 | +print(f"Cache contains {info['cached_keys']} keys with {info['current_size']} bytes") |
| 268 | +``` |
| 269 | + |
| 270 | +This example shows how the CacheStore can significantly reduce access times for repeated |
| 271 | +data reads, particularly important when working with remote data sources. The dual-store |
| 272 | +architecture allows for flexible cache persistence and management. |
0 commit comments