-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbeyes.py
83 lines (53 loc) · 1.87 KB
/
beyes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 23 15:02:48 2017
@author: zdx
贝叶斯分类器
"""
import pandas as pd
filename = 'C:/Users/zdx/Documents/Python Scripts/pima-indians-diabetes.csv'
dataset = pd.read_csv(filename,encoding = 'utf-8',engine='python')
print(('Loaded data file {0} with {1} rows').format(filename, len(dataset)))
# Example of Naive Bayes implemented from Scratch in Python
def separateByClass(dataset):
separated = {}
for i in range(len(dataset)):
vector = dataset[i]
if (vector[-1] not in separated):
separated[vector[-1]] = []
separated[vector[-1]].append(vector)
return separated
dataset = [[1,20,1], [2,21,0], [3,22,1]]
separated = separateByClass(dataset)
import numpy as np
np.mean()
def summarize(dataset):
summaries = [(np.mean(attribute), np.std(attribute)) for attribute in zip(*dataset)]
del summaries[-1]
return summaries
dataset = [[1,20,0], [2,21,1], [3,22,0]]
summary = summarize(dataset)
print('Attribute summaries: {0}').format(summary)
def summarizeByClass(dataset):
separated = separateByClass(dataset)
summaries = {}
for classValue, instances in separated.items():
summaries[classValue] = summarize(instances)
return summaries
dataset = [[1,20,1], [2,21,0], [3,22,1], [4,22,0]]
summary = summarizeByClass(dataset)
print('Summary by class value: {0}').format(summary)
import math
def calculateProbability(x, mean, stdev):
exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent
def calculateClassProbabilities(summaries, inputVector):
probabilities = {}
for classValue, classSummaries in summaries.items():
probabilities[classValue] = 1
for i in range(len(classSummaries)):
mean, stdev = classSummaries[i]
x = inputVector[i]
probabilities[classValue] *= calculateProbability(x, mean, stdev)
return probabilities
{'a' :1,'b':2}.items()