-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindicators.py
295 lines (240 loc) · 10.2 KB
/
indicators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import mplfinance as mpf
class Indicators:
'''
input a company's dataframe to create indicators series
:return series
'''
def __init__(self, data):
self.__data = data
def rsv(self):
'''
rsv = (今日收盤價 - 最近九天的最低價)/(最近九天的最高價 - 最近九天最低價)
'''
data = self.__data
rsv = (
data['收盤價'] - data['收盤價'].rolling(window=9).min()
) / (
data['收盤價'].rolling(window=9).max() - data['收盤價'].rolling(window=9).min()
) * 100
rsv = np.nan_to_num(rsv)
self.__data['RSV'] = rsv
def kv(self):
'''
當日K值=前一日K值 * 2/3 + 當日RSV * 1/3
'''
data = self.__data
if 'RSV' not in data:
self.rsv()
rsv = self.__data['RSV'].tolist()
kv = [20 for _ in range(8)]
ktemp = kv[0]
for i in range(len(rsv) - 8):
ktemp = ktemp * (2 / 3) + rsv[i + 8] * (1 / 3)
kv.append(round(ktemp, 2))
self.__data['K'] = kv
def dv(self):
'''
當日D值=前一日D值 * 2/3 + 當日K值 * 1/3
'''
data = self.__data
if 'K' not in data:
self.kv()
kv = self.__data['K'].tolist()
dv = [50 for _ in range(8)]
dtemp = dv[0]
for i in range(len(kv) - 8):
dtemp = dtemp * (2 / 3) + kv[i + 8] * (1 / 3)
dv.append(round(dtemp, 2))
self.__data['D'] = dv
def macd(self):
'''
EMA(指數移動平均):計算MACD時,會先計算長、短天期的指數移動平均線(EMA)
,一般來說短期常使用12日(n=12)、長期為26日(m=26)
DIF = 12日EMA – 26日EMA
MACD =快線取9日EMA
柱狀圖(直方圖) = 快線–慢線,EMA快慢線相減後,得出來的差額就是在MACD圖形看到的柱狀圖。
:return:
'''
data = self.__data
data['12_EMA'] = data['收盤價'].ewm(span=12).mean()
data['26_EMA'] = data['收盤價'].ewm(span=26).mean()
data['DIF'] = data['12_EMA'] - data['26_EMA']
data['MACD'] = data['DIF'].ewm(span=9).mean()
data['MACD_histogram'] = data['DIF'] - data['MACD']
def ma(self, day=20):
data = self.__data
data['{}_MA'.format(day)] = data['收盤價'].rolling(day).mean()
data['{}_MA'.format(day)] = np.nan_to_num(data['{}_MA'.format(day)])
def bias(self, day=6):
data = self.__data
if '{}_MA'.format(day) not in data:
self.ma(day)
data['Bias'] = 100 * (data['收盤價'] - data['{}_MA'.format(day)]) / data['收盤價'].rolling(day).mean()
def bollinger_band(self, day=20):
data = self.__data
if '{}_MA'.format(day) not in data:
self.ma(day)
std = data['收盤價'].rolling(day).std()
data['Bollinger_top'] = data['{}_MA'.format(day)] + std * 2
data['Bollinger_mid'] = data['{}_MA'.format(day)]
data['Bollinger_down'] = data['{}_MA'.format(day)] - std * 2
def kd_line(self, date: str, savefig: bool = True):
'''
Make KD indicator's picture
'''
data = self.__data
if 'K' not in data:
self.kv()
if 'D' not in data:
self.dv()
data.index = pd.DatetimeIndex(data['日期'])
data = data[data.index > date]
data['K'].plot()
data['D'].plot()
plt.legend()
plt.title('KD')
if savefig == True:
plt.savefig('picture/' + str(round(data['證券代號'].values[0])) + 'KD.png')
else:
plt.show()
def macd_line(self, date: str, savefig=True):
'''
Make MACD indicator's picture
'''
data = self.__data
if 'DIF' not in data or 'MACD' not in data:
self.macd()
data.index = pd.DatetimeIndex(data['日期'])
data = data[data.index > date]
data['MACD'].plot(kind='line')
data['DIF'].plot(kind='line')
for index, row in data.iterrows():
if (row['MACD_histogram'] > 0):
plt.bar(row['日期'], row['MACD_histogram'], width=0.5, color='red')
else:
plt.bar(row['日期'], row['MACD_histogram'], width=0.5, color='green')
# major_index = data.index[data.index % 10 == 0]
# major_xtics = data['日期'][data.index % 10 == 0]
# plt.xticks(major_index, major_xtics)
# plt.setp(plt.gca().get_xticklabels(), rotation=30)
plt.legend()
plt.title('MACD')
if savefig == True:
plt.savefig('picture/' + str(round(data['證券代號'].values[0])) + 'MACD.png')
else:
plt.show()
def bias_line(self, date: str, savefig=True):
data = self.__data
if 'Bias' not in data:
self.bias()
data.index = pd.DatetimeIndex(data['日期'])
data = data[data.index > date]
data['Bias'].plot(color='red')
plt.legend()
plt.title('Bias')
if savefig == True:
plt.savefig('picture/' + str(round(data['證券代號'].values[0])) + 'Bias.png')
else:
plt.show()
def bollinger_band_line(self, date: str, savefig=True):
data = self.__data
if 'Bollinger_top' not in data or 'Bollinger_mid' not in data or 'Bollinger_down' not in data:
self.bollinger_band()
data.index = pd.DatetimeIndex(data['日期'])
data = data[data.index > date]
data['Bollinger_top'].plot(color='red')
data['Bollinger_mid'].plot(color='blue')
data['Bollinger_down'].plot(color='green')
data['收盤價'].plot(color='orange')
plt.legend()
plt.title('Bollinger_band')
if savefig == True:
plt.savefig('picture/' + str(round(data['證券代號'].values[0])) + 'Bollinger_band.png')
else:
plt.show()
def candlestick_chart(self, date, savefig=True):
data = self.__data
data.index = pd.DatetimeIndex(data['日期'])
data = data[data.index > date]
data = data.rename(columns={'收盤價': 'Close', '開盤價': 'Open',
'最高價': 'High', '最低價': 'Low',
'成交股數': 'Volume'})
mc = mpf.make_marketcolors(up='r', down='g', inherit=True)
s = mpf.make_mpf_style(base_mpf_style='yahoo', marketcolors=mc)
if savefig == True:
# 5b,20o,60g,120r,240p
mpf.plot(data, style=s, type='candle', volume=True, mav=(5, 20, 60, 120, 240),
savefig='picture/' + str(round(data['證券代號'].values[0])) + '.png')
else:
mpf.plot(data, style=s, type='candle', volume=True, mav=(5, 20, 60, 120, 240))
def __str__(self):
return self.__data.__str__()
class Selections:
'''
input all company's dataframe to get stock selections
:return list
'''
def __init__(self, data):
self.__data = data
def kd_goldencross(self) -> list:
data = self.__data
symbol = data['證券代號'].unique()
li = []
for i in symbol:
df = data[data['證券代號'] == i]
ind_df = Indicators(df)
ind_df.kv()
ind_df.dv()
k = df['K'].tolist()
d = df['D'].tolist()
if k[-1] < 20 and d[-1] < 20:
li.append(i)
return li
def kd_deathcross(self) -> list:
data = self.__data
symbol = data['證券代號'].unique()
li = []
for i in symbol:
df = data[data['證券代號'] == i]
ind_df = Indicators(df)
ind_df.kv()
ind_df.dv()
k = df['K'].tolist()
d = df['D'].tolist()
if k[-1] > 80 and d[-1] > 80:
li.append(i)
return li
if __name__ == "__main__":
df = pd.read_csv('data/20130101~20220803.csv')
tsmc_df = df[df['證券代號'] == 2330]
ind_df = Indicators(tsmc_df)
ind_df.bollinger_band_line(date='2022-01', savefig=False)
print(tsmc_df.iloc[:, -3:])
# ind_df.macd_line(date='2022-05', savefig=False)
# select_df = Selections(df)
# print(select_df.kd_goldencross())
'''
KD<20
[1234.0, 1235.0, 1304.0, 1315.0, 1324.0, 1325.0, 1402.0, 1435.0, 1436.0, 1469.0, 1472.0, 1525.0, 1538.0, 1590.0,
1701.0, 1729.0, 2049.0, 2109.0, 2201.0, 2204.0, 2340.0, 2361.0, 2397.0, 2414.0, 2425.0, 2427.0, 2429.0, 2436.0,
2486.0, 2499.0, 2610.0, 2722.0, 2833.0, 2841.0, 2852.0, 2905.0, 2911.0, 2923.0, 3014.0, 3026.0, 3312.0, 3406.0,
3519.0, 3536.0, 3573.0, 3584.0, 3588.0, 3593.0, 4133.0, 4414.0, 4935.0, 4976.0, 5269.0, 5471.0, 6117.0, 6145.0,
6172.0, 6213.0, 6281.0, 910069.0, 910322.0, 910708.0, 910948.0, 911201.0, 911602.0, 911612.0, 911616.0, 911626.0,
911868.0, 9910.0, 9919.0, 9926.0, 9931.0, 9940.0, 9941.0, 3682.0, 2712.0, 5259.0, 6415.0, 2929.0, 6449.0, 6452.0,
4927.0, 8467.0, 1256.0, 6525.0, 8466.0, 4943.0, 8488.0, 4807.0, 8499.0, 8497.0, 8482.0, 8367.0, 6655.0, 6674.0,
4564.0, 8462.0, 6672.0, 4439.0, 6743.0, 6781.0, 4440.0, 2945.0, 6770.0, 6719.0, 5306.0, 4583.0, 6799.0]
'''
'''
KD>80
[1301.0, 1303.0, 1321.0, 1437.0, 1439.0, 1451.0, 1456.0, 1464.0, 1516.0, 1530.0, 1536.0, 1537.0, 1604.0, 1616.0, 1618.0,
1712.0, 1726.0, 1737.0, 2059.0, 2062.0, 2106.0, 2107.0, 2206.0, 2301.0, 2305.0, 2308.0, 2317.0, 2324.0, 2356.0, 2364.0,
2380.0, 2388.0, 2395.0, 2419.0, 2420.0, 2421.0, 2438.0, 2459.0, 2467.0, 2468.0, 2505.0, 2538.0, 2543.0, 2608.0, 2611.0,
2809.0, 2880.0, 2885.0, 2886.0, 2890.0, 2892.0, 3017.0, 3022.0, 3024.0, 3040.0, 3229.0, 3231.0, 3474.0, 3494.0, 3518.0,
3557.0, 3579.0, 3596.0, 3599.0, 3617.0, 3638.0, 3703.0, 4733.0, 4915.0, 4938.0, 4984.0, 5434.0, 5880.0, 6112.0, 6128.0,
6133.0, 6152.0, 6176.0, 6201.0, 6216.0, 6225.0, 6269.0, 8105.0, 8201.0, 8271.0, 8926.0, 911610.0, 9907.0, 9924.0,
9929.0, 9934.0, 9942.0, 1817.0, 5519.0, 8996.0, 6442.0, 4557.0, 3321.0, 2243.0, 6581.0, 6625.0, 5876.0, 4571.0, 6754.0,
6515.0, 6776.0, 2211.0, 6796.0]
'''