@@ -1548,37 +1560,37 @@ Use [this](https://github.com/zziz/pwc/issues/11) thread to request us your favo
## 2014
| Title | Conf | Code | Stars |
|:--------|:--------:|:--------:|:--------:|
-| [Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation](http://openaccess.thecvf.com/content_cvpr_2014/html/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.html) | CVPR | [code](https://github.com/rbgirshick/rcnn) | 1681 |
-| [Locally Optimized Product Quantization for Approximate Nearest Neighbor Search](http://openaccess.thecvf.com/content_cvpr_2014/html/Kalantidis_Locally_Optimized_Product_2014_CVPR_paper.html) | CVPR | [code](https://github.com/yahoo/lopq) | 437 |
-| [Clothing Co-Parsing by Joint Image Segmentation and Labeling](http://openaccess.thecvf.com/content_cvpr_2014/html/Yang_Clothing_Co-Parsing_by_2014_CVPR_paper.html) | CVPR | [code](https://github.com/bearpaw/clothing-co-parsing) | 218 |
-| [Multiscale Combinatorial Grouping](http://openaccess.thecvf.com/content_cvpr_2014/html/Arbelaez_Multiscale_Combinatorial_Grouping_2014_CVPR_paper.html) | CVPR | [code](https://github.com/jponttuset/mcg) | 185 |
-| [Face Alignment at 3000 FPS via Regressing Local Binary Features](http://openaccess.thecvf.com/content_cvpr_2014/html/Ren_Face_Alignment_at_2014_CVPR_paper.html) | CVPR | [code](https://github.com/luoyetx/face-alignment-at-3000fps) | 164 |
-| [Cross-Scale Cost Aggregation for Stereo Matching](http://openaccess.thecvf.com/content_cvpr_2014/html/Zhang_Cross-Scale_Cost_Aggregation_2014_CVPR_paper.html) | CVPR | [code](https://github.com/rookiepig/CrossScaleStereo) | 106 |
-| [Transfer Joint Matching for Unsupervised Domain Adaptation](http://openaccess.thecvf.com/content_cvpr_2014/html/Long_Transfer_Joint_Matching_2014_CVPR_paper.html) | CVPR | [code](https://github.com/USTCPCS/CVPR2018_attention) | 67 |
-| [Deep Learning Face Representation from Predicting 10,000 Classes](http://openaccess.thecvf.com/content_cvpr_2014/html/Sun_Deep_Learning_Face_2014_CVPR_paper.html) | CVPR | [code](https://github.com/joyhuang9473/deepid-implementation) | 62 |
-| [BING: Binarized Normed Gradients for Objectness Estimation at 300fps](http://openaccess.thecvf.com/content_cvpr_2014/html/Cheng_BING_Binarized_Normed_2014_CVPR_paper.html) | CVPR | [code](https://github.com/alessandroferrari/BING-Objectness) | 44 |
-| [One Millisecond Face Alignment with an Ensemble of Regression Trees](http://openaccess.thecvf.com/content_cvpr_2014/html/Kazemi_One_Millisecond_Face_2014_CVPR_paper.html) | CVPR | [code](https://github.com/jjrCN/ERT-GBDT_Face_Alignment) | 43 |
-| [3D Reconstruction from Accidental Motion](http://openaccess.thecvf.com/content_cvpr_2014/html/Yu_3D_Reconstruction_from_2014_CVPR_paper.html) | CVPR | [code](https://github.com/fyu/tiny) | 42 |
-| [Predicting Matchability](http://openaccess.thecvf.com/content_cvpr_2014/html/Hartmann_Predicting_Matchability_2014_CVPR_paper.html) | CVPR | [code](https://github.com/jacekm-git/BetBoy) | 38 |
-| [Dense Semantic Image Segmentation with Objects and Attributes](http://openaccess.thecvf.com/content_cvpr_2014/html/Zheng_Dense_Semantic_Image_2014_CVPR_paper.html) | CVPR | [code](https://github.com/bittnt/ImageSpirit) | 28 |
-| [Scene-Independent Group Profiling in Crowd](http://openaccess.thecvf.com/content_cvpr_2014/html/Shao_Scene-Independent_Group_Profiling_2014_CVPR_paper.html) | CVPR | [code](https://github.com/amandajshao/crowd_group_profile) | 28 |
-| [Shrinkage Fields for Effective Image Restoration](http://openaccess.thecvf.com/content_cvpr_2014/html/Schmidt_Shrinkage_Fields_for_2014_CVPR_paper.html) | CVPR | [code](https://github.com/uschmidt83/shrinkage-fields) | 25 |
-| [Adaptive Color Attributes for Real-Time Visual Tracking](http://openaccess.thecvf.com/content_cvpr_2014/html/Danelljan_Adaptive_Color_Attributes_2014_CVPR_paper.html) | CVPR | [code](https://github.com/mostafaizz/ColorTracker) | 25 |
-| [Minimal Scene Descriptions from Structure from Motion Models](http://openaccess.thecvf.com/content_cvpr_2014/html/Cao_Minimal_Scene_Descriptions_2014_CVPR_paper.html) | CVPR | [code](https://github.com/caosong/minimal_scene) | 22 |
-| [Parallax-tolerant Image Stitching](http://openaccess.thecvf.com/content_cvpr_2014/html/Zhang_Parallax-tolerant_Image_Stitching_2014_CVPR_paper.html) | CVPR | [code](https://github.com/gain2217/Robust_Elastic_Warping) | 20 |
-| [Learning Mid-level Filters for Person Re-identification](http://openaccess.thecvf.com/content_cvpr_2014/html/Zhao_Learning_Mid-level_Filters_2014_CVPR_paper.html) | CVPR | [code](https://github.com/Robert0812/midfilter_reid) | 20 |
-| [Fast Edge-Preserving PatchMatch for Large Displacement Optical Flow](http://openaccess.thecvf.com/content_cvpr_2014/html/Bao_Fast_Edge-Preserving_PatchMatch_2014_CVPR_paper.html) | CVPR | [code](https://github.com/linchaobao/EPPM) | 18 |
-| [Product Sparse Coding](http://openaccess.thecvf.com/content_cvpr_2014/html/Ge_Product_Sparse_Coding_2014_CVPR_paper.html) | CVPR | [code](https://github.com/ksopyla/CudaDotProd) | 16 |
-| [Convolutional Neural Networks for No-Reference Image Quality Assessment](http://openaccess.thecvf.com/content_cvpr_2014/html/Kang_Convolutional_Neural_Networks_2014_CVPR_paper.html) | CVPR | [code](https://github.com/lidq92/CNNIQA) | 16 |
-| [Seeing 3D Chairs: Exemplar Part-based 2D-3D Alignment using a Large Dataset of CAD Models](http://openaccess.thecvf.com/content_cvpr_2014/html/Aubry_Seeing_3D_Chairs_2014_CVPR_paper.html) | CVPR | [code](https://github.com/mathieuaubry/seeing3Dchairs) | 15 |
-| [StoryGraphs: Visualizing Character Interactions as a Timeline](http://openaccess.thecvf.com/content_cvpr_2014/html/Tapaswi_StoryGraphs_Visualizing_Character_2014_CVPR_paper.html) | CVPR | [code](https://github.com/makarandtapaswi/StoryGraphs_CVPR2014) | 14 |
-| [Nonparametric Part Transfer for Fine-grained Recognition](http://openaccess.thecvf.com/content_cvpr_2014/html/Goring_Nonparametric_Part_Transfer_2014_CVPR_paper.html) | CVPR | [code](https://github.com/cvjena/finegrained-cvpr2014) | 13 |
-| [Scalable Multitask Representation Learning for Scene Classification](http://openaccess.thecvf.com/content_cvpr_2014/html/Lapin_Scalable_Multitask_Representation_2014_CVPR_paper.html) | CVPR | [code](https://github.com/mlapin/cvpr14mtl) | 11 |
-| [Investigating Haze-relevant Features in A Learning Framework for Image Dehazing](http://openaccess.thecvf.com/content_cvpr_2014/html/Tang_Investigating_Haze-relevant_Features_2014_CVPR_paper.html) | CVPR | [code](https://github.com/zlinker/haze_2014) | 7 |
-| [Reconstructing PASCAL VOC](http://openaccess.thecvf.com/content_cvpr_2014/html/Vicente_Reconstructing_PASCAL_VOC_2014_CVPR_paper.html) | CVPR | [code](https://github.com/yihui-he/reconstructing-pascal-voc) | 6 |
-| [Collaborative Hashing](http://openaccess.thecvf.com/content_cvpr_2014/html/Liu_Collaborative_Hashing_2014_CVPR_paper.html) | CVPR | [code](https://github.com/27359794/lsh-collab-filtering) | 6 |
-| [Tell Me What You See and I will Show You Where It Is](http://openaccess.thecvf.com/content_cvpr_2014/html/Xu_Tell_Me_What_2014_CVPR_paper.html) | CVPR | [code](https://github.com/MarkipTheMudkip/in-class-project-2) | 6 |
-| [Salient Region Detection via High-Dimensional Color Transform](http://openaccess.thecvf.com/content_cvpr_2014/html/Kim_Salient_Region_Detection_2014_CVPR_paper.html) | CVPR | [code](https://github.com/jhkim89/Saliency-HDCT) | 6 |
+| [Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation](http://openaccess.thecvf.com/content_cvpr_2014/html/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.html) | CVPR | [code](https://github.com/rbgirshick/rcnn) | 1681 |
+| [Locally Optimized Product Quantization for Approximate Nearest Neighbor Search](http://openaccess.thecvf.com/content_cvpr_2014/html/Kalantidis_Locally_Optimized_Product_2014_CVPR_paper.html) | CVPR | [code](https://github.com/yahoo/lopq) | 437 |
+| [Clothing Co-Parsing by Joint Image Segmentation and Labeling](http://openaccess.thecvf.com/content_cvpr_2014/html/Yang_Clothing_Co-Parsing_by_2014_CVPR_paper.html) | CVPR | [code](https://github.com/bearpaw/clothing-co-parsing) | 218 |
+| [Multiscale Combinatorial Grouping](http://openaccess.thecvf.com/content_cvpr_2014/html/Arbelaez_Multiscale_Combinatorial_Grouping_2014_CVPR_paper.html) | CVPR | [code](https://github.com/jponttuset/mcg) | 185 |
+| [Face Alignment at 3000 FPS via Regressing Local Binary Features](http://openaccess.thecvf.com/content_cvpr_2014/html/Ren_Face_Alignment_at_2014_CVPR_paper.html) | CVPR | [code](https://github.com/luoyetx/face-alignment-at-3000fps) | 164 |
+| [Cross-Scale Cost Aggregation for Stereo Matching](http://openaccess.thecvf.com/content_cvpr_2014/html/Zhang_Cross-Scale_Cost_Aggregation_2014_CVPR_paper.html) | CVPR | [code](https://github.com/rookiepig/CrossScaleStereo) | 106 |
+| [Transfer Joint Matching for Unsupervised Domain Adaptation](http://openaccess.thecvf.com/content_cvpr_2014/html/Long_Transfer_Joint_Matching_2014_CVPR_paper.html) | CVPR | [code](https://github.com/USTCPCS/CVPR2018_attention) | 67 |
+| [Deep Learning Face Representation from Predicting 10,000 Classes](http://openaccess.thecvf.com/content_cvpr_2014/html/Sun_Deep_Learning_Face_2014_CVPR_paper.html) | CVPR | [code](https://github.com/joyhuang9473/deepid-implementation) | 62 |
+| [BING: Binarized Normed Gradients for Objectness Estimation at 300fps](http://openaccess.thecvf.com/content_cvpr_2014/html/Cheng_BING_Binarized_Normed_2014_CVPR_paper.html) | CVPR | [code](https://github.com/alessandroferrari/BING-Objectness) | 44 |
+| [One Millisecond Face Alignment with an Ensemble of Regression Trees](http://openaccess.thecvf.com/content_cvpr_2014/html/Kazemi_One_Millisecond_Face_2014_CVPR_paper.html) | CVPR | [code](https://github.com/jjrCN/ERT-GBDT_Face_Alignment) | 43 |
+| [3D Reconstruction from Accidental Motion](http://openaccess.thecvf.com/content_cvpr_2014/html/Yu_3D_Reconstruction_from_2014_CVPR_paper.html) | CVPR | [code](https://github.com/fyu/tiny) | 42 |
+| [Predicting Matchability](http://openaccess.thecvf.com/content_cvpr_2014/html/Hartmann_Predicting_Matchability_2014_CVPR_paper.html) | CVPR | [code](https://github.com/jacekm-git/BetBoy) | 38 |
+| [Dense Semantic Image Segmentation with Objects and Attributes](http://openaccess.thecvf.com/content_cvpr_2014/html/Zheng_Dense_Semantic_Image_2014_CVPR_paper.html) | CVPR | [code](https://github.com/bittnt/ImageSpirit) | 28 |
+| [Scene-Independent Group Profiling in Crowd](http://openaccess.thecvf.com/content_cvpr_2014/html/Shao_Scene-Independent_Group_Profiling_2014_CVPR_paper.html) | CVPR | [code](https://github.com/amandajshao/crowd_group_profile) | 28 |
+| [Shrinkage Fields for Effective Image Restoration](http://openaccess.thecvf.com/content_cvpr_2014/html/Schmidt_Shrinkage_Fields_for_2014_CVPR_paper.html) | CVPR | [code](https://github.com/uschmidt83/shrinkage-fields) | 25 |
+| [Adaptive Color Attributes for Real-Time Visual Tracking](http://openaccess.thecvf.com/content_cvpr_2014/html/Danelljan_Adaptive_Color_Attributes_2014_CVPR_paper.html) | CVPR | [code](https://github.com/mostafaizz/ColorTracker) | 25 |
+| [Minimal Scene Descriptions from Structure from Motion Models](http://openaccess.thecvf.com/content_cvpr_2014/html/Cao_Minimal_Scene_Descriptions_2014_CVPR_paper.html) | CVPR | [code](https://github.com/caosong/minimal_scene) | 22 |
+| [Parallax-tolerant Image Stitching](http://openaccess.thecvf.com/content_cvpr_2014/html/Zhang_Parallax-tolerant_Image_Stitching_2014_CVPR_paper.html) | CVPR | [code](https://github.com/gain2217/Robust_Elastic_Warping) | 20 |
+| [Learning Mid-level Filters for Person Re-identification](http://openaccess.thecvf.com/content_cvpr_2014/html/Zhao_Learning_Mid-level_Filters_2014_CVPR_paper.html) | CVPR | [code](https://github.com/Robert0812/midfilter_reid) | 20 |
+| [Fast Edge-Preserving PatchMatch for Large Displacement Optical Flow](http://openaccess.thecvf.com/content_cvpr_2014/html/Bao_Fast_Edge-Preserving_PatchMatch_2014_CVPR_paper.html) | CVPR | [code](https://github.com/linchaobao/EPPM) | 18 |
+| [Product Sparse Coding](http://openaccess.thecvf.com/content_cvpr_2014/html/Ge_Product_Sparse_Coding_2014_CVPR_paper.html) | CVPR | [code](https://github.com/ksopyla/CudaDotProd) | 16 |
+| [Convolutional Neural Networks for No-Reference Image Quality Assessment](http://openaccess.thecvf.com/content_cvpr_2014/html/Kang_Convolutional_Neural_Networks_2014_CVPR_paper.html) | CVPR | [code](https://github.com/lidq92/CNNIQA) | 16 |
+| [Seeing 3D Chairs: Exemplar Part-based 2D-3D Alignment using a Large Dataset of CAD Models](http://openaccess.thecvf.com/content_cvpr_2014/html/Aubry_Seeing_3D_Chairs_2014_CVPR_paper.html) | CVPR | [code](https://github.com/mathieuaubry/seeing3Dchairs) | 15 |
+| [StoryGraphs: Visualizing Character Interactions as a Timeline](http://openaccess.thecvf.com/content_cvpr_2014/html/Tapaswi_StoryGraphs_Visualizing_Character_2014_CVPR_paper.html) | CVPR | [code](https://github.com/makarandtapaswi/StoryGraphs_CVPR2014) | 14 |
+| [Nonparametric Part Transfer for Fine-grained Recognition](http://openaccess.thecvf.com/content_cvpr_2014/html/Goring_Nonparametric_Part_Transfer_2014_CVPR_paper.html) | CVPR | [code](https://github.com/cvjena/finegrained-cvpr2014) | 13 |
+| [Scalable Multitask Representation Learning for Scene Classification](http://openaccess.thecvf.com/content_cvpr_2014/html/Lapin_Scalable_Multitask_Representation_2014_CVPR_paper.html) | CVPR | [code](https://github.com/mlapin/cvpr14mtl) | 11 |
+| [Investigating Haze-relevant Features in A Learning Framework for Image Dehazing](http://openaccess.thecvf.com/content_cvpr_2014/html/Tang_Investigating_Haze-relevant_Features_2014_CVPR_paper.html) | CVPR | [code](https://github.com/zlinker/haze_2014) | 7 |
+| [Reconstructing PASCAL VOC](http://openaccess.thecvf.com/content_cvpr_2014/html/Vicente_Reconstructing_PASCAL_VOC_2014_CVPR_paper.html) | CVPR | [code](https://github.com/yihui-he/reconstructing-pascal-voc) | 6 |
+| [Collaborative Hashing](http://openaccess.thecvf.com/content_cvpr_2014/html/Liu_Collaborative_Hashing_2014_CVPR_paper.html) | CVPR | [code](https://github.com/27359794/lsh-collab-filtering) | 6 |
+| [Tell Me What You See and I will Show You Where It Is](http://openaccess.thecvf.com/content_cvpr_2014/html/Xu_Tell_Me_What_2014_CVPR_paper.html) | CVPR | [code](https://github.com/MarkipTheMudkip/in-class-project-2) | 6 |
+| [Salient Region Detection via High-Dimensional Color Transform](http://openaccess.thecvf.com/content_cvpr_2014/html/Kim_Salient_Region_Detection_2014_CVPR_paper.html) | CVPR | [code](https://github.com/jhkim89/Saliency-HDCT) | 6 |
↥ back to top
@@ -1587,4 +1599,4 @@ Use [this](https://github.com/zziz/pwc/issues/11) thread to request us your favo
## 2013
| Title | Conf | Code | Stars |
|:--------|:--------:|:--------:|:--------:|
-| [A generic decentralized trust management framework](http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2012/MSC/MSC-2012-22.pdf) | SPE | [code](https://github.com/amitport/graphpack) | 6 |
+| [A generic decentralized trust management framework](http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2012/MSC/MSC-2012-22.pdf) | SPE | [code](https://github.com/amitport/graphpack) | 6 |
diff --git a/src/pwc.csv b/src/pwc.csv
index 14c6ad0..38eb410 100644
--- a/src/pwc.csv
+++ b/src/pwc.csv
@@ -1,1848 +1,1852 @@
paper_title,paper_link,conference,year,repo_link,repo_star,last_update
-Bridging the Gap Between Value and Policy Based Reinforcement Learning,http://papers.nips.cc/paper/6870-bridging-the-gap-between-value-and-policy-based-reinforcement-learning.pdf,NIPS,2017,https://github.com/tensorflow/models,46593,2019-01-02
-"REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models",http://papers.nips.cc/paper/6856-rebar-low-variance-unbiased-gradient-estimates-for-discrete-latent-variable-models.pdf,NIPS,2017,https://github.com/tensorflow/models,46593,2019-01-02
-Focal Loss for Dense Object Detection,http://openaccess.thecvf.com/content_iccv_2017/html/Lin_Focal_Loss_for_ICCV_2017_paper.html,ICCV,2017,https://github.com/facebookresearch/Detectron,18356,2019-01-02
-Faster R-CNN: Towards Real-Time Object Detectionwith Region Proposal Networks,https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf,NIPS,2015,https://github.com/facebookresearch/Detectron,18356,2019-01-02
-R-FCN: Object Detection via Region-based Fully Convolutional Networks,https://papers.nips.cc/paper/6465-r-fcn-object-detection-via-region-based-fully-convolutional-networks.pdf,NIPS,2016,https://github.com/facebookresearch/Detectron,18356,2019-01-02
-Fast R-CNN,http://openaccess.thecvf.com/content_iccv_2015/html/Girshick_Fast_R-CNN_ICCV_2015_paper.html,ICCV,2015,https://github.com/facebookresearch/Detectron,18356,2019-01-02
-Image Style Transfer Using Convolutional Neural Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Gatys_Image_Style_Transfer_CVPR_2016_paper.html,CVPR,2016,https://github.com/jcjohnson/neural-style,16435,2019-01-02
-Deep Photo Style Transfer,http://openaccess.thecvf.com/content_cvpr_2017/html/Luan_Deep_Photo_Style_CVPR_2017_paper.html,CVPR,2017,https://github.com/luanfujun/deep-photo-styletransfer,8655,2019-01-02
-Mask R-CNN,http://openaccess.thecvf.com/content_iccv_2017/html/He_Mask_R-CNN_ICCV_2017_paper.html,ICCV,2017,https://github.com/matterport/Mask_RCNN,9493,2019-01-02
-LightGBM: A Highly Efficient Gradient Boosting Decision Tree,http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf,NIPS,2017,https://github.com/Microsoft/LightGBM,7536,2019-01-02
-Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation,http://papers.nips.cc/paper/7112-scalable-trust-region-method-for-deep-reinforcement-learning-using-kronecker-factored-approximation.pdf,NIPS,2017,https://github.com/openai/baselines,6449,2019-01-02
-Attention is All you Need,http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf,NIPS,2017,https://github.com/tensorflow/tensor2tensor,6288,2019-01-02
-Video-to-Video Synthesis,https://arxiv.org/abs/1808.06601,NIPS,2018,https://github.com/NVIDIA/vid2vid,5578,2019-01-02
-Deep Residual Learning for Image Recognition,http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html,CVPR,2016,https://github.com/KaimingHe/deep-residual-networks,4468,2019-01-02
-Deep Image Prior,http://openaccess.thecvf.com/content_cvpr_2018/papers/Ulyanov_Deep_Image_Prior_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/DmitryUlyanov/deep-image-prior,3736,2019-01-02
-Large Pose 3D Face Reconstruction From a Single Image via Direct Volumetric CNN Regression,http://openaccess.thecvf.com/content_iccv_2017/html/Jackson_Large_Pose_3D_ICCV_2017_paper.html,ICCV,2017,https://github.com/AaronJackson/vrn,3354,2019-01-02
-StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Choi_StarGAN_Unified_Generative_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yunjey/StarGAN,3405,2019-01-02
-Convolutional Pose Machines,http://openaccess.thecvf.com/content_cvpr_2016/html/Wei_Convolutional_Pose_Machines_CVPR_2016_paper.html,CVPR,2016,https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation,3260,2019-01-02
-Densely Connected Convolutional Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.html,CVPR,2017,https://github.com/liuzhuang13/DenseNet,3130,2019-01-02
-A Unified Approach to Interpreting Model Predictions,http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf,NIPS,2017,https://github.com/slundberg/shap,3122,2019-01-02
-Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network,http://openaccess.thecvf.com/content_ECCV_2018/html/Yao_Feng_Joint_3D_Face_ECCV_2018_paper.html,ECCV,2018,https://github.com/YadiraF/PRNet,2434,2019-01-02
-Learning to See in the Dark,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Learning_to_See_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/cchen156/Learning-to-See-in-the-Dark,2326,2019-01-02
-Glow: Generative Flow with Invertible 1x1 Convolutions,http://arxiv.org/abs/1807.03039v2,NIPS,2018,https://github.com/openai/glow,2088,2019-01-02
-Deformable Convolutional Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Dai_Deformable_Convolutional_Networks_ICCV_2017_paper.html,ICCV,2017,https://github.com/msracver/Deformable-ConvNets,2165,2019-01-02
-"ELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games",http://papers.nips.cc/paper/6859-elf-an-extensive-lightweight-and-flexible-research-platform-for-real-time-strategy-games.pdf,NIPS,2017,https://github.com/facebookresearch/ELF,1823,2019-01-02
-Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2014/html/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.html,CVPR,2014,https://github.com/rbgirshick/rcnn,1681,2019-01-02
-Fully Convolutional Instance-Aware Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/html/Li_Fully_Convolutional_Instance-Aware_CVPR_2017_paper.html,CVPR,2017,https://github.com/msracver/FCIS,1395,2019-01-02
-PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/html/Qi_PointNet_Deep_Learning_CVPR_2017_paper.html,CVPR,2017,https://github.com/charlesq34/pointnet,1523,2019-01-02
-Improved Training of Wasserstein GANs,http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.pdf,NIPS,2017,https://github.com/igul222/improved_wgan_training,1405,2019-01-02
-Aggregated Residual Transformations for Deep Neural Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.html,CVPR,2017,https://github.com/facebookresearch/ResNeXt,1361,2019-01-02
-Squeeze-and-Excitation Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/hujie-frank/SENet,1477,2019-01-02
-Efficient Neural Architecture Search via Parameters Sharing,http://proceedings.mlr.press/v80/pham18a.html,ICML,2018,https://github.com/carpedm20/ENAS-pytorch,1382,2019-01-02
-Multimodal Unsupervised Image-to-image Translation,http://openaccess.thecvf.com/content_ECCV_2018/html/Xun_Huang_Multimodal_Unsupervised_Image-to-image_ECCV_2018_paper.html,ECCV,2018,https://github.com/NVlabs/MUNIT,1296,2019-01-02
-Conditional Random Fields as Recurrent Neural Networks,http://openaccess.thecvf.com/content_iccv_2015/html/Zheng_Conditional_Random_Fields_ICCV_2015_paper.html,ICCV,2015,https://github.com/torrvision/crfasrnn,1189,2019-01-02
-Photographic Image Synthesis With Cascaded Refinement Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Chen_Photographic_Image_Synthesis_ICCV_2017_paper.html,ICCV,2017,https://github.com/CQFIO/PhotographicImageSynthesis,1142,2019-01-02
-Unsupervised Image-to-Image Translation Networks,http://papers.nips.cc/paper/6672-unsupervised-image-to-image-translation-networks.pdf,NIPS,2017,https://github.com/mingyuliutw/unit,1205,2019-01-02
-Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network,http://openaccess.thecvf.com/content_cvpr_2017/html/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.html,CVPR,2017,https://github.com/tensorlayer/srgan,1301,2019-01-02
-High-Resolution Image Inpainting Using Multi-Scale Neural Patch Synthesis,http://openaccess.thecvf.com/content_cvpr_2017/html/Yang_High-Resolution_Image_Inpainting_CVPR_2017_paper.html,CVPR,2017,https://github.com/leehomyc/Faster-High-Res-Neural-Inpainting,1072,2019-01-02
-SphereFace: Deep Hypersphere Embedding for Face Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Liu_SphereFace_Deep_Hypersphere_CVPR_2017_paper.html,CVPR,2017,https://github.com/wy1iu/sphereface,1048,2019-01-02
-Bayesian GAN,http://papers.nips.cc/paper/6953-bayesian-gan.pdf,NIPS,2017,https://github.com/andrewgordonwilson/bayesgan,942,2019-01-02
-Deep Feature Flow for Video Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhu_Deep_Feature_Flow_CVPR_2017_paper.html,CVPR,2017,https://github.com/msracver/Deep-Feature-Flow,966,2019-01-02
-Pyramid Scene Parsing Network,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhao_Pyramid_Scene_Parsing_CVPR_2017_paper.html,CVPR,2017,https://github.com/hszhao/PSPNet,934,2019-01-02
-Non-Local Neural Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Non-Local_Neural_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/facebookresearch/video-nonlocal-net,992,2019-01-02
-Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes,http://papers.nips.cc/paper/7098-efficient-modeling-of-latent-information-in-supervised-learning-using-gaussian-processes.pdf,NIPS,2017,https://github.com/SheffieldML/GPy,906,2019-01-02
-Fully Convolutional Networks for Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html,CVPR,2015,https://github.com/shekkizh/FCN.tensorflow,911,2019-01-02
-Finding Tiny Faces,http://openaccess.thecvf.com/content_cvpr_2017/html/Hu_Finding_Tiny_Faces_CVPR_2017_paper.html,CVPR,2017,https://github.com/peiyunh/tiny,856,2019-01-02
-Image Generation From Scene Graphs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Johnson_Image_Generation_From_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/google/sg2im,851,2019-01-02
-Learning to Discover Cross-Domain Relations with Generative Adversarial Networks,http://proceedings.mlr.press/v70/kim17a.html,ICML,2017,https://github.com/carpedm20/DiscoGAN-pytorch,784,2019-01-02
-"YOLO9000: Better, Faster, Stronger",http://openaccess.thecvf.com/content_cvpr_2017/html/Redmon_YOLO9000_Better_Faster_CVPR_2017_paper.html,CVPR,2017,https://github.com/philipperemy/yolo-9000,773,2019-01-02
-Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis,http://openaccess.thecvf.com/content_cvpr_2016/html/Li_Combining_Markov_Random_CVPR_2016_paper.html,CVPR,2016,https://github.com/chuanli11/CNNMRF,731,2019-01-02
-Toward Multimodal Image-to-Image Translation,http://papers.nips.cc/paper/6650-toward-multimodal-image-to-image-translation.pdf,NIPS,2017,https://github.com/junyanz/BiCycleGAN,794,2019-01-02
-Synthetic Data for Text Localisation in Natural Images,http://openaccess.thecvf.com/content_cvpr_2016/html/Gupta_Synthetic_Data_for_CVPR_2016_paper.html,CVPR,2016,https://github.com/ankush-me/SynthText,787,2019-01-02
-Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hara_Can_Spatiotemporal_3D_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kenshohara/3D-ResNets-PyTorch,924,2019-01-02
-Single-Shot Refinement Neural Network for Object Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Single-Shot_Refinement_Neural_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/sfzhang15/RefineDet,875,2019-01-02
-FlowNet 2.0: Evolution of Optical Flow Estimation With Deep Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Ilg_FlowNet_2.0_Evolution_CVPR_2017_paper.html,CVPR,2017,https://github.com/lmb-freiburg/flownet2,720,2019-01-02
-PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space,http://papers.nips.cc/paper/7095-pointnet-deep-hierarchical-feature-learning-on-point-sets-in-a-metric-space.pdf,NIPS,2017,https://github.com/charlesq34/pointnet2,772,2019-01-02
-Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks,http://proceedings.mlr.press/v70/finn17a.html,ICML,2017,https://github.com/cbfinn/maml,729,2019-01-02
-GANimation: Anatomically-aware Facial Animation from a Single Image,http://openaccess.thecvf.com/content_ECCV_2018/html/Albert_Pumarola_Anatomically_Coherent_Facial_ECCV_2018_paper.html,ECCV,2018,https://github.com/albertpumarola/GANimation,772,2019-01-02
-Inferring and Executing Programs for Visual Reasoning,http://openaccess.thecvf.com/content_iccv_2017/html/Johnson_Inferring_and_Executing_ICCV_2017_paper.html,ICCV,2017,https://github.com/facebookresearch/clevr-iep,636,2019-01-02
-Channel Pruning for Accelerating Very Deep Neural Networks,http://openaccess.thecvf.com/content_iccv_2017/html/He_Channel_Pruning_for_ICCV_2017_paper.html,ICCV,2017,https://github.com/yihui-he/channel-pruning,649,2019-01-02
-Dilated Residual Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Yu_Dilated_Residual_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/fyu/drn,640,2019-01-02
-Accelerating Eulerian Fluid Simulation With Convolutional Networks,http://proceedings.mlr.press/v70/tompson17a.html,ICML,2017,https://github.com/google/FluidNet,570,2019-01-02
-Detect-and-Track: Efficient Pose Estimation in Videos,http://openaccess.thecvf.com/content_cvpr_2018/papers/Girdhar_Detect-and-Track_Efficient_Pose_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/facebookresearch/DetectAndTrack,650,2019-01-02
-DSOD: Learning Deeply Supervised Object Detectors From Scratch,http://openaccess.thecvf.com/content_iccv_2017/html/Shen_DSOD_Learning_Deeply_ICCV_2017_paper.html,ICCV,2017,https://github.com/szq0214/DSOD,582,2019-01-02
-Relation Networks for Object Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Relation_Networks_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/msracver/Relation-Networks-for-Object-Detection,635,2019-01-02
-Arbitrary Style Transfer in Real-Time With Adaptive Instance Normalization,http://openaccess.thecvf.com/content_iccv_2017/html/Huang_Arbitrary_Style_Transfer_ICCV_2017_paper.html,ICCV,2017,https://github.com/xunhuang1995/AdaIN-style,572,2019-01-02
-Learning Disentangled Representations with Semi-Supervised Deep Generative Models,http://papers.nips.cc/paper/7174-learning-disentangled-representations-with-semi-supervised-deep-generative-models.pdf,NIPS,2017,https://github.com/probtorch/probtorch,556,2019-01-02
-PointCNN,http://arxiv.org/abs/1801.07791v3,NIPS,2018,https://github.com/yangyanli/PointCNN,607,2019-01-02
-"How Far Are We From Solving the 2D & 3D Face Alignment Problem? (And a Dataset of 230,000 3D Facial Landmarks)",http://openaccess.thecvf.com/content_iccv_2017/html/Bulat_How_Far_Are_ICCV_2017_paper.html,ICCV,2017,https://github.com/1adrianb/2D-and-3D-face-alignment,526,2019-01-02
-Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples,http://proceedings.mlr.press/v80/athalye18a.html,ICML,2018,https://github.com/anishathalye/obfuscated-gradients,535,2019-01-02
-Simple Baselines for Human Pose Estimation and Tracking,http://openaccess.thecvf.com/content_ECCV_2018/html/Bin_Xiao_Simple_Baselines_for_ECCV_2018_paper.html,ECCV,2018,https://github.com/Microsoft/human-pose-estimation.pytorch,752,2019-01-02
-Regressing Robust and Discriminative 3D Morphable Models With a Very Deep Neural Network,http://openaccess.thecvf.com/content_cvpr_2017/html/Tran_Regressing_Robust_and_CVPR_2017_paper.html,CVPR,2017,https://github.com/anhttran/3dmm_cnn,537,2019-01-02
-Learning From Simulated and Unsupervised Images Through Adversarial Training,http://openaccess.thecvf.com/content_cvpr_2017/html/Shrivastava_Learning_From_Simulated_CVPR_2017_paper.html,CVPR,2017,https://github.com/carpedm20/simulated-unsupervised-tensorflow,492,2019-01-02
-Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space,http://openaccess.thecvf.com/content_cvpr_2017/html/Nguyen_Plug__Play_CVPR_2017_paper.html,CVPR,2017,https://github.com/Evolving-AI-Lab/ppgn,487,2019-01-02
-Taskonomy: Disentangling Task Transfer Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zamir_Taskonomy_Disentangling_Task_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/StanfordVL/taskonomy,502,2019-01-02
-Which Training Methods for GANs do actually Converge?,http://proceedings.mlr.press/v80/mescheder18a.html,ICML,2018,https://github.com/LMescheder/GAN_stability,520,2019-01-02
-Cascaded Pyramid Network for Multi-Person Pose Estimation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Cascaded_Pyramid_Network_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/chenyilun95/tf-cpn,497,2019-01-02
-Pelee: A Real-Time Object Detection System on Mobile Devices,https://arxiv.org/pdf/1804.06882.pdf,NIPS,2018,https://github.com/Robert-JunWang/Pelee,548,2019-01-02
-Generative Image Inpainting With Contextual Attention,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yu_Generative_Image_Inpainting_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/JiahuiYu/generative_inpainting,609,2019-01-02
-Neural 3D Mesh Renderer,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kato_Neural_3D_Mesh_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/hiroharu-kato/neural_renderer,489,2019-01-02
-SSH: Single Stage Headless Face Detector,http://openaccess.thecvf.com/content_iccv_2017/html/Najibi_SSH_Single_Stage_ICCV_2017_paper.html,ICCV,2017,https://github.com/mahyarnajibi/SSH,515,2019-01-02
-"GMS: Grid-based Motion Statistics for Fast, Ultra-Robust Feature Correspondence",http://openaccess.thecvf.com/content_cvpr_2017/html/Bian_GMS_Grid-based_Motion_CVPR_2017_paper.html,CVPR,2017,https://github.com/JiawangBian/GMS-Feature-Matcher,460,2019-01-02
-Dual Path Networks,http://papers.nips.cc/paper/7033-dual-path-networks.pdf,NIPS,2017,https://github.com/cypw/DPNs,451,2019-01-02
-Inductive Representation Learning on Large Graphs,http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf,NIPS,2017,https://github.com/williamleif/GraphSAGE,552,2019-01-02
-Instance-Aware Semantic Segmentation via Multi-Task Network Cascades,http://openaccess.thecvf.com/content_cvpr_2016/html/Dai_Instance-Aware_Semantic_Segmentation_CVPR_2016_paper.html,CVPR,2016,https://github.com/daijifeng001/MNC,433,2019-01-02
-Video Frame Interpolation via Adaptive Convolution,http://openaccess.thecvf.com/content_cvpr_2017/html/Niklaus_Video_Frame_Interpolation_CVPR_2017_paper.html,CVPR,2017,https://github.com/sniklaus/pytorch-sepconv,482,2019-01-02
-Video Frame Interpolation via Adaptive Separable Convolution,http://openaccess.thecvf.com/content_iccv_2017/html/Niklaus_Video_Frame_Interpolation_ICCV_2017_paper.html,ICCV,2017,https://github.com/sniklaus/pytorch-sepconv,482,2019-01-02
-Look at Boundary: A Boundary-Aware Face Alignment Algorithm,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Look_at_Boundary_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/wywu/LAB,575,2019-01-02
-Joint Detection and Identification Feature Learning for Person Search,http://openaccess.thecvf.com/content_cvpr_2017/html/Xiao_Joint_Detection_and_CVPR_2017_paper.html,CVPR,2017,https://github.com/ShuangLI59/person_search,459,2019-01-02
-Zero-Shot Recognition via Semantic Embeddings and Knowledge Graphs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Zero-Shot_Recognition_via_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/JudyYe/zero-shot-gcn,489,2019-01-02
-Locally Optimized Product Quantization for Approximate Nearest Neighbor Search,http://openaccess.thecvf.com/content_cvpr_2014/html/Kalantidis_Locally_Optimized_Product_2014_CVPR_paper.html,CVPR,2014,https://github.com/yahoo/lopq,437,2019-01-02
-Flow-Guided Feature Aggregation for Video Object Detection,http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Flow-Guided_Feature_Aggregation_ICCV_2017_paper.html,ICCV,2017,https://github.com/msracver/Flow-Guided-Feature-Aggregation,436,2019-01-02
-In-Place Activated BatchNorm for Memory-Optimized Training of DNNs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Bulo_In-Place_Activated_BatchNorm_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/mapillary/inplace_abn,485,2019-01-02
-End-to-End Recovery of Human Shape and Pose,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kanazawa_End-to-End_Recovery_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/akanazawa/hmr,502,2019-01-02
-Recurrent Highway Networks,http://proceedings.mlr.press/v70/zilly17a.html,ICML,2017,https://github.com/julian121266/RecurrentHighwayNetworks,397,2019-01-02
-ICNet for Real-Time Semantic Segmentation on High-Resolution Images,http://openaccess.thecvf.com/content_ECCV_2018/html/Hengshuang_Zhao_ICNet_for_Real-Time_ECCV_2018_paper.html,ECCV,2018,https://github.com/hszhao/ICNet,415,2019-01-02
-Deep Image Matting,http://openaccess.thecvf.com/content_cvpr_2017/html/Xu_Deep_Image_Matting_CVPR_2017_paper.html,CVPR,2017,https://github.com/Joker316701882/Deep-Image-Matting,434,2019-01-02
-The Unreasonable Effectiveness of Deep Features as a Perceptual Metric,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_The_Unreasonable_Effectiveness_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/richzhang/PerceptualSimilarity,447,2019-01-02
-Detect to Track and Track to Detect,http://openaccess.thecvf.com/content_iccv_2017/html/Feichtenhofer_Detect_to_Track_ICCV_2017_paper.html,ICCV,2017,https://github.com/feichtenhofer/Detect-Track,387,2019-01-02
-Distractor-aware Siamese Networks for Visual Object Tracking,http://openaccess.thecvf.com/content_ECCV_2018/html/Zheng_Zhu_Distractor-aware_Siamese_Networks_ECCV_2018_paper.html,ECCV,2018,https://github.com/foolwood/DaSiamRPN,545,2019-01-02
-Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results,http://papers.nips.cc/paper/6719-mean-teachers-are-better-role-models-weight-averaged-consistency-targets-improve-semi-supervised-deep-learning-results.pdf,NIPS,2017,https://github.com/CuriousAI/mean-teacher/,347,2018-09-16
-Frustum PointNets for 3D Object Detection From RGB-D Data,http://openaccess.thecvf.com/content_cvpr_2018/papers/Qi_Frustum_PointNets_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/charlesq34/frustum-pointnets,434,2019-01-02
-Efficient Interactive Annotation of Segmentation Datasets With Polygon-RNN++,http://openaccess.thecvf.com/content_cvpr_2018/papers/Acuna_Efficient_Interactive_Annotation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/fidler-lab/polyrnn-pp-pytorch,397,2019-01-02
-Annotating Object Instances With a Polygon-RNN,http://openaccess.thecvf.com/content_cvpr_2017/html/Castrejon_Annotating_Object_Instances_CVPR_2017_paper.html,CVPR,2017,https://github.com/fidler-lab/polyrnn-pp-pytorch,397,2019-01-02
-RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/html/Lin_RefineNet_Multi-Path_Refinement_CVPR_2017_paper.html,CVPR,2017,https://github.com/guosheng/refinenet,379,2019-01-02
-Learning Multi-Domain Convolutional Neural Networks for Visual Tracking,http://openaccess.thecvf.com/content_cvpr_2016/html/Nam_Learning_Multi-Domain_Convolutional_CVPR_2016_paper.html,CVPR,2016,https://github.com/HyeonseobNam/MDNet,350,2019-01-02
-Gibson Env: Real-World Perception for Embodied Agents,http://openaccess.thecvf.com/content_cvpr_2018/papers/Xia_Gibson_Env_Real-World_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/StanfordVL/GibsonEnv,385,2019-01-02
-Deep Lattice Networks and Partial Monotonic Functions,http://papers.nips.cc/paper/6891-deep-lattice-networks-and-partial-monotonic-functions.pdf,NIPS,2017,https://github.com/tensorflow/lattice,349,2019-01-02
-RON: Reverse Connection With Objectness Prior Networks for Object Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Kong_RON_Reverse_Connection_CVPR_2017_paper.html,CVPR,2017,https://github.com/taokong/RON,345,2019-01-02
-Detecting Oriented Text in Natural Images by Linking Segments,http://openaccess.thecvf.com/content_cvpr_2017/html/Shi_Detecting_Oriented_Text_CVPR_2017_paper.html,CVPR,2017,https://github.com/dengdan/seglink,364,2019-01-02
-Universal Style Transfer via Feature Transforms,http://papers.nips.cc/paper/6642-universal-style-transfer-via-feature-transforms.pdf,NIPS,2017,https://github.com/Yijunmaverick/UniversalStyleTransfer,344,2019-01-02
-Learning Deep Features for Discriminative Localization,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhou_Learning_Deep_Features_CVPR_2016_paper.html,CVPR,2016,https://github.com/jazzsaxmafia/Weakly_detector,323,2019-01-02
-Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Mascharka_Transparency_by_Design_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/davidmascharka/tbd-nets,317,2019-01-02
-Soccer on Your Tabletop,http://openaccess.thecvf.com/content_cvpr_2018/papers/Rematas_Soccer_on_Your_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/krematas/soccerontable,338,2019-01-02
-Noise2Noise: Learning Image Restoration without Clean Data,http://proceedings.mlr.press/v80/lehtinen18a.html,ICML,2018,https://github.com/yu4u/noise2noise,370,2019-01-02
-Accurate Single Stage Detector Using Recurrent Rolling Convolution,http://openaccess.thecvf.com/content_cvpr_2017/html/Ren_Accurate_Single_Stage_CVPR_2017_paper.html,CVPR,2017,https://github.com/xiaohaoChen/rrc_detection,314,2019-01-02
-Convolutional Two-Stream Network Fusion for Video Action Recognition,http://openaccess.thecvf.com/content_cvpr_2016/html/Feichtenhofer_Convolutional_Two-Stream_Network_CVPR_2016_paper.html,CVPR,2016,https://github.com/feichtenhofer/twostreamfusion,342,2019-01-02
-"GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose",http://openaccess.thecvf.com/content_cvpr_2018/papers/Yin_GeoNet_Unsupervised_Learning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yzcjtr/GeoNet,359,2019-01-02
-GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Qi_GeoNet_Geometric_Neural_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yzcjtr/GeoNet,359,2019-01-02
-One-Shot Video Object Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/html/Caelles_One-Shot_Video_Object_CVPR_2017_paper.html,CVPR,2017,https://github.com/scaelles/OSVOS-TensorFlow,316,2019-01-02
-Neural Baby Talk,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lu_Neural_Baby_Talk_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jiasenlu/NeuralBabyTalk,332,2019-01-02
-Learning Deconvolution Network for Semantic Segmentation,http://openaccess.thecvf.com/content_iccv_2015/html/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.html,ICCV,2015,https://github.com/HyeonwooNoh/DeconvNet,296,2019-01-02
-Efficient softmax approximation for GPUs,http://proceedings.mlr.press/v70/grave17a.html,ICML,2017,https://github.com/facebookresearch/adaptive-softmax,304,2019-01-02
-Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution,http://openaccess.thecvf.com/content_cvpr_2017/html/Lai_Deep_Laplacian_Pyramid_CVPR_2017_paper.html,CVPR,2017,https://github.com/phoenix104104/LapSRN,301,2019-01-02
-Learning to Track: Online Multi-Object Tracking by Decision Making,http://openaccess.thecvf.com/content_iccv_2015/html/Xiang_Learning_to_Track_ICCV_2015_paper.html,ICCV,2015,https://github.com/yuxng/MDP_Tracking,308,2019-01-02
-Learning to Compare Image Patches via Convolutional Neural Networks,http://openaccess.thecvf.com/content_cvpr_2015/html/Zagoruyko_Learning_to_Compare_2015_CVPR_paper.html,CVPR,2015,https://github.com/szagoruyko/cvpr15deepcompare,300,2019-01-02
-Acquisition of Localization Confidence for Accurate Object Detection,http://openaccess.thecvf.com/content_ECCV_2018/html/Borui_Jiang_Acquisition_of_Localization_ECCV_2018_paper.html,ECCV,2018,https://github.com/vacancy/PreciseRoIPooling,384,2019-01-02
-"PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume",http://openaccess.thecvf.com/content_cvpr_2018/papers/Sun_PWC-Net_CNNs_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/NVlabs/PWC-Net,398,2019-01-02
-Pixel Recursive Super Resolution,http://openaccess.thecvf.com/content_iccv_2017/html/Dahl_Pixel_Recursive_Super_ICCV_2017_paper.html,ICCV,2017,https://github.com/nilboy/pixel-recursive-super-resolution,301,2019-01-02
-The Lovász-Softmax Loss: A Tractable Surrogate for the Optimization of the Intersection-Over-Union Measure in Neural Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Berman_The_LovaSz-Softmax_Loss_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/bermanmaxim/LovaszSoftmax,416,2019-01-02
-Residual Attention Network for Image Classification,http://openaccess.thecvf.com/content_cvpr_2017/html/Wang_Residual_Attention_Network_CVPR_2017_paper.html,CVPR,2017,https://github.com/fwang91/residual-attention-network,329,2019-01-02
-OctNet: Learning Deep 3D Representations at High Resolutions,http://openaccess.thecvf.com/content_cvpr_2017/html/Riegler_OctNet_Learning_Deep_CVPR_2017_paper.html,CVPR,2017,https://github.com/griegler/octnet,302,2019-01-02
-Dilated Recurrent Neural Networks,http://papers.nips.cc/paper/6613-dilated-recurrent-neural-networks.pdf,NIPS,2017,https://github.com/code-terminator/DilatedRNN,285,2019-01-02
-Fast End-to-End Trainable Guided Filter,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Fast_End-to-End_Trainable_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/wuhuikai/DeepGuidedFilter,312,2019-01-02
-Feature Pyramid Networks for Object Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Lin_Feature_Pyramid_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/unsky/FPN,310,2019-01-02
-The Predictron: End-To-End Learning and Planning,http://proceedings.mlr.press/v70/silver17a.html,ICML,2017,https://github.com/zhongwen/predictron,274,2019-01-02
-Single Image Super-Resolution From Transformed Self-Exemplars,http://openaccess.thecvf.com/content_cvpr_2015/html/Huang_Single_Image_Super-Resolution_2015_CVPR_paper.html,CVPR,2015,https://github.com/jbhuang0604/SelfExSR,289,2019-01-02
-Adversarially Regularized Autoencoders,http://proceedings.mlr.press/v80/zhao18b.html,ICML,2018,https://github.com/jakezhaojb/ARAE,282,2019-01-02
-DeepBach: a Steerable Model for Bach Chorales Generation,http://proceedings.mlr.press/v70/hadjeres17a.html,ICML,2017,https://github.com/Ghadjeres/DeepBach,276,2019-01-02
-Age Progression/Regression by Conditional Adversarial Autoencoder,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Age_ProgressionRegression_by_CVPR_2017_paper.html,CVPR,2017,https://github.com/ZZUTK/Face-Aging-CAAE,297,2019-01-02
-Style Transfer from Non-Parallel Text by Cross-Alignment,http://papers.nips.cc/paper/7259-style-transfer-from-non-parallel-text-by-cross-alignment.pdf,NIPS,2017,https://github.com/shentianxiao/language-style-transfer,296,2019-01-02
-Self-Critical Sequence Training for Image Captioning,http://openaccess.thecvf.com/content_cvpr_2017/html/Rennie_Self-Critical_Sequence_Training_CVPR_2017_paper.html,CVPR,2017,https://github.com/ruotianluo/self-critical.pytorch,299,2019-01-02
-License Plate Detection and Recognition in Unconstrained Scenarios,http://openaccess.thecvf.com/content_ECCV_2018/html/Sergio_Silva_License_Plate_Detection_ECCV_2018_paper.html,ECCV,2018,https://github.com/sergiomsilva/alpr-unconstrained,326,2019-01-02
-Supervision-by-Registration: An Unsupervised Approach to Improve the Precision of Facial Landmark Detectors,http://openaccess.thecvf.com/content_cvpr_2018/papers/Dong_Supervision-by-Registration_An_Unsupervised_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/facebookresearch/supervision-by-registration,326,2019-01-02
-Supervising Unsupervised Learning,http://arxiv.org/abs/1709.05262v2,NIPS,2018,https://github.com/quinnliu/machineLearning,262,2019-01-02
-Pyramid Stereo Matching Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chang_Pyramid_Stereo_Matching_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/JiaRenChang/PSMNet,335,2019-01-02
-Convolutional Neural Networks With Alternately Updated Clique,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_Convolutional_Neural_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/iboing/CliqueNet,272,2019-01-02
-Lifting From the Deep: Convolutional 3D Pose Estimation From a Single Image,http://openaccess.thecvf.com/content_cvpr_2017/html/Tome_Lifting_From_the_CVPR_2017_paper.html,CVPR,2017,https://github.com/DenisTome/Lifting-from-the-Deep-release,280,2019-01-02
-Deep Photo Enhancer: Unpaired Learning for Image Enhancement From Photographs With GANs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Deep_Photo_Enhancer_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/nothinglo/Deep-Photo-Enhancer,294,2019-01-02
-Neural Relational Inference for Interacting Systems,http://proceedings.mlr.press/v80/kipf18a.html,ICML,2018,https://github.com/ethanfetaya/NRI,289,2019-01-02
-Learning to Adapt Structured Output Space for Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tsai_Learning_to_Adapt_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/wasidennis/AdaptSegNet,280,2019-01-02
-Richer Convolutional Features for Edge Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Liu_Richer_Convolutional_Features_CVPR_2017_paper.html,CVPR,2017,https://github.com/yun-liu/rcf,399,2019-01-02
-OptNet: Differentiable Optimization as a Layer in Neural Networks,http://proceedings.mlr.press/v70/amos17a.html,ICML,2017,https://github.com/locuslab/optnet,245,2019-01-02
-Deep Metric Learning via Lifted Structured Feature Embedding,http://openaccess.thecvf.com/content_cvpr_2016/html/Song_Deep_Metric_Learning_CVPR_2016_paper.html,CVPR,2016,https://github.com/rksltnl/Deep-Metric-Learning-CVPR16,251,2019-01-02
-Sequence to Sequence - Video to Text,http://openaccess.thecvf.com/content_iccv_2015/html/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.html,ICCV,2015,https://github.com/jazzsaxmafia/video_to_sequence,239,2019-01-02
-An intriguing failing of convolutional neural networks and the CoordConv solution,https://arxiv.org/abs/1807.03247,NIPS,2018,https://github.com/mkocabas/CoordConv-pytorch,249,2019-01-02
-Deep Voice: Real-time Neural Text-to-Speech,http://proceedings.mlr.press/v70/arik17a.html,ICML,2017,https://github.com/israelg99/deepvoice,242,2019-01-02
-Convolutional Sequence to Sequence Learning,http://proceedings.mlr.press/v70/gehring17a.html,ICML,2017,https://github.com/tobyyouup/conv_seq2seq,258,2019-01-02
-Learning to Segment Every Thing,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Learning_to_Segment_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ronghanghu/seg_every_thing,269,2019-01-02
-LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hui_LiteFlowNet_A_Lightweight_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/twhui/LiteFlowNet,261,2019-01-02
-End-to-End Learning of Motion Representation for Video Understanding,http://openaccess.thecvf.com/content_cvpr_2018/papers/Fan_End-to-End_Learning_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/LijieFan/tvnet,238,2019-01-02
-Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images,http://openaccess.thecvf.com/content_ECCV_2018/html/Nanyang_Wang_Pixel2Mesh_Generating_3D_ECCV_2018_paper.html,ECCV,2018,https://github.com/nywang16/Pixel2Mesh,323,2019-01-02
-Bilinear Attention Networks,http://arxiv.org/abs/1805.07932v1,NIPS,2018,https://github.com/jnhwkim/ban-vqa,258,2019-01-02
-Semi-Parametric Image Synthesis,http://openaccess.thecvf.com/content_cvpr_2018/papers/Qi_Semi-Parametric_Image_Synthesis_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/xjqicuhk/SIMS,226,2019-01-02
-Iterative Visual Reasoning Beyond Convolutions,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Iterative_Visual_Reasoning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/endernewton/iter-reason,228,2019-01-02
-Learning Deep Representations of Fine-Grained Visual Descriptions,http://openaccess.thecvf.com/content_cvpr_2016/html/Reed_Learning_Deep_Representations_CVPR_2016_paper.html,CVPR,2016,https://github.com/reedscot/cvpr2016,229,2019-01-02
-Reinforcement Learning with Deep Energy-Based Policies,http://proceedings.mlr.press/v70/haarnoja17a.html,ICML,2017,https://github.com/haarnoja/softqlearning,233,2019-01-02
-Stacked Generative Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Stacked_Generative_Adversarial_CVPR_2017_paper.html,CVPR,2017,https://github.com/xunhuang1995/SGAN,215,2019-01-02
-Knowing When to Look: Adaptive Attention via a Visual Sentinel for Image Captioning,http://openaccess.thecvf.com/content_cvpr_2017/html/Lu_Knowing_When_to_CVPR_2017_paper.html,CVPR,2017,https://github.com/jiasenlu/AdaptiveAttention,214,2019-01-02
-RMPE: Regional Multi-Person Pose Estimation,http://openaccess.thecvf.com/content_iccv_2017/html/Fang_RMPE_Regional_Multi-Person_ICCV_2017_paper.html,ICCV,2017,https://github.com/MVIG-SJTU/RMPE,215,2019-01-02
-BlitzNet: A Real-Time Deep Network for Scene Understanding,http://openaccess.thecvf.com/content_iccv_2017/html/Dvornik_BlitzNet_A_Real-Time_ICCV_2017_paper.html,ICCV,2017,https://github.com/dvornikita/blitznet,227,2019-01-02
-A Style-Aware Content Loss for Real-time HD Style Transfer,http://openaccess.thecvf.com/content_ECCV_2018/html/Artsiom_Sanakoyeu_A_Style-aware_Content_ECCV_2018_paper.html,ECCV,2018,https://github.com/CompVis/adaptive-style-transfer,349,2019-01-02
-Language Modeling with Gated Convolutional Networks,http://proceedings.mlr.press/v70/dauphin17a.html,ICML,2017,https://github.com/anantzoid/Language-Modeling-GatedCNN,221,2019-01-02
-A Point Set Generation Network for 3D Object Reconstruction From a Single Image,http://openaccess.thecvf.com/content_cvpr_2017/html/Fan_A_Point_Set_CVPR_2017_paper.html,CVPR,2017,https://github.com/fanhqme/PointSetGeneration,228,2019-01-02
-Spatially Adaptive Computation Time for Residual Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Figurnov_Spatially_Adaptive_Computation_CVPR_2017_paper.html,CVPR,2017,https://github.com/mfigurnov/sact,203,2019-01-02
-Prototypical Networks for Few-shot Learning,http://papers.nips.cc/paper/6996-prototypical-networks-for-few-shot-learning.pdf,NIPS,2017,https://github.com/jakesnell/prototypical-networks,244,2019-01-02
-Unlabeled Samples Generated by GAN Improve the Person Re-Identification Baseline in Vitro,http://openaccess.thecvf.com/content_iccv_2017/html/Zheng_Unlabeled_Samples_Generated_ICCV_2017_paper.html,ICCV,2017,https://github.com/layumi/Person-reID_GAN,215,2019-01-02
-The Reversible Residual Network: Backpropagation Without Storing Activations,http://papers.nips.cc/paper/6816-the-reversible-residual-network-backpropagation-without-storing-activations.pdf,NIPS,2017,https://github.com/renmengye/revnet-public,210,2019-01-02
-Style Aggregated Network for Facial Landmark Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Dong_Style_Aggregated_Network_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/D-X-Y/SAN,223,2019-01-02
-Generative Face Completion,http://openaccess.thecvf.com/content_cvpr_2017/html/Li_Generative_Face_Completion_CVPR_2017_paper.html,CVPR,2017,https://github.com/Yijunmaverick/GenerativeFaceCompletion,212,2019-01-02
-Eye Tracking for Everyone,http://openaccess.thecvf.com/content_cvpr_2016/html/Krafka_Eye_Tracking_for_CVPR_2016_paper.html,CVPR,2016,https://github.com/CSAILVision/GazeCapture,223,2019-01-02
-Deeply Supervised Salient Object Detection With Short Connections,http://openaccess.thecvf.com/content_cvpr_2017/html/Hou_Deeply_Supervised_Salient_CVPR_2017_paper.html,CVPR,2017,https://github.com/Joker316701882/Salient-Object-Detection,228,2019-01-02
-Recurrent Scale Approximation for Object Detection in CNN,http://openaccess.thecvf.com/content_iccv_2017/html/Liu_Recurrent_Scale_Approximation_ICCV_2017_paper.html,ICCV,2017,https://github.com/sciencefans/RSA-for-object-detection,209,2019-01-02
-Pose-Robust Face Recognition via Deep Residual Equivariant Mapping,http://openaccess.thecvf.com/content_cvpr_2018/papers/Cao_Pose-Robust_Face_Recognition_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/penincillin/DREAM,220,2019-01-02
-Clothing Co-Parsing by Joint Image Segmentation and Labeling,http://openaccess.thecvf.com/content_cvpr_2014/html/Yang_Clothing_Co-Parsing_by_2014_CVPR_paper.html,CVPR,2014,https://github.com/bearpaw/clothing-co-parsing,218,2019-01-02
-Visual Dialog,http://openaccess.thecvf.com/content_cvpr_2017/html/Das_Visual_Dialog_CVPR_2017_paper.html,CVPR,2017,https://github.com/batra-mlp-lab/visdial,199,2019-01-02
-GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models,http://proceedings.mlr.press/v80/you18a.html,ICML,2018,https://github.com/JiaxuanYou/graph-generation,214,2019-01-02
-Referring Relationships,http://openaccess.thecvf.com/content_cvpr_2018/papers/Krishna_Referring_Relationships_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/StanfordVL/ReferringRelationships,210,2019-01-02
-Deep Neural Decision Forests,http://openaccess.thecvf.com/content_iccv_2015/html/Kontschieder_Deep_Neural_Decision_ICCV_2015_paper.html,ICCV,2015,https://github.com/chrischoy/fully-differentiable-deep-ndf-tf,192,2019-01-02
-MoCoGAN: Decomposing Motion and Content for Video Generation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tulyakov_MoCoGAN_Decomposing_Motion_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/sergeytulyakov/mocogan,205,2019-01-02
-FastMask: Segment Multi-Scale Object Candidates in One Shot,http://openaccess.thecvf.com/content_cvpr_2017/html/Hu_FastMask_Segment_Multi-Scale_CVPR_2017_paper.html,CVPR,2017,https://github.com/voidrank/FastMask,189,2019-01-02
-Compressed Video Action Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Compressed_Video_Action_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/chaoyuaw/pytorch-coviar,225,2019-01-02
-VPGNet: Vanishing Point Guided Network for Lane and Road Marking Detection and Recognition,http://openaccess.thecvf.com/content_iccv_2017/html/Lee_VPGNet_Vanishing_Point_ICCV_2017_paper.html,ICCV,2017,https://github.com/SeokjuLee/VPGNet,210,2019-01-02
-Learning Deep CNN Denoiser Prior for Image Restoration,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Learning_Deep_CNN_CVPR_2017_paper.html,CVPR,2017,https://github.com/cszn/IRCNN,231,2019-01-02
-LayoutNet: Reconstructing the 3D Room Layout From a Single RGB Image,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zou_LayoutNet_Reconstructing_the_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zouchuhang/LayoutNet,202,2019-01-02
-Hierarchical Convolutional Features for Visual Tracking,http://openaccess.thecvf.com/content_iccv_2015/html/Ma_Hierarchical_Convolutional_Features_ICCV_2015_paper.html,ICCV,2015,https://github.com/jbhuang0604/CF2,179,2019-01-02
-ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation,http://openaccess.thecvf.com/content_ECCV_2018/html/Sachin_Mehta_ESPNet_Efficient_Spatial_ECCV_2018_paper.html,ECCV,2018,https://github.com/sacmehta/ESPNet,254,2019-01-02
-Interpretable Explanations of Black Boxes by Meaningful Perturbation,http://openaccess.thecvf.com/content_iccv_2017/html/Fong_Interpretable_Explanations_of_ICCV_2017_paper.html,ICCV,2017,https://github.com/jacobgil/pytorch-explain-black-box,192,2019-01-02
-NetVLAD: CNN Architecture for Weakly Supervised Place Recognition,http://openaccess.thecvf.com/content_cvpr_2016/html/Arandjelovic_NetVLAD_CNN_Architecture_CVPR_2016_paper.html,CVPR,2016,https://github.com/Relja/netvlad,204,2019-01-02
-Semantic Scene Completion From a Single Depth Image,http://openaccess.thecvf.com/content_cvpr_2017/html/Song_Semantic_Scene_Completion_CVPR_2017_paper.html,CVPR,2017,https://github.com/shurans/sscnet,188,2019-01-02
-Deep Colorization,http://openaccess.thecvf.com/content_iccv_2015/html/Cheng_Deep_Colorization_ICCV_2015_paper.html,ICCV,2015,https://github.com/richzhang/colorization-pytorch,198,2019-01-02
-Multiscale Combinatorial Grouping,http://openaccess.thecvf.com/content_cvpr_2014/html/Arbelaez_Multiscale_Combinatorial_Grouping_2014_CVPR_paper.html,CVPR,2014,https://github.com/jponttuset/mcg,185,2019-01-02
-Latent Alignment and Variational Attention,http://arxiv.org/abs/1807.03756v1,NIPS,2018,https://github.com/harvardnlp/var-attn,204,2019-01-02
-Inverse Compositional Spatial Transformer Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Lin_Inverse_Compositional_Spatial_CVPR_2017_paper.html,CVPR,2017,https://github.com/chenhsuanlin/inverse-compositional-STN,189,2019-01-02
-Learning From Synthetic Humans,http://openaccess.thecvf.com/content_cvpr_2017/html/Varol_Learning_From_Synthetic_CVPR_2017_paper.html,CVPR,2017,https://github.com/gulvarol/surreal,207,2019-01-02
-Joint Unsupervised Learning of Deep Representations and Image Clusters,http://openaccess.thecvf.com/content_cvpr_2016/html/Yang_Joint_Unsupervised_Learning_CVPR_2016_paper.html,CVPR,2016,https://github.com/jwyang/JULE.torch,182,2019-01-02
-Multi-Content GAN for Few-Shot Font Style Transfer,http://openaccess.thecvf.com/content_cvpr_2018/papers/Azadi_Multi-Content_GAN_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/azadis/MC-GAN,218,2019-01-02
-Staple: Complementary Learners for Real-Time Tracking,http://openaccess.thecvf.com/content_cvpr_2016/html/Bertinetto_Staple_Complementary_Learners_CVPR_2016_paper.html,CVPR,2016,https://github.com/bertinetto/staple,183,2019-01-02
-Learning Feature Pyramids for Human Pose Estimation,http://openaccess.thecvf.com/content_iccv_2017/html/Yang_Learning_Feature_Pyramids_ICCV_2017_paper.html,ICCV,2017,https://github.com/bearpaw/PyraNet,185,2019-01-02
-Be Your Own Prada: Fashion Synthesis With Structural Coherence,http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Be_Your_Own_ICCV_2017_paper.html,ICCV,2017,https://github.com/zhusz/ICCV17-fashionGAN,183,2019-01-02
-3D Bounding Box Estimation Using Deep Learning and Geometry,http://openaccess.thecvf.com/content_cvpr_2017/html/Mousavian_3D_Bounding_Box_CVPR_2017_paper.html,CVPR,2017,https://github.com/smallcorgi/3D-Deepbox,200,2019-01-02
-OnACID: Online Analysis of Calcium Imaging Data in Real Time,http://papers.nips.cc/paper/6832-onacid-online-analysis-of-calcium-imaging-data-in-real-time.pdf,NIPS,2017,https://github.com/simonsfoundation/caiman,189,2019-01-02
-Learning to Reason: End-To-End Module Networks for Visual Question Answering,http://openaccess.thecvf.com/content_iccv_2017/html/Hu_Learning_to_Reason_ICCV_2017_paper.html,ICCV,2017,https://github.com/ronghanghu/n2nmn,178,2019-01-02
-SPLATNet: Sparse Lattice Networks for Point Cloud Processing,http://openaccess.thecvf.com/content_cvpr_2018/papers/Su_SPLATNet_Sparse_Lattice_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/NVlabs/splatnet,188,2019-01-02
-Accurate Image Super-Resolution Using Very Deep Convolutional Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Kim_Accurate_Image_Super-Resolution_CVPR_2016_paper.html,CVPR,2016,https://github.com/Jongchan/tensorflow-vdsr,182,2019-01-02
-Multi-View 3D Object Detection Network for Autonomous Driving,http://openaccess.thecvf.com/content_cvpr_2017/html/Chen_Multi-View_3D_Object_CVPR_2017_paper.html,CVPR,2017,https://github.com/bostondiditeam/MV3D,199,2019-01-02
-Binarized Convolutional Landmark Localizers for Human Pose Estimation and Face Alignment With Limited Resources,http://openaccess.thecvf.com/content_iccv_2017/html/Bulat_Binarized_Convolutional_Landmark_ICCV_2017_paper.html,ICCV,2017,https://github.com/1adrianb/binary-human-pose-estimation,175,2019-01-02
-Learning Efficient Convolutional Networks Through Network Slimming,http://openaccess.thecvf.com/content_iccv_2017/html/Liu_Learning_Efficient_Convolutional_ICCV_2017_paper.html,ICCV,2017,https://github.com/liuzhuang13/slimming,186,2019-01-02
-Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis,http://openaccess.thecvf.com/content_iccv_2017/html/Huang_Beyond_Face_Rotation_ICCV_2017_paper.html,ICCV,2017,https://github.com/HRLTY/TP-GAN,202,2019-01-02
-GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium,http://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium.pdf,NIPS,2017,https://github.com/bioinf-jku/TTUR,229,2019-01-02
-Render for CNN: Viewpoint Estimation in Images Using CNNs Trained With Rendered 3D Model Views,http://openaccess.thecvf.com/content_iccv_2015/html/Su_Render_for_CNN_ICCV_2015_paper.html,ICCV,2015,https://github.com/ShapeNet/RenderForCNN,176,2019-01-02
-Realtime Edge-Based Visual Odometry for a Monocular Camera,http://openaccess.thecvf.com/content_iccv_2015/html/Tarrio_Realtime_Edge-Based_Visual_ICCV_2015_paper.html,ICCV,2015,https://github.com/JuanTarrio/rebvo,175,2019-01-02
-Fast Image Processing With Fully-Convolutional Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Chen_Fast_Image_Processing_ICCV_2017_paper.html,ICCV,2017,https://github.com/CQFIO/FastImageProcessing,180,2019-01-02
-Temporal Action Localization in Untrimmed Videos via Multi-Stage CNNs,http://openaccess.thecvf.com/content_cvpr_2016/html/Shou_Temporal_Action_Localization_CVPR_2016_paper.html,CVPR,2016,https://github.com/zhengshou/scnn,167,2019-01-02
-Scene Graph Generation by Iterative Message Passing,http://openaccess.thecvf.com/content_cvpr_2017/html/Xu_Scene_Graph_Generation_CVPR_2017_paper.html,CVPR,2017,https://github.com/danfeiX/scene-graph-TF-release,182,2019-01-02
-Attentive Generative Adversarial Network for Raindrop Removal From a Single Image,http://openaccess.thecvf.com/content_cvpr_2018/papers/Qian_Attentive_Generative_Adversarial_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/rui1996/DeRaindrop,186,2019-01-02
-Single View Stereo Matching,http://openaccess.thecvf.com/content_cvpr_2018/papers/Luo_Single_View_Stereo_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/lawy623/SVS,182,2019-01-02
-Unsupervised Feature Learning via Non-Parametric Instance Discrimination,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Unsupervised_Feature_Learning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zhirongw/lemniscate.pytorch,180,2019-01-02
-An End-to-End TextSpotter With Explicit Alignment and Attention,http://openaccess.thecvf.com/content_cvpr_2018/papers/He_An_End-to-End_TextSpotter_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/tonghe90/textspotter,195,2019-01-02
-Single Shot Text Detector With Regional Attention,http://openaccess.thecvf.com/content_iccv_2017/html/He_Single_Shot_Text_ICCV_2017_paper.html,ICCV,2017,https://github.com/BestSonny/SSTD,176,2019-01-02
-Social GAN: Socially Acceptable Trajectories With Generative Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Gupta_Social_GAN_Socially_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/agrimgupta92/sgan,178,2019-01-02
-LocNet: Improving Localization Accuracy for Object Detection,http://openaccess.thecvf.com/content_cvpr_2016/html/Gidaris_LocNet_Improving_Localization_CVPR_2016_paper.html,CVPR,2016,https://github.com/gidariss/LocNet,155,2019-01-02
-ST-GAN: Spatial Transformer Generative Adversarial Networks for Image Compositing,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lin_ST-GAN_Spatial_Transformer_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/chenhsuanlin/spatial-transformer-GAN,179,2019-01-02
-Image Super-Resolution via Deep Recursive Residual Network,http://openaccess.thecvf.com/content_cvpr_2017/html/Tai_Image_Super-Resolution_via_CVPR_2017_paper.html,CVPR,2017,https://github.com/tyshiwo/DRRN_CVPR17,163,2019-01-02
-Input Convex Neural Networks,http://proceedings.mlr.press/v70/amos17b.html,ICML,2017,https://github.com/locuslab/icnn,159,2019-01-02
-Understanding Deep Image Representations by Inverting Them,http://openaccess.thecvf.com/content_cvpr_2015/html/Mahendran_Understanding_Deep_Image_2015_CVPR_paper.html,CVPR,2015,https://github.com/aravindhm/deep-goggle,154,2019-01-02
-Evolved Policy Gradients,http://arxiv.org/abs/1802.04821v2,NIPS,2018,https://github.com/openai/EPG,160,2019-01-02
-Oriented Response Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhou_Oriented_Response_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/ZhouYanzhao/ORN,157,2019-01-02
-Large-Scale Point Cloud Semantic Segmentation With Superpoint Graphs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Landrieu_Large-Scale_Point_Cloud_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/loicland/superpoint_graph,197,2019-01-02
-Optimizing Video Object Detection via a Scale-Time Lattice,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Optimizing_Video_Object_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/hellock/scale-time-lattice,168,2019-01-02
-Learning Multiple Tasks with Multilinear Relationship Networks,http://papers.nips.cc/paper/6757-learning-multiple-tasks-with-multilinear-relationship-networks.pdf,NIPS,2017,https://github.com/thuml/Xlearn,178,2019-01-02
-Face Alignment at 3000 FPS via Regressing Local Binary Features,http://openaccess.thecvf.com/content_cvpr_2014/html/Ren_Face_Alignment_at_2014_CVPR_paper.html,CVPR,2014,https://github.com/luoyetx/face-alignment-at-3000fps,164,2019-01-02
-Learning Cross-Modal Embeddings for Cooking Recipes and Food Images,http://openaccess.thecvf.com/content_cvpr_2017/html/Salvador_Learning_Cross-Modal_Embeddings_CVPR_2017_paper.html,CVPR,2017,https://github.com/torralba-lab/im2recipe,160,2019-01-02
-Learning Category-Specific Mesh Reconstruction from Image Collections,http://openaccess.thecvf.com/content_ECCV_2018/html/Angjoo_Kanazawa_Learning_Category-Specific_Mesh_ECCV_2018_paper.html,ECCV,2018,https://github.com/akanazawa/cmr,176,2019-01-02
-Group Normalization,http://openaccess.thecvf.com/content_ECCV_2018/html/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.html,ECCV,2018,https://github.com/shaohua0116/Group-Normalization-Tensorflow,175,2019-01-02
-On Human Motion Prediction Using Recurrent Neural Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Martinez_On_Human_Motion_CVPR_2017_paper.html,CVPR,2017,https://github.com/una-dinosauria/human-motion-prediction,167,2019-01-02
-Language Modeling with Recurrent Highway Hypernetworks,http://papers.nips.cc/paper/6919-language-modeling-with-recurrent-highway-hypernetworks.pdf,NIPS,2017,https://github.com/jsuarez5341/Recurrent-Highway-Hypernetworks-NIPS,141,2019-01-02
-Context-Aware CNNs for Person Head Detection,http://openaccess.thecvf.com/content_iccv_2015/html/Vu_Context-Aware_CNNs_for_ICCV_2015_paper.html,ICCV,2015,https://github.com/aosokin/cnn_head_detection,153,2019-01-02
-Soft Proposal Networks for Weakly Supervised Object Localization,http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Soft_Proposal_Networks_ICCV_2017_paper.html,ICCV,2017,https://github.com/yeezhu/SPN.pytorch,154,2019-01-02
-DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kupyn_DeblurGAN_Blind_Motion_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/RaphaelMeudec/deblur-gan,189,2019-01-02
-MegaDepth: Learning Single-View Depth Prediction From Internet Photos,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_MegaDepth_Learning_Single-View_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/lixx2938/MegaDepth,181,2019-01-02
-Shallow and Deep Convolutional Networks for Saliency Prediction,http://openaccess.thecvf.com/content_cvpr_2016/html/Pan_Shallow_and_Deep_CVPR_2016_paper.html,CVPR,2016,https://github.com/imatge-upc/saliency-2016-cvpr,153,2019-01-02
-ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/camel007/Caffe-ShuffleNet,152,2019-01-02
-Axiomatic Attribution for Deep Networks,http://proceedings.mlr.press/v70/sundararajan17a.html,ICML,2017,https://github.com/hiranumn/IntegratedGradients,146,2019-01-02
-Compact Bilinear Pooling,http://openaccess.thecvf.com/content_cvpr_2016/html/Gao_Compact_Bilinear_Pooling_CVPR_2016_paper.html,CVPR,2016,https://github.com/gy20073/compact_bilinear_pooling,148,2019-01-02
-Simple Does It: Weakly Supervised Instance and Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/html/Khoreva_Simple_Does_It_CVPR_2017_paper.html,CVPR,2017,https://github.com/philferriere/tfwss,159,2019-01-02
-Low-Shot Visual Recognition by Shrinking and Hallucinating Features,http://openaccess.thecvf.com/content_iccv_2017/html/Hariharan_Low-Shot_Visual_Recognition_ICCV_2017_paper.html,ICCV,2017,https://github.com/facebookresearch/low-shot-shrink-hallucinate,158,2019-01-02
-BSN: Boundary Sensitive Network for Temporal Action Proposal Generation,http://openaccess.thecvf.com/content_ECCV_2018/html/Tianwei_Lin_BSN_Boundary_Sensitive_ECCV_2018_paper.html,ECCV,2018,https://github.com/wzmsltw/BSN-boundary-sensitive-network,175,2019-01-02
-Deep Feature Interpolation for Image Content Changes,http://openaccess.thecvf.com/content_cvpr_2017/html/Upchurch_Deep_Feature_Interpolation_CVPR_2017_paper.html,CVPR,2017,https://github.com/paulu/deepfeatinterp,170,2019-01-02
-Deep Clustering for Unsupervised Learning of Visual Features,http://openaccess.thecvf.com/content_ECCV_2018/html/Mathilde_Caron_Deep_Clustering_for_ECCV_2018_paper.html,ECCV,2018,https://github.com/facebookresearch/deepcluster,302,2019-01-02
-Learning a Single Convolutional Super-Resolution Network for Multiple Degradations,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Learning_a_Single_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/cszn/SRMD,169,2019-01-02
-Facelet-Bank for Fast Portrait Manipulation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Facelet-Bank_for_Fast_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yingcong/Facelet_Bank,150,2019-01-02
-Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning,http://papers.nips.cc/paper/6974-interpolated-policy-gradient-merging-on-policy-and-off-policy-gradient-estimation-for-deep-reinforcement-learning.pdf,NIPS,2017,https://github.com/shaneshixiang/rllabplusplus,138,2019-01-02
-Learning Compact Binary Descriptors With Unsupervised Deep Neural Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Lin_Learning_Compact_Binary_CVPR_2016_paper.html,CVPR,2016,https://github.com/kevinlin311tw/cvpr16-deepbit,144,2019-01-02
-Image Super-Resolution Using Very Deep Residual Channel Attention Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Yulun_Zhang_Image_Super-Resolution_Using_ECCV_2018_paper.html,ECCV,2018,https://github.com/yulunzhang/RCAN,234,2019-01-02
-ECO: Efficient Convolutional Network for Online Video Understanding,http://openaccess.thecvf.com/content_ECCV_2018/html/Mohammadreza_Zolfaghari_ECO_Efficient_Convolutional_ECCV_2018_paper.html,ECCV,2018,https://github.com/mzolfaghari/ECO-efficient-video-understanding,180,2019-01-02
-PlaneNet: Piece-Wise Planar Reconstruction From a Single RGB Image,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_PlaneNet_Piece-Wise_Planar_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/art-programmer/PlaneNet,164,2019-01-02
-Self-Imitation Learning,http://proceedings.mlr.press/v80/oh18b.html,ICML,2018,https://github.com/junhyukoh/self-imitation-learning,145,2019-01-02
-Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks,http://proceedings.mlr.press/v70/mescheder17a.html,ICML,2017,https://github.com/LMescheder/AdversarialVariationalBayes,147,2019-01-02
-Residual Dense Network for Image Super-Resolution,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Residual_Dense_Network_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yulunzhang/RDN,163,2019-01-02
-Attend to You: Personalized Image Captioning With Context Sequence Memory Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Park_Attend_to_You_CVPR_2017_paper.html,CVPR,2017,https://github.com/cesc-park/attend2u,143,2019-01-02
-Face Alignment by Coarse-to-Fine Shape Searching,http://openaccess.thecvf.com/content_cvpr_2015/html/Zhu_Face_Alignment_by_2015_CVPR_paper.html,CVPR,2015,https://github.com/zhusz/CVPR15-CFSS,140,2019-01-02
-Triple Generative Adversarial Nets,http://papers.nips.cc/paper/6997-triple-generative-adversarial-nets.pdf,NIPS,2017,https://github.com/zhenxuan00/triple-gan,138,2019-01-02
-Embodied Question Answering,http://openaccess.thecvf.com/content_cvpr_2018/papers/Das_Embodied_Question_Answering_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/facebookresearch/EmbodiedQA,162,2019-01-02
-Conditional Similarity Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Veit_Conditional_Similarity_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/andreasveit/conditional-similarity-networks,142,2019-01-02
-Two-Stream Convolutional Networks for Dynamic Texture Synthesis,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tesfaldet_Two-Stream_Convolutional_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ryersonvisionlab/two-stream-dyntex-synth,141,2019-01-02
-Unsupervised Cross-Dataset Person Re-Identification by Transfer Learning of Spatial-Temporal Patterns,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lv_Unsupervised_Cross-Dataset_Person_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ahangchen/TFusion,166,2019-01-02
-Attentive Recurrent Comparators,http://proceedings.mlr.press/v70/shyam17a.html,ICML,2017,https://github.com/sanyam5/arc-pytorch,136,2019-01-02
-One-Sided Unsupervised Domain Mapping,http://papers.nips.cc/paper/6677-one-sided-unsupervised-domain-mapping.pdf,NIPS,2017,https://github.com/sagiebenaim/DistanceGAN,137,2019-01-02
-Densely Connected Pyramid Dehazing Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Densely_Connected_Pyramid_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/hezhangsprinter/DCPDN,155,2019-01-02
-Detecting Visual Relationships With Deep Relational Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Dai_Detecting_Visual_Relationships_CVPR_2017_paper.html,CVPR,2017,https://github.com/doubledaibo/drnet_cvpr2017,137,2019-01-02
-Rethinking the Inception Architecture for Computer Vision,http://openaccess.thecvf.com/content_cvpr_2016/html/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.html,CVPR,2016,https://github.com/Moodstocks/inception-v3.torch,130,2019-01-02
-Show and Tell: A Neural Image Caption Generator,http://openaccess.thecvf.com/content_cvpr_2015/html/Vinyals_Show_and_Tell_2015_CVPR_paper.html,CVPR,2015,https://github.com/KranthiGV/Pretrained-Show-and-Tell-model,141,2019-01-02
-Camera Style Adaptation for Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhong_Camera_Style_Adaptation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zhunzhong07/CamStyle,159,2019-01-02
-Neural Motifs: Scene Graph Parsing With Global Context,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zellers_Neural_Motifs_Scene_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/rowanz/neural-motifs,171,2019-01-02
-Gradient Episodic Memory for Continual Learning,http://papers.nips.cc/paper/7225-gradient-episodic-memory-for-continual-learning.pdf,NIPS,2017,https://github.com/facebookresearch/GradientEpisodicMemory,146,2019-01-02
-CREST: Convolutional Residual Learning for Visual Tracking,http://openaccess.thecvf.com/content_iccv_2017/html/Song_CREST_Convolutional_Residual_ICCV_2017_paper.html,ICCV,2017,https://github.com/ybsong00/CREST-Release,126,2019-01-02
-Weakly and Semi Supervised Human Body Part Parsing via Pose-Guided Knowledge Transfer,http://openaccess.thecvf.com/content_cvpr_2018/papers/Fang_Weakly_and_Semi_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/MVIG-SJTU/WSHP,159,2019-01-02
-Controlling Perceptual Factors in Neural Style Transfer,http://openaccess.thecvf.com/content_cvpr_2017/html/Gatys_Controlling_Perceptual_Factors_CVPR_2017_paper.html,CVPR,2017,https://github.com/leongatys/NeuralImageSynthesis,130,2019-01-02
-LSTM Pose Machines,http://openaccess.thecvf.com/content_cvpr_2018/papers/Luo_LSTM_Pose_Machines_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/lawy623/LSTM_Pose_Machines,141,2019-01-02
-Relational recurrent neural networks,https://arxiv.org/abs/1806.01822,NIPS,2018,https://github.com/L0SG/relational-rnn-pytorch,157,2019-01-02
-Multi-Context Attention for Human Pose Estimation,http://openaccess.thecvf.com/content_cvpr_2017/html/Chu_Multi-Context_Attention_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/bearpaw/pose-attention,131,2019-01-02
-SO-Net: Self-Organizing Network for Point Cloud Analysis,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_SO-Net_Self-Organizing_Network_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/lijx10/SO-Net,152,2019-01-02
-SegFlow: Joint Learning for Video Object Segmentation and Optical Flow,http://openaccess.thecvf.com/content_iccv_2017/html/Cheng_SegFlow_Joint_Learning_ICCV_2017_paper.html,ICCV,2017,https://github.com/JingchunCheng/SegFlow,127,2019-01-02
-Towards 3D Human Pose Estimation in the Wild: A Weakly-Supervised Approach,http://openaccess.thecvf.com/content_iccv_2017/html/Zhou_Towards_3D_Human_ICCV_2017_paper.html,ICCV,2017,https://github.com/xingyizhou/pose-hg-3d,136,2019-01-02
-Image-Image Domain Adaptation With Preserved Self-Similarity and Domain-Dissimilarity for Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2018/papers/Deng_Image-Image_Domain_Adaptation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Simon4Yan/Learning-via-Translation,137,2019-01-02
-An Improved Deep Learning Architecture for Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2015/html/Ahmed_An_Improved_Deep_2015_CVPR_paper.html,CVPR,2015,https://github.com/Ning-Ding/Implementation-CVPR2015-CNN-for-ReID,127,2019-01-02
-Context Embedding Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kim_Context_Embedding_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/thunlp/CANE,131,2019-01-02
-Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model,http://papers.nips.cc/paper/7145-deep-learning-for-precipitation-nowcasting-a-benchmark-and-a-new-model.pdf,NIPS,2017,https://github.com/sxjscience/HKO-7,134,2019-01-02
-Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images,http://openaccess.thecvf.com/content_cvpr_2016/html/Song_Deep_Sliding_Shapes_CVPR_2016_paper.html,CVPR,2016,https://github.com/shurans/DeepSlidingShape,126,2019-01-02
-DSAC - Differentiable RANSAC for Camera Localization,http://openaccess.thecvf.com/content_cvpr_2017/html/Brachmann_DSAC_-_Differentiable_CVPR_2017_paper.html,CVPR,2017,https://github.com/cvlab-dresden/DSAC,144,2019-01-02
-Learning a Multi-View Stereo Machine,http://papers.nips.cc/paper/6640-learning-a-multi-view-stereo-machine.pdf,NIPS,2017,https://github.com/akar43/lsm,135,2019-01-02
-Segmentation-Aware Convolutional Networks Using Local Attention Masks,http://openaccess.thecvf.com/content_iccv_2017/html/Harley_Segmentation-Aware_Convolutional_Networks_ICCV_2017_paper.html,ICCV,2017,https://github.com/aharley/segaware,126,2019-01-02
-Cross-Domain Weakly-Supervised Object Detection Through Progressive Domain Adaptation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Inoue_Cross-Domain_Weakly-Supervised_Object_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/naoto0804/cross-domain-detection,143,2019-01-02
-Bayesian Compression for Deep Learning,http://papers.nips.cc/paper/6921-bayesian-compression-for-deep-learning.pdf,NIPS,2017,https://github.com/KarenUllrich/Tutorial_BayesianCompressionForDL,130,2019-01-02
-Fast and Accurate Online Video Object Segmentation via Tracking Parts,http://openaccess.thecvf.com/content_cvpr_2018/papers/Cheng_Fast_and_Accurate_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/JingchunCheng/FAVOS,129,2019-01-02
-Learning to Compare: Relation Network for Few-Shot Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sung_Learning_to_Compare_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/lzrobots/LearningToCompare_ZSL,135,2019-01-02
-Dynamic Image Networks for Action Recognition,http://openaccess.thecvf.com/content_cvpr_2016/html/Bilen_Dynamic_Image_Networks_CVPR_2016_paper.html,CVPR,2016,https://github.com/hbilen/dynamic-image-nets,133,2019-01-02
-Context Encoders: Feature Learning by Inpainting,http://openaccess.thecvf.com/content_cvpr_2016/html/Pathak_Context_Encoders_Feature_CVPR_2016_paper.html,CVPR,2016,https://github.com/jazzsaxmafia/Inpainting,124,2019-01-02
-Weakly Supervised Instance Segmentation Using Class Peak Response,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhou_Weakly_Supervised_Instance_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ZhouYanzhao/PRM,166,2019-01-02
-MVSNet: Depth Inference for Unstructured Multi-view Stereo,http://openaccess.thecvf.com/content_ECCV_2018/html/Yao_Yao_MVSNet_Depth_Inference_ECCV_2018_paper.html,ECCV,2018,https://github.com/YoYo000/MVSNet,174,2019-01-02
-Recurrent Squeeze-and-Excitation Context Aggregation Net for Single Image Deraining,http://openaccess.thecvf.com/content_ECCV_2018/html/Xia_Li_Recurrent_Squeeze-and-Excitation_Context_ECCV_2018_paper.html,ECCV,2018,https://github.com/XiaLiPKU/RESCAN,142,2019-01-02
-L4: Practical loss-based stepsize adaptation for deep learning,http://arxiv.org/abs/1802.05074v4,NIPS,2018,https://github.com/martius-lab/l4-optimizer,123,2019-01-02
-Value Prediction Network,http://papers.nips.cc/paper/7192-value-prediction-network.pdf,NIPS,2017,https://github.com/junhyukoh/value-prediction-network,119,2019-01-02
-Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Structure_Inference_Net_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/choasup/SIN,140,2019-01-02
-Hierarchical Attentive Recurrent Tracking,http://papers.nips.cc/paper/6898-hierarchical-attentive-recurrent-tracking.pdf,NIPS,2017,https://github.com/akosiorek/hart,121,2019-01-02
-A Closer Look at Spatiotemporal Convolutions for Action Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tran_A_Closer_Look_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/irhumshafkat/R2Plus1D-PyTorch,143,2019-01-02
-Discriminative Correlation Filter With Channel and Spatial Reliability,http://openaccess.thecvf.com/content_cvpr_2017/html/Lukezic_Discriminative_Correlation_Filter_CVPR_2017_paper.html,CVPR,2017,https://github.com/alanlukezic/csr-dcf,124,2019-01-02
-Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sun_Pix3D_Dataset_and_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/xingyuansun/pix3d,152,2019-01-02
-Unsupervised Learning of Monocular Depth Estimation and Visual Odometry With Deep Feature Reconstruction,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhan_Unsupervised_Learning_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Huangying-Zhan/Depth-VO-Feat,158,2019-01-02
-Learning by Association -- A Versatile Semi-Supervised Training Method for Neural Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Haeusser_Learning_by_Association_CVPR_2017_paper.html,CVPR,2017,https://github.com/haeusser/learning_by_association,119,2019-01-02
-Associative Domain Adaptation,http://openaccess.thecvf.com/content_iccv_2017/html/Haeusser_Associative_Domain_Adaptation_ICCV_2017_paper.html,ICCV,2017,https://github.com/haeusser/learning_by_association,119,2019-01-02
-Concrete Dropout,http://papers.nips.cc/paper/6949-concrete-dropout.pdf,NIPS,2017,https://github.com/yaringal/ConcreteDropout,127,2019-01-02
-SVDNet for Pedestrian Retrieval,http://openaccess.thecvf.com/content_iccv_2017/html/Sun_SVDNet_for_Pedestrian_ICCV_2017_paper.html,ICCV,2017,https://github.com/syfafterzy/SVDNet-for-Pedestrian-Retrieval,121,2019-01-02
-MultiPoseNet: Fast Multi-Person Pose Estimation using Pose Residual Network,http://openaccess.thecvf.com/content_ECCV_2018/html/Muhammed_Kocabas_MultiPoseNet_Fast_Multi-Person_ECCV_2018_paper.html,ECCV,2018,https://github.com/salihkaragoz/pose-residual-network-pytorch,167,2019-01-02
-Gated Path Planning Networks,http://proceedings.mlr.press/v80/lee18c.html,ICML,2018,https://github.com/lileee/gated-path-planning-networks,121,2019-01-02
-Semantic Image Synthesis via Adversarial Learning,http://openaccess.thecvf.com/content_iccv_2017/html/Dong_Semantic_Image_Synthesis_ICCV_2017_paper.html,ICCV,2017,https://github.com/woozzu/dong_iccv_2017,121,2019-01-02
-"Depth-Based Hand Pose Estimation: Data, Methods, and Challenges",http://openaccess.thecvf.com/content_iccv_2015/html/Supancic_Depth-Based_Hand_Pose_ICCV_2015_paper.html,ICCV,2015,https://github.com/jsupancic/deep_hand_pose,121,2019-01-02
-Deep Pyramidal Residual Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Han_Deep_Pyramidal_Residual_CVPR_2017_paper.html,CVPR,2017,https://github.com/jhkim89/PyramidNet,112,2019-01-02
-Spatiotemporal Multiplier Networks for Video Action Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Feichtenhofer_Spatiotemporal_Multiplier_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/feichtenhofer/st-resnet,121,2019-01-02
-PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Mallya_PackNet_Adding_Multiple_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/arunmallya/packnet,117,2019-01-02
-CosFace: Large Margin Cosine Loss for Deep Face Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_CosFace_Large_Margin_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yule-li/CosFace,135,2019-01-02
-Decoupled Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Decoupled_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/wy1iu/DCNets,105,2019-01-02
-Video Based Reconstruction of 3D People Models,http://openaccess.thecvf.com/content_cvpr_2018/papers/Alldieck_Video_Based_Reconstruction_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/thmoa/videoavatars,179,2019-01-02
-Good Semi-supervised Learning That Requires a Bad GAN,http://papers.nips.cc/paper/7229-good-semi-supervised-learning-that-requires-a-bad-gan.pdf,NIPS,2017,https://github.com/kimiyoung/ssl_bad_gan,120,2019-01-02
-DeepMVS: Learning Multi-View Stereopsis,http://openaccess.thecvf.com/content_cvpr_2018/papers/Huang_DeepMVS_Learning_Multi-View_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/phuang17/DeepMVS,125,2019-01-02
-Deep Watershed Transform for Instance Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/html/Bai_Deep_Watershed_Transform_CVPR_2017_paper.html,CVPR,2017,https://github.com/min2209/dwt,120,2019-01-02
-PoseTrack: Joint Multi-Person Pose Estimation and Tracking,http://openaccess.thecvf.com/content_cvpr_2017/html/Iqbal_PoseTrack_Joint_Multi-Person_CVPR_2017_paper.html,CVPR,2017,https://github.com/iqbalu/PoseTrack-CVPR2017,121,2019-01-02
-TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning,http://papers.nips.cc/paper/6749-terngrad-ternary-gradients-to-reduce-communication-in-distributed-deep-learning.pdf,NIPS,2017,https://github.com/wenwei202/terngrad,117,2019-01-02
-Adaptive Affinity Fields for Semantic Segmentation,http://openaccess.thecvf.com/content_ECCV_2018/html/Jyh-Jing_Hwang_Adaptive_Affinity_Field_ECCV_2018_paper.html,ECCV,2018,https://github.com/twke18/Adaptive_Affinity_Fields,141,2019-01-02
-"Show, Adapt and Tell: Adversarial Training of Cross-Domain Image Captioner",http://openaccess.thecvf.com/content_iccv_2017/html/Chen_Show_Adapt_and_ICCV_2017_paper.html,ICCV,2017,https://github.com/tsenghungchen/show-adapt-and-tell,115,2019-01-02
-Real-Time Seamless Single Shot 6D Object Pose Prediction,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tekin_Real-Time_Seamless_Single_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Microsoft/singleshotpose,174,2019-01-02
-Hierarchical Imitation and Reinforcement Learning,http://proceedings.mlr.press/v80/le18a.html,ICML,2018,https://github.com/hoangminhle/hierarchical_IL_RL,124,2019-01-02
-TI-Pooling: Transformation-Invariant Pooling for Feature Learning in Convolutional Neural Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Laptev_TI-Pooling_Transformation-Invariant_Pooling_CVPR_2016_paper.html,CVPR,2016,https://github.com/dlaptev/TI-pooling,109,2019-01-02
-Bayesian Optimization with Gradients,http://papers.nips.cc/paper/7111-bayesian-optimization-with-gradients.pdf,NIPS,2017,https://github.com/wujian16/Cornell-MOE,117,2019-01-02
-MemNet: A Persistent Memory Network for Image Restoration,http://openaccess.thecvf.com/content_iccv_2017/html/Tai_MemNet_A_Persistent_ICCV_2017_paper.html,ICCV,2017,https://github.com/tyshiwo/MemNet,119,2019-01-02
-Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Split-Brain_Autoencoders_Unsupervised_CVPR_2017_paper.html,CVPR,2017,https://github.com/richzhang/splitbrainauto,110,2019-01-02
-Long-term Tracking in the Wild: a Benchmark,http://openaccess.thecvf.com/content_ECCV_2018/html/Efstratios_Gavves_Long-term_Tracking_in_ECCV_2018_paper.html,ECCV,2018,https://github.com/oxuva/long-term-tracking-benchmark,116,2019-01-02
-Detail-Revealing Deep Video Super-Resolution,http://openaccess.thecvf.com/content_iccv_2017/html/Tao_Detail-Revealing_Deep_Video_ICCV_2017_paper.html,ICCV,2017,https://github.com/jiangsutx/SPMC_VideoSR,126,2019-01-02
-Realistic Evaluation of Deep Semi-Supervised Learning Algorithms,http://arxiv.org/abs/1804.09170v2,NIPS,2018,https://github.com/brain-research/realistic-ssl-evaluation,175,2019-01-02
-FaceNet: A Unified Embedding for Face Recognition and Clustering,http://openaccess.thecvf.com/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html,CVPR,2015,https://github.com/liorshk/facenet_pytorch,124,2019-01-02
-Compressed Sensing using Generative Models,http://proceedings.mlr.press/v70/bora17a.html,ICML,2017,https://github.com/AshishBora/csgm,116,2019-01-02
-Unrestricted Facial Geometry Reconstruction Using Image-To-Image Translation,http://openaccess.thecvf.com/content_iccv_2017/html/Sela_Unrestricted_Facial_Geometry_ICCV_2017_paper.html,ICCV,2017,https://github.com/matansel/pix2vertex,119,2019-01-02
-Deep Back-Projection Networks for Super-Resolution,http://openaccess.thecvf.com/content_cvpr_2018/papers/Haris_Deep_Back-Projection_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/alterzero/DBPN-Pytorch,132,2019-01-02
-Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kendall_Multi-Task_Learning_Using_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/alexgkendall/multitaskvision,131,2019-01-02
-Deep Hyperspherical Learning,http://papers.nips.cc/paper/6984-deep-hyperspherical-learning.pdf,NIPS,2017,https://github.com/wy1iu/SphereNet,92,2019-01-02
-Recovering Realistic Texture in Image Super-Resolution by Deep Spatial Feature Transform,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Recovering_Realistic_Texture_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/xinntao/CVPR18-SFTGAN,139,2019-01-02
-Switching Convolutional Neural Network for Crowd Counting,http://openaccess.thecvf.com/content_cvpr_2017/html/Sam_Switching_Convolutional_Neural_CVPR_2017_paper.html,CVPR,2017,https://github.com/val-iisc/crowd-counting-scnn,116,2019-01-02
-3D-CODED: 3D Correspondences by Deep Deformation,http://openaccess.thecvf.com/content_ECCV_2018/html/Thibault_Groueix_Shape_correspondences_from_ECCV_2018_paper.html,ECCV,2018,https://github.com/ThibaultGROUEIX/3D-CODED,125,2019-01-02
-FeUdal Networks for Hierarchical Reinforcement Learning,http://proceedings.mlr.press/v70/vezhnevets17a.html,ICML,2017,https://github.com/dmakian/feudal_networks,107,2019-01-02
-PU-Net: Point Cloud Upsampling Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yu_PU-Net_Point_Cloud_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yulequan/PU-Net,117,2019-01-02
-Scale-Recurrent Network for Deep Image Deblurring,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tao_Scale-Recurrent_Network_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jiangsutx/SRN-Deblur,159,2019-01-02
-"WILDCAT: Weakly Supervised Learning of Deep ConvNets for Image Classification, Pointwise Localization and Segmentation",http://openaccess.thecvf.com/content_cvpr_2017/html/Durand_WILDCAT_Weakly_Supervised_CVPR_2017_paper.html,CVPR,2017,https://github.com/durandtibo/wildcat.pytorch,116,2019-01-02
-Noisy Natural Gradient as Variational Inference,http://proceedings.mlr.press/v80/zhang18l.html,ICML,2018,https://github.com/wlwkgus/NoisyNaturalGradient,108,2019-01-02
-Video Frame Synthesis Using Deep Voxel Flow,http://openaccess.thecvf.com/content_iccv_2017/html/Liu_Video_Frame_Synthesis_ICCV_2017_paper.html,ICCV,2017,https://github.com/liuziwei7/voxel-flow,114,2019-01-02
-Working hard to know your neighbor's margins: Local descriptor learning loss,http://papers.nips.cc/paper/7068-working-hard-to-know-your-neighbors-margins-local-descriptor-learning-loss.pdf,NIPS,2017,https://github.com/DagnyT/hardnet,128,2019-01-02
-Domain Adaptive Faster R-CNN for Object Detection in the Wild,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Domain_Adaptive_Faster_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yuhuayc/da-faster-rcnn,123,2019-01-02
-"Train longer, generalize better: closing the generalization gap in large batch training of neural networks",http://papers.nips.cc/paper/6770-train-longer-generalize-better-closing-the-generalization-gap-in-large-batch-training-of-neural-networks.pdf,NIPS,2017,https://github.com/eladhoffer/bigBatch,112,2019-01-02
-Natural Language Object Retrieval,http://openaccess.thecvf.com/content_cvpr_2016/html/Hu_Natural_Language_Object_CVPR_2016_paper.html,CVPR,2016,https://github.com/ronghanghu/natural-language-object-retrieval,100,2019-01-02
-Adversarial Discriminative Domain Adaptation,http://openaccess.thecvf.com/content_cvpr_2017/html/Tzeng_Adversarial_Discriminative_Domain_CVPR_2017_paper.html,CVPR,2017,https://github.com/corenel/pytorch-adda,129,2019-01-02
-Quantized Densely Connected U-Nets for Efficient Landmark Localization,http://openaccess.thecvf.com/content_ECCV_2018/html/Zhiqiang_Tang_Quantized_Densely_Connected_ECCV_2018_paper.html,ECCV,2018,https://github.com/zhiqiangdon/CU-Net,143,2019-01-02
-Rethinking Feature Distribution for Loss Functions in Image Classification,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wan_Rethinking_Feature_Distribution_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/WeitaoVan/L-GM-loss,120,2019-01-02
-DenseASPP for Semantic Segmentation in Street Scenes,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_DenseASPP_for_Semantic_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/DeepMotionAIResearch/DenseASPP,151,2019-01-02
-ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression,http://openaccess.thecvf.com/content_iccv_2017/html/Luo_ThiNet_A_Filter_ICCV_2017_paper.html,ICCV,2017,https://github.com/Roll920/ThiNet,105,2019-01-02
-Graph R-CNN for Scene Graph Generation,http://openaccess.thecvf.com/content_ECCV_2018/html/Jianwei_Yang_Graph_R-CNN_for_ECCV_2018_paper.html,ECCV,2018,https://github.com/jwyang/graph-rcnn.pytorch,144,2019-01-02
-"Factoring Shape, Pose, and Layout From the 2D Image of a 3D Scene",http://openaccess.thecvf.com/content_cvpr_2018/papers/Tulsiani_Factoring_Shape_Pose_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/shubhtuls/factored3d,114,2019-01-02
-Multi-View Supervision for Single-View Reconstruction via Differentiable Ray Consistency,http://openaccess.thecvf.com/content_cvpr_2017/html/Tulsiani_Multi-View_Supervision_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/shubhtuls/drc,100,2019-01-02
-Massively Parallel Multiview Stereopsis by Surface Normal Diffusion,http://openaccess.thecvf.com/content_iccv_2015/html/Galliani_Massively_Parallel_Multiview_ICCV_2015_paper.html,ICCV,2015,https://github.com/kysucix/gipuma,105,2019-01-02
-Deep Depth Completion of a Single RGB-D Image,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Deep_Depth_Completion_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yindaz/DeepCompletionRelease,134,2019-01-02
-Cross-Scale Cost Aggregation for Stereo Matching,http://openaccess.thecvf.com/content_cvpr_2014/html/Zhang_Cross-Scale_Cost_Aggregation_2014_CVPR_paper.html,CVPR,2014,https://github.com/rookiepig/CrossScaleStereo,106,2019-01-02
-Density-Aware Single Image De-Raining Using a Multi-Stream Dense Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Density-Aware_Single_Image_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/hezhangsprinter/DID-MDN,118,2019-01-02
-Weakly Supervised Deep Detection Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Bilen_Weakly_Supervised_Deep_CVPR_2016_paper.html,CVPR,2016,https://github.com/hbilen/WSDDN,103,2019-01-02
-Task-based End-to-end Model Learning in Stochastic Optimization,http://papers.nips.cc/paper/7132-task-based-end-to-end-model-learning-in-stochastic-optimization.pdf,NIPS,2017,https://github.com/locuslab/e2e-model-learning,100,2019-01-02
-MAttNet: Modular Attention Network for Referring Expression Comprehension,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yu_MAttNet_Modular_Attention_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/lichengunc/MAttNet,104,2019-01-02
-Interleaved Group Convolutions,http://openaccess.thecvf.com/content_iccv_2017/html/Zhang_Interleaved_Group_Convolutions_ICCV_2017_paper.html,ICCV,2017,https://github.com/hellozting/InterleavedGroupConvolutions,95,2019-01-02
-"Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis",http://proceedings.mlr.press/v80/wang18h.html,ICML,2018,https://github.com/syang1993/gst-tacotron,129,2019-01-02
-ELEGANT: Exchanging Latent Encodings with GAN for Transferring Multiple Face Attributes,http://openaccess.thecvf.com/content_ECCV_2018/html/Taihong_Xiao_ELEGANT_Exchanging_Latent_ECCV_2018_paper.html,ECCV,2018,https://github.com/Prinsphield/ELEGANT,117,2019-01-02
-Learning to Propose Objects,http://openaccess.thecvf.com/content_cvpr_2015/html/Krahenbuhl_Learning_to_Propose_2015_CVPR_paper.html,CVPR,2015,https://github.com/philkr/lpo,91,2019-01-02
-Learning to Compose Domain-Specific Transformations for Data Augmentation,http://papers.nips.cc/paper/6916-learning-to-compose-domain-specific-transformations-for-data-augmentation.pdf,NIPS,2017,https://github.com/HazyResearch/tanda,97,2019-01-02
-Deeply-Recursive Convolutional Network for Image Super-Resolution,http://openaccess.thecvf.com/content_cvpr_2016/html/Kim_Deeply-Recursive_Convolutional_Network_CVPR_2016_paper.html,CVPR,2016,https://github.com/jiny2001/deeply-recursive-cnn-tf,96,2019-01-02
-Neural Arithmetic Logic Units,http://arxiv.org/abs/1808.00508v1,NIPS,2018,https://github.com/llSourcell/Neural_Arithmetic_Logic_Units,87,2019-01-02
-Learning a Deep Embedding Model for Zero-Shot Learning,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Learning_a_Deep_CVPR_2017_paper.html,CVPR,2017,https://github.com/lzrobots/DeepEmbeddingModel_ZSL,104,2019-01-02
-Knowledge Aided Consistency for Weakly Supervised Phrase Grounding,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Knowledge_Aided_Consistency_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kanchen-usc/KAC-Net,87,2019-01-02
-AMC: Attention guided Multi-modal Correlation Learning for Image Search,http://openaccess.thecvf.com/content_cvpr_2017/html/Chen_AMC_Attention_guided_CVPR_2017_paper.html,CVPR,2017,https://github.com/kanchen-usc/AMC_ATT,90,2019-01-02
-Perturbative Neural Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Juefei-Xu_Perturbative_Neural_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/juefeix/pnn.pytorch,130,2019-01-02
-End-to-End Weakly-Supervised Semantic Alignment,http://openaccess.thecvf.com/content_cvpr_2018/papers/Rocco_End-to-End_Weakly-Supervised_Semantic_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ignacio-rocco/weakalign,106,2019-01-02
-Repulsion Loss: Detecting Pedestrians in a Crowd,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Repulsion_Loss_Detecting_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/bailvwangzi/repulsion_loss_ssd,113,2019-01-02
-Decoupled Neural Interfaces using Synthetic Gradients,http://proceedings.mlr.press/v70/jaderberg17a.html,ICML,2017,https://github.com/andrewliao11/dni.pytorch,90,2019-01-02
-Image Question Answering Using Convolutional Neural Network With Dynamic Parameter Prediction,http://openaccess.thecvf.com/content_cvpr_2016/html/Noh_Image_Question_Answering_CVPR_2016_paper.html,CVPR,2016,https://github.com/HyeonwooNoh/DPPnet,88,2019-01-02
-Semantic Autoencoder for Zero-Shot Learning,http://openaccess.thecvf.com/content_cvpr_2017/html/Kodirov_Semantic_Autoencoder_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/Elyorcv/SAE,92,2019-01-02
-Unite the People: Closing the Loop Between 3D and 2D Human Representations,http://openaccess.thecvf.com/content_cvpr_2017/html/Lassner_Unite_the_People_CVPR_2017_paper.html,CVPR,2017,https://github.com/classner/up,110,2019-01-02
-Genetic CNN,http://openaccess.thecvf.com/content_iccv_2017/html/Xie_Genetic_CNN_ICCV_2017_paper.html,ICCV,2017,https://github.com/aqibsaeed/Genetic-CNN,97,2019-01-02
-HashNet: Deep Learning to Hash by Continuation,http://openaccess.thecvf.com/content_iccv_2017/html/Cao_HashNet_Deep_Learning_ICCV_2017_paper.html,ICCV,2017,https://github.com/thuml/HashNet,97,2019-01-02
-Learning Blind Video Temporal Consistency,http://openaccess.thecvf.com/content_ECCV_2018/html/Wei-Sheng_Lai_Real-Time_Blind_Video_ECCV_2018_paper.html,ECCV,2018,https://github.com/phoenix104104/fast_blind_video_consistency,109,2019-01-02
-ECO: Efficient Convolution Operators for Tracking,http://openaccess.thecvf.com/content_cvpr_2017/html/Danelljan_ECO_Efficient_Convolution_CVPR_2017_paper.html,CVPR,2017,https://github.com/nicewsyly/ECO,103,2019-01-02
-PSANet: Point-wise Spatial Attention Network for Scene Parsing,http://openaccess.thecvf.com/content_ECCV_2018/html/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.html,ECCV,2018,https://github.com/hszhao/PSANet,121,2019-01-02
-Learning Combinatorial Optimization Algorithms over Graphs,http://papers.nips.cc/paper/7214-learning-combinatorial-optimization-algorithms-over-graphs.pdf,NIPS,2017,https://github.com/Hanjun-Dai/graph_comb_opt,109,2019-01-02
-Best of Both Worlds: Transferring Knowledge from Discriminative Learning to a Generative Visual Dialog Model,http://papers.nips.cc/paper/6635-best-of-both-worlds-transferring-knowledge-from-discriminative-learning-to-a-generative-visual-dialog-model.pdf,NIPS,2017,https://github.com/jiasenlu/visDial.pytorch,94,2019-01-02
-Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights,http://openaccess.thecvf.com/content_ECCV_2018/html/Arun_Mallya_Piggyback_Adapting_a_ECCV_2018_paper.html,ECCV,2018,https://github.com/arunmallya/piggyback,88,2019-01-02
-SCA-CNN: Spatial and Channel-Wise Attention in Convolutional Networks for Image Captioning,http://openaccess.thecvf.com/content_cvpr_2017/html/Chen_SCA-CNN_Spatial_and_CVPR_2017_paper.html,CVPR,2017,https://github.com/zjuchenlong/sca-cnn.cvpr17,102,2019-01-02
-GANs for Biological Image Synthesis,http://openaccess.thecvf.com/content_iccv_2017/html/Osokin_GANs_for_Biological_ICCV_2017_paper.html,ICCV,2017,https://github.com/aosokin/biogans,85,2019-01-02
-Fast-Slow Recurrent Neural Networks,http://papers.nips.cc/paper/7173-fast-slow-recurrent-neural-networks.pdf,NIPS,2017,https://github.com/amujika/Fast-Slow-LSTM,82,2019-01-02
-Nonlinear 3D Face Morphable Model,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tran_Nonlinear_3D_Face_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/tranluan/Nonlinear_Face_3DMM,128,2019-01-02
-Deep Mutual Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Deep_Mutual_Learning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/YingZhangDUT/Deep-Mutual-Learning,100,2019-01-02
-DynamicFusion: Reconstruction and Tracking of Non-Rigid Scenes in Real-Time,http://openaccess.thecvf.com/content_cvpr_2015/html/Newcombe_DynamicFusion_Reconstruction_and_2015_CVPR_paper.html,CVPR,2015,https://github.com/mihaibujanca/dynamicfusion,118,2019-01-02
-Octree Generating Networks: Efficient Convolutional Architectures for High-Resolution 3D Outputs,http://openaccess.thecvf.com/content_iccv_2017/html/Tatarchenko_Octree_Generating_Networks_ICCV_2017_paper.html,ICCV,2017,https://github.com/lmb-freiburg/ogn,92,2019-01-02
-Practical Bayesian Optimization for Model Fitting with Bayesian Adaptive Direct Search,http://papers.nips.cc/paper/6780-practical-bayesian-optimization-for-model-fitting-with-bayesian-adaptive-direct-search.pdf,NIPS,2017,https://github.com/lacerbi/bads,90,2019-01-02
-Optical Flow in Mostly Rigid Scenes,http://openaccess.thecvf.com/content_cvpr_2017/html/Wulff_Optical_Flow_in_CVPR_2017_paper.html,CVPR,2017,https://github.com/jswulff/mrflow,83,2019-01-02
-Representation Learning by Learning to Count,http://openaccess.thecvf.com/content_iccv_2017/html/Noroozi_Representation_Learning_by_ICCV_2017_paper.html,ICCV,2017,https://github.com/gitlimlab/Representation-Learning-by-Learning-to-Count,84,2019-01-02
-Image Inpainting for Irregular Holes Using Partial Convolutions,http://openaccess.thecvf.com/content_ECCV_2018/html/Guilin_Liu_Image_Inpainting_for_ECCV_2018_paper.html,ECCV,2018,https://github.com/naoto0804/pytorch-inpainting-with-partial-conv,153,2019-01-02
-Deeply-Learned Part-Aligned Representations for Person Re-Identification,http://openaccess.thecvf.com/content_iccv_2017/html/Zhao_Deeply-Learned_Part-Aligned_Representations_ICCV_2017_paper.html,ICCV,2017,https://github.com/zlmzju/part_reid,95,2019-01-02
-Unsupervised Learning of Disentangled and Interpretable Representations from Sequential Data,http://papers.nips.cc/paper/6784-unsupervised-learning-of-disentangled-and-interpretable-representations-from-sequential-data.pdf,NIPS,2017,https://github.com/wnhsu/FactorizedHierarchicalVAE,88,2019-01-02
-Deep Video Deblurring for Hand-Held Cameras,http://openaccess.thecvf.com/content_cvpr_2017/html/Su_Deep_Video_Deblurring_CVPR_2017_paper.html,CVPR,2017,https://github.com/shuochsu/DeepVideoDeblurring,89,2019-01-02
-A Comparative Study for Single Image Blind Deblurring,http://openaccess.thecvf.com/content_cvpr_2016/html/Lai_A_Comparative_Study_CVPR_2016_paper.html,CVPR,2016,https://github.com/phoenix104104/cvpr16_deblur_study,82,2019-01-02
-BodyNet: Volumetric Inference of 3D Human Body Shapes,http://openaccess.thecvf.com/content_ECCV_2018/html/Gul_Varol_BodyNet_Volumetric_Inference_ECCV_2018_paper.html,ECCV,2018,https://github.com/gulvarol/bodynet,126,2019-01-02
-Causal Effect Inference with Deep Latent-Variable Models,http://papers.nips.cc/paper/7223-causal-effect-inference-with-deep-latent-variable-models.pdf,NIPS,2017,https://github.com/AMLab-Amsterdam/CEVAE,87,2019-01-02
-FSRNet: End-to-End Learning Face Super-Resolution With Facial Priors,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_FSRNet_End-to-End_Learning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/tyshiwo/FSRNet,100,2019-01-02
-Multiple Instance Detection Network With Online Instance Classifier Refinement,http://openaccess.thecvf.com/content_cvpr_2017/html/Tang_Multiple_Instance_Detection_CVPR_2017_paper.html,CVPR,2017,https://github.com/ppengtang/oicr,113,2019-01-02
-MMD GAN: Towards Deeper Understanding of Moment Matching Network,http://papers.nips.cc/paper/6815-mmd-gan-towards-deeper-understanding-of-moment-matching-network.pdf,NIPS,2017,https://github.com/OctoberChang/MMD-GAN,84,2019-01-02
-Recurrent Convolutional Network for Video-Based Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2016/html/McLaughlin_Recurrent_Convolutional_Network_CVPR_2016_paper.html,CVPR,2016,https://github.com/niallmcl/Recurrent-Convolutional-Video-ReID,82,2019-01-02
-Integral Human Pose Regression,http://openaccess.thecvf.com/content_ECCV_2018/html/Xiao_Sun_Integral_Human_Pose_ECCV_2018_paper.html,ECCV,2018,https://github.com/JimmySuen/integral-human-pose,141,2019-01-02
-LiDAR-Video Driving Dataset: Learning Driving Policies Effectively,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_LiDAR-Video_Driving_Dataset_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/driving-behavior/DBNet,104,2019-01-02
-Multi-Scale Continuous CRFs as Sequential Deep Networks for Monocular Depth Estimation,http://openaccess.thecvf.com/content_cvpr_2017/html/Xu_Multi-Scale_Continuous_CRFs_CVPR_2017_paper.html,CVPR,2017,https://github.com/danxuhk/ContinuousCRF-CNN,93,2019-01-02
-Attention-based Deep Multiple Instance Learning,http://proceedings.mlr.press/v80/ilse18a.html,ICML,2018,https://github.com/AMLab-Amsterdam/AttentionDeepMIL,109,2019-01-02
-Multi-View Consistency as Supervisory Signal for Learning Shape and Pose Prediction,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tulsiani_Multi-View_Consistency_as_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/shubhtuls/mvcSnP,80,2019-01-02
-Macro-Micro Adversarial Network for Human Parsing,http://openaccess.thecvf.com/content_ECCV_2018/html/Yawei_Luo_Macro-Micro_Adversarial_Network_ECCV_2018_paper.html,ECCV,2018,https://github.com/RoyalVane/MMAN,98,2019-01-02
-A Convolutional Neural Network Cascade for Face Detection,http://openaccess.thecvf.com/content_cvpr_2015/html/Li_A_Convolutional_Neural_2015_CVPR_paper.html,CVPR,2015,https://github.com/mks0601/A-Convolutional-Neural-Network-Cascade-for-Face-Detection,85,2019-01-02
-Neural Module Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Andreas_Neural_Module_Networks_CVPR_2016_paper.html,CVPR,2016,https://github.com/HarshTrivedi/nmn-pytorch,81,2019-01-02
-Multi-view to Novel view: Synthesizing novel views with Self-Learned Confidence,http://openaccess.thecvf.com/content_ECCV_2018/html/Shao-Hua_Sun_Multi-view_to_Novel_ECCV_2018_paper.html,ECCV,2018,https://github.com/shaohua0116/Multiview2Novelview,92,2019-01-02
-Neural Kinematic Networks for Unsupervised Motion Retargetting,http://openaccess.thecvf.com/content_cvpr_2018/papers/Villegas_Neural_Kinematic_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/rubenvillegas/cvpr2018nkn,90,2019-01-02
-LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Dongqing_Zhang_Optimized_Quantization_for_ECCV_2018_paper.html,ECCV,2018,https://github.com/Microsoft/LQ-Nets,103,2019-01-02
-Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Learning_Spatial-Temporal_Regularized_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/lifeng9472/STRCF,86,2019-01-02
-Learning Spatially Regularized Correlation Filters for Visual Tracking,http://openaccess.thecvf.com/content_iccv_2015/html/Danelljan_Learning_Spatially_Regularized_ICCV_2015_paper.html,ICCV,2015,https://github.com/lifeng9472/STRCF,86,2019-01-02
-DeLiGAN : Generative Adversarial Networks for Diverse and Limited Data,http://openaccess.thecvf.com/content_cvpr_2017/html/Gurumurthy_DeLiGAN__Generative_CVPR_2017_paper.html,CVPR,2017,https://github.com/val-iisc/deligan,78,2019-01-02
-A PID Controller Approach for Stochastic Optimization of Deep Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/An_A_PID_Controller_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/tensorboy/PIDOptimizer,87,2019-01-02
-A-NICE-MC: Adversarial Training for MCMC,http://papers.nips.cc/paper/7099-a-nice-mc-adversarial-training-for-mcmc.pdf,NIPS,2017,https://github.com/jiamings/a-nice-mc,80,2019-01-02
-Coarse-To-Fine Volumetric Prediction for Single-Image 3D Human Pose,http://openaccess.thecvf.com/content_cvpr_2017/html/Pavlakos_Coarse-To-Fine_Volumetric_Prediction_CVPR_2017_paper.html,CVPR,2017,https://github.com/geopavlakos/c2f-vol-train,80,2019-01-02
-Synthesizing Images of Humans in Unseen Poses,http://openaccess.thecvf.com/content_cvpr_2018/papers/Balakrishnan_Synthesizing_Images_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/balakg/posewarp-cvpr2018,88,2019-01-02
-Tell Me Where to Look: Guided Attention Inference Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Tell_Me_Where_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/alokwhitewolf/Guided-Attention-Inference-Network,91,2019-01-02
-Stacked Attention Networks for Image Question Answering,http://openaccess.thecvf.com/content_cvpr_2016/html/Yang_Stacked_Attention_Networks_CVPR_2016_paper.html,CVPR,2016,https://github.com/zcyang/imageqa-san,78,2019-01-02
-VITAL: VIsual Tracking via Adversarial Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Song_VITAL_VIsual_Tracking_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ybsong00/Vital_release,86,2019-01-02
-VITON: An Image-Based Virtual Try-On Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Han_VITON_An_Image-Based_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/xthan/VITON,95,2019-01-02
-Recurrent Relational Networks,http://arxiv.org/abs/1711.08028v2,NIPS,2018,https://github.com/rasmusbergpalm/recurrent-relational-networks,121,2019-01-02
-Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network,http://openaccess.thecvf.com/content_cvpr_2016/html/Shi_Real-Time_Single_Image_CVPR_2016_paper.html,CVPR,2016,https://github.com/leftthomas/ESPCN,92,2019-01-02
-Local Binary Convolutional Neural Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Juefei-Xu_Local_Binary_Convolutional_CVPR_2017_paper.html,CVPR,2017,https://github.com/juefeix/lbcnn.torch,77,2019-01-02
-Unsupervised Video Summarization With Adversarial LSTM Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Mahasseni_Unsupervised_Video_Summarization_CVPR_2017_paper.html,CVPR,2017,https://github.com/j-min/Adversarial_Video_Summary,82,2019-01-02
-Multi-Scale Location-Aware Kernel Representation for Object Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Multi-Scale_Location-Aware_Kernel_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Hwang64/MLKP,84,2019-01-02
-Future Frame Prediction for Anomaly Detection – A New Baseline,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Future_Frame_Prediction_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/StevenLiuWen/ano_pred_cvpr2018,92,2019-01-02
-Hard-Aware Deeply Cascaded Embedding,http://openaccess.thecvf.com/content_iccv_2017/html/Yuan_Hard-Aware_Deeply_Cascaded_ICCV_2017_paper.html,ICCV,2017,https://github.com/PkuRainBow/Hard-Aware-Deeply-Cascaded-Embedding_release,75,2019-01-02
-Query-Guided Regression Network With Context Policy for Phrase Grounding,http://openaccess.thecvf.com/content_iccv_2017/html/Chen_Query-Guided_Regression_Network_ICCV_2017_paper.html,ICCV,2017,https://github.com/kanchen-usc/QRC-Net,72,2019-01-02
-End-To-End Instance Segmentation With Recurrent Attention,http://openaccess.thecvf.com/content_cvpr_2017/html/Ren_End-To-End_Instance_Segmentation_CVPR_2017_paper.html,CVPR,2017,https://github.com/renmengye/rec-attend-public,78,2019-01-02
-Improved Stereo Matching With Constant Highway Networks and Reflective Confidence Learning,http://openaccess.thecvf.com/content_cvpr_2017/html/Shaked_Improved_Stereo_Matching_CVPR_2017_paper.html,CVPR,2017,https://github.com/amitshaked/resmatch,72,2019-01-02
-Progressive Prioritized Multi-View Stereo,http://openaccess.thecvf.com/content_cvpr_2016/html/Locher_Progressive_Prioritized_Multi-View_CVPR_2016_paper.html,CVPR,2016,https://github.com/alexlocher/hpmvs,73,2019-01-02
-Recurrent Pixel Embedding for Instance Grouping,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kong_Recurrent_Pixel_Embedding_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping,85,2019-01-02
-Learning Shape Abstractions by Assembling Volumetric Primitives,http://openaccess.thecvf.com/content_cvpr_2017/html/Tulsiani_Learning_Shape_Abstractions_CVPR_2017_paper.html,CVPR,2017,https://github.com/shubhtuls/volumetricPrimitives,77,2019-01-02
-Constrained Policy Optimization,http://proceedings.mlr.press/v70/achiam17a.html,ICML,2017,https://github.com/jachiam/cpo,81,2019-01-02
-Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks,http://papers.nips.cc/paper/6960-geometric-matrix-completion-with-recurrent-multi-graph-neural-networks.pdf,NIPS,2017,https://github.com/fmonti/mgcnn,90,2019-01-02
-Learning Human-Object Interactions by Graph Parsing Neural Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Siyuan_Qi_Learning_Human-Object_Interactions_ECCV_2018_paper.html,ECCV,2018,https://github.com/SiyuanQi/gpnn,93,2019-01-02
-Positive-Unlabeled Learning with Non-Negative Risk Estimator,http://papers.nips.cc/paper/6765-positive-unlabeled-learning-with-non-negative-risk-estimator.pdf,NIPS,2017,https://github.com/kiryor/nnPUlearning,76,2019-01-02
-Unsupervised Visual Representation Learning by Context Prediction,http://openaccess.thecvf.com/content_iccv_2015/html/Doersch_Unsupervised_Visual_Representation_ICCV_2015_paper.html,ICCV,2015,https://github.com/cdoersch/deepcontext,73,2019-01-02
-Top-Down Visual Saliency Guided by Captions,http://openaccess.thecvf.com/content_cvpr_2017/html/Ramanishka_Top-Down_Visual_Saliency_CVPR_2017_paper.html,CVPR,2017,https://github.com/VisionLearningGroup/caption-guided-saliency,72,2019-01-02
-Deep Image Harmonization,http://openaccess.thecvf.com/content_cvpr_2017/html/Tsai_Deep_Image_Harmonization_CVPR_2017_paper.html,CVPR,2017,https://github.com/wasidennis/DeepHarmonization,73,2019-01-02
-Visual Feature Attribution Using Wasserstein GANs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Baumgartner_Visual_Feature_Attribution_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/orobix/Visual-Feature-Attribution-Using-Wasserstein-GANs-Pytorch,72,2019-01-02
-A Hierarchical Deep Temporal Model for Group Activity Recognition,http://openaccess.thecvf.com/content_cvpr_2016/html/Ibrahim_A_Hierarchical_Deep_CVPR_2016_paper.html,CVPR,2016,https://github.com/mostafa-saad/deep-activity-rec,71,2019-01-02
-What Actions Are Needed for Understanding Human Actions in Videos?,http://openaccess.thecvf.com/content_iccv_2017/html/Sigurdsson_What_Actions_Are_ICCV_2017_paper.html,ICCV,2017,https://github.com/gsig/actions-for-actions,71,2019-01-02
-Discriminative Learning of Deep Convolutional Feature Point Descriptors,http://openaccess.thecvf.com/content_iccv_2015/html/Simo-Serra_Discriminative_Learning_of_ICCV_2015_paper.html,ICCV,2015,https://github.com/etrulls/deepdesc-release,77,2019-01-02
-Repeatability Is Not Enough: Learning Affine Regions via Discriminability,http://openaccess.thecvf.com/content_ECCV_2018/html/Dmytro_Mishkin_Repeatability_Is_Not_ECCV_2018_paper.html,ECCV,2018,https://github.com/ducha-aiki/affnet,84,2019-01-02
-Shape Completion Using 3D-Encoder-Predictor CNNs and Shape Synthesis,http://openaccess.thecvf.com/content_cvpr_2017/html/Dai_Shape_Completion_Using_CVPR_2017_paper.html,CVPR,2017,https://github.com/angeladai/cnncomplete,73,2019-01-02
-Avatar-Net: Multi-Scale Zero-Shot Style Transfer by Feature Decoration,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sheng_Avatar-Net_Multi-Scale_Zero-Shot_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/LucasSheng/avatar-net,71,2019-01-02
-Feedback Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Zamir_Feedback_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/amir32002/feedback-networks,72,2019-01-02
-Video Propagation Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Jampani_Video_Propagation_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/varunjampani/video_prop_networks,70,2019-01-02
-Robust 3D Hand Pose Estimation in Single Depth Images: From Single-View CNN to Multi-View CNNs,http://openaccess.thecvf.com/content_cvpr_2016/html/Ge_Robust_3D_Hand_CVPR_2016_paper.html,CVPR,2016,https://github.com/geliuhao/CVPR2016_HandPoseEstimation,70,2019-01-02
-Factorizable Net: An Efficient Subgraph-based Framework for Scene Graph Generation,http://openaccess.thecvf.com/content_ECCV_2018/html/Yikang_LI_Factorizable_Net_An_ECCV_2018_paper.html,ECCV,2018,https://github.com/yikang-li/FactorizableNet,78,2019-01-02
-Saliency Detection by Multi-Context Deep Learning,http://openaccess.thecvf.com/content_cvpr_2015/html/Zhao_Saliency_Detection_by_2015_CVPR_paper.html,CVPR,2015,https://github.com/Robert0812/deepsaldet,66,2019-01-02
-Self-Supervised Learning of Visual Features Through Embedding Images Into Text Topic Spaces,http://openaccess.thecvf.com/content_cvpr_2017/html/Gomez_Self-Supervised_Learning_of_CVPR_2017_paper.html,CVPR,2017,https://github.com/lluisgomez/TextTopicNet,69,2019-01-02
-SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_SGPN_Similarity_Group_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/laughtervv/SGPN,84,2019-01-02
-Action-Decision Networks for Visual Tracking With Deep Reinforcement Learning,http://openaccess.thecvf.com/content_cvpr_2017/html/Yun_Action-Decision_Networks_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/hellbell/ADNet,71,2019-01-02
-Learning SO(3) Equivariant Representations with Spherical CNNs,http://openaccess.thecvf.com/content_ECCV_2018/html/Carlos_Esteves_Learning_SO3_Equivariant_ECCV_2018_paper.html,ECCV,2018,https://github.com/daniilidis-group/spherical-cnn,89,2019-01-02
-ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans,http://openaccess.thecvf.com/content_cvpr_2018/papers/Dai_ScanComplete_Large-Scale_Scene_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/angeladai/ScanComplete,97,2019-01-02
-Towards Open Set Deep Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Bendale_Towards_Open_Set_CVPR_2016_paper.html,CVPR,2016,https://github.com/abhijitbendale/OSDN,71,2019-01-02
-Deep Neural Networks Are Easily Fooled: High Confidence Predictions for Unrecognizable Images,http://openaccess.thecvf.com/content_cvpr_2015/html/Nguyen_Deep_Neural_Networks_2015_CVPR_paper.html,CVPR,2015,https://github.com/abhijitbendale/OSDN,71,2019-01-02
-Marr Revisited: 2D-3D Alignment via Surface Normal Prediction,http://openaccess.thecvf.com/content_cvpr_2016/html/Bansal_Marr_Revisited_2D-3D_CVPR_2016_paper.html,CVPR,2016,https://github.com/aayushbansal/MarrRevisited,72,2019-01-02
-Optical Flow Estimation Using a Spatial Pyramid Network,http://openaccess.thecvf.com/content_cvpr_2017/html/Ranjan_Optical_Flow_Estimation_CVPR_2017_paper.html,CVPR,2017,https://github.com/sniklaus/pytorch-spynet,90,2019-01-02
-SurfaceNet: An End-To-End 3D Neural Network for Multiview Stereopsis,http://openaccess.thecvf.com/content_iccv_2017/html/Ji_SurfaceNet_An_End-To-End_ICCV_2017_paper.html,ICCV,2017,https://github.com/mjiUST/SurfaceNet,66,2019-01-02
-TURN TAP: Temporal Unit Regression Network for Temporal Action Proposals,http://openaccess.thecvf.com/content_iccv_2017/html/Gao_TURN_TAP_Temporal_ICCV_2017_paper.html,ICCV,2017,https://github.com/jiyanggao/TURN-TAP,66,2019-01-02
-Raster-To-Vector: Revisiting Floorplan Transformation,http://openaccess.thecvf.com/content_iccv_2017/html/Liu_Raster-To-Vector_Revisiting_Floorplan_ICCV_2017_paper.html,ICCV,2017,https://github.com/art-programmer/FloorplanTransformation,76,2019-01-02
-Multi-Shot Pedestrian Re-Identification via Sequential Decision Making,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Multi-Shot_Pedestrian_Re-Identification_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/TuSimple/rl-multishot-reid,70,2019-01-02
-One-Shot Unsupervised Cross Domain Translation,http://arxiv.org/abs/1806.06029v1,NIPS,2018,https://github.com/sagiebenaim/OneShotTranslation,89,2019-01-02
-Not All Pixels Are Equal: Difficulty-Aware Semantic Segmentation via Deep Layer Cascade,http://openaccess.thecvf.com/content_cvpr_2017/html/Li_Not_All_Pixels_CVPR_2017_paper.html,CVPR,2017,https://github.com/liuziwei7/region-conv,73,2019-01-02
-Pairwise Confusion for Fine-Grained Visual Classification,http://openaccess.thecvf.com/content_ECCV_2018/html/Abhimanyu_Dubey_Improving_Fine-Grained_Visual_ECCV_2018_paper.html,ECCV,2018,https://github.com/abhimanyudubey/confusion,77,2019-01-02
-Borrowing Treasures From the Wealthy: Deep Transfer Learning Through Selective Joint Fine-Tuning,http://openaccess.thecvf.com/content_cvpr_2017/html/Ge_Borrowing_Treasures_From_CVPR_2017_paper.html,CVPR,2017,https://github.com/ZYYSzj/Selective-Joint-Fine-tuning,64,2019-01-02
-Generalizing A Person Retrieval Model Hetero- and Homogeneously,http://openaccess.thecvf.com/content_ECCV_2018/html/Zhun_Zhong_Generalizing_A_Person_ECCV_2018_paper.html,ECCV,2018,https://github.com/zhunzhong07/HHL,78,2019-01-02
-Jointly Attentive Spatial-Temporal Pooling Networks for Video-Based Person Re-Identification,http://openaccess.thecvf.com/content_iccv_2017/html/Xu_Jointly_Attentive_Spatial-Temporal_ICCV_2017_paper.html,ICCV,2017,https://github.com/shuangjiexu/Spatial-Temporal-Pooling-Networks-ReID,65,2019-01-02
-Learning Depth From Monocular Videos Using Direct Methods,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Learning_Depth_From_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/MightyChaos/LKVOLearner,97,2019-01-02
-Training Deep Networks without Learning Rates Through Coin Betting,http://papers.nips.cc/paper/6811-training-deep-networks-without-learning-rates-through-coin-betting.pdf,NIPS,2017,https://github.com/bremen79/cocob,66,2019-01-02
-Optimizing the Latent Space of Generative Networks,http://proceedings.mlr.press/v80/bojanowski18a.html,ICML,2018,https://github.com/tneumann/minimal_glo,66,2019-01-02
-Playing for Benchmarks,http://openaccess.thecvf.com/content_iccv_2017/html/Richter_Playing_for_Benchmarks_ICCV_2017_paper.html,ICCV,2017,https://github.com/PatrykChrabaszcz/Canonical_ES_Atari,61,2019-01-02
-Bilateral Space Video Segmentation,http://openaccess.thecvf.com/content_cvpr_2016/html/Maerki_Bilateral_Space_Video_CVPR_2016_paper.html,CVPR,2016,https://github.com/owang/BilateralVideoSegmentation,63,2019-01-02
-ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching,http://papers.nips.cc/paper/7133-alice-towards-understanding-adversarial-learning-for-joint-distribution-matching.pdf,NIPS,2017,https://github.com/ChunyuanLI/ALICE,63,2019-01-02
-Full Resolution Image Compression With Recurrent Neural Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Toderici_Full_Resolution_Image_CVPR_2017_paper.html,CVPR,2017,https://github.com/1zb/pytorch-image-comp-rnn,66,2019-01-02
-CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_CSRNet_Dilated_Convolutional_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/leeyeehoo/CSRNet-pytorch,87,2019-01-02
-"Deep Learning Face Representation from Predicting 10,000 Classes",http://openaccess.thecvf.com/content_cvpr_2014/html/Sun_Deep_Learning_Face_2014_CVPR_paper.html,CVPR,2014,https://github.com/joyhuang9473/deepid-implementation,62,2019-01-02
-Learning Attentions: Residual Attentional Siamese Network for High Performance Online Visual Tracking,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Learning_Attentions_Residual_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/foolwood/RASNet,67,2019-01-02
-“Zero-Shot” Super-Resolution Using Deep Internal Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Shocher_Zero-Shot_Super-Resolution_Using_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/assafshocher/ZSSR,84,2019-01-02
-Generative Neural Machine Translation,http://arxiv.org/abs/1806.05138v1,NIPS,2018,https://github.com/ZhenYangIACAS/NMT_GAN,68,2019-01-02
-Physically-Based Rendering for Indoor Scene Understanding Using Convolutional Neural Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Physically-Based_Rendering_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/yindaz/pbrs,67,2019-01-02
-AdaGAN: Boosting Generative Models,http://papers.nips.cc/paper/7126-adagan-boosting-generative-models.pdf,NIPS,2017,https://github.com/tolstikhin/adagan,59,2019-01-02
-Progressive Neural Architecture Search,http://openaccess.thecvf.com/content_ECCV_2018/html/Chenxi_Liu_Progressive_Neural_Architecture_ECCV_2018_paper.html,ECCV,2018,https://github.com/titu1994/progressive-neural-architecture-search,68,2019-01-02
-Quality Aware Network for Set to Set Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Liu_Quality_Aware_Network_CVPR_2017_paper.html,CVPR,2017,https://github.com/sciencefans/Quality-Aware-Network,69,2019-01-02
-PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Uy_PointNetVLAD_Deep_Point_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/mikacuy/pointnetvlad,69,2019-01-02
-Deep Filter Banks for Texture Recognition and Segmentation,http://openaccess.thecvf.com/content_cvpr_2015/html/Cimpoi_Deep_Filter_Banks_2015_CVPR_paper.html,CVPR,2015,https://github.com/mcimpoi/deep-fbanks,68,2019-01-02
-Person Re-Identification in the Wild,http://openaccess.thecvf.com/content_cvpr_2017/html/Zheng_Person_Re-Identification_in_CVPR_2017_paper.html,CVPR,2017,https://github.com/liangzheng06/PRW-baseline,63,2019-01-02
-Doubly Stochastic Variational Inference for Deep Gaussian Processes,http://papers.nips.cc/paper/7045-doubly-stochastic-variational-inference-for-deep-gaussian-processes.pdf,NIPS,2017,https://github.com/ICL-SML/Doubly-Stochastic-DGP,66,2019-01-02
-Toward Controlled Generation of Text,http://proceedings.mlr.press/v70/hu17e.html,ICML,2017,https://github.com/GBLin5566/toward-controlled-generation-of-text-pytorch,63,2019-01-02
-Learning to Reweight Examples for Robust Deep Learning,http://proceedings.mlr.press/v80/ren18a.html,ICML,2018,https://github.com/danieltan07/learning-to-reweight-examples,76,2019-01-02
-Dance Dance Convolution,http://proceedings.mlr.press/v70/donahue17a.html,ICML,2017,https://github.com/chrisdonahue/ddc,65,2019-01-02
-Generate to Adapt: Aligning Domains Using Generative Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sankaranarayanan_Generate_to_Adapt_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yogeshbalaji/Generate_To_Adapt,67,2019-01-02
-Image-To-Image Translation With Conditional Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.html,CVPR,2017,https://github.com/williamFalcon/pix2pix-keras,70,2019-01-02
-Decorrelated Batch Normalization,http://openaccess.thecvf.com/content_cvpr_2018/papers/Huang_Decorrelated_Batch_Normalization_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/umich-vl/DecorrelatedBN,57,2019-01-02
-Xception: Deep Learning With Depthwise Separable Convolutions,http://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html,CVPR,2017,https://github.com/tstandley/Xception-PyTorch,71,2019-01-02
-Geometry-Aware Learning of Maps for Camera Localization,http://openaccess.thecvf.com/content_cvpr_2018/papers/Brahmbhatt_Geometry-Aware_Learning_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/samarth-robo/MapNet,63,2019-01-02
-Improving Generalization via Scalable Neighborhood Component Analysis,http://openaccess.thecvf.com/content_ECCV_2018/html/Zhirong_Wu_Improving_Embedding_Generalization_ECCV_2018_paper.html,ECCV,2018,https://github.com/Microsoft/snca.pytorch,76,2019-01-02
-Convolutional Gaussian Processes,http://papers.nips.cc/paper/6877-convolutional-gaussian-processes.pdf,NIPS,2017,https://github.com/markvdw/convgp/,57,2018-09-16
-Path-Level Network Transformation for Efficient Architecture Search,http://proceedings.mlr.press/v80/cai18a.html,ICML,2018,https://github.com/han-cai/PathLevel-EAS,73,2019-01-02
-Ordinal Depth Supervision for 3D Human Pose Estimation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Pavlakos_Ordinal_Depth_Supervision_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/geopavlakos/ordinal-pose3d,74,2019-01-02
-Escape From Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models,http://openaccess.thecvf.com/content_iccv_2017/html/Klokov_Escape_From_Cells_ICCV_2017_paper.html,ICCV,2017,https://github.com/fxia22/kdnet.pytorch,68,2019-01-02
-Object Level Visual Reasoning in Videos,http://openaccess.thecvf.com/content_ECCV_2018/html/Fabien_Baradel_Object_Level_Visual_ECCV_2018_paper.html,ECCV,2018,https://github.com/fabienbaradel/object_level_visual_reasoning,71,2019-01-02
-Regularizing RNNs for Caption Generation by Reconstructing the Past With the Present,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Regularizing_RNNs_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/chenxinpeng/ARNet,70,2019-01-02
-Disentangled Person Image Generation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Ma_Disentangled_Person_Image_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/charliememory/Disentangled-Person-Image-Generation,75,2019-01-02
-Diverse Image-to-Image Translation via Disentangled Representations,http://openaccess.thecvf.com/content_ECCV_2018/html/Hsin-Ying_Lee_Diverse_Image-to-Image_Translation_ECCV_2018_paper.html,ECCV,2018,https://github.com/taki0112/DRIT-Tensorflow,72,2019-01-02
-A Distributional Perspective on Reinforcement Learning,http://proceedings.mlr.press/v70/bellemare17a.html,ICML,2017,https://github.com/Silvicek/distributional-dqn,68,2019-01-02
-Neural Program Synthesis from Diverse Demonstration Videos,http://proceedings.mlr.press/v80/sun18a.html,ICML,2018,https://github.com/shaohua0116/demo2program,62,2019-01-02
-Pointwise Convolutional Neural Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hua_Pointwise_Convolutional_Neural_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/scenenn/pointwise,67,2019-01-02
-Modeling Relationships in Referential Expressions With Compositional Modular Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Hu_Modeling_Relationships_in_CVPR_2017_paper.html,CVPR,2017,https://github.com/ronghanghu/cmn,57,2019-01-02
-Deep Subspace Clustering Networks,http://papers.nips.cc/paper/6608-deep-subspace-clustering-networks.pdf,NIPS,2017,https://github.com/panji1990/Deep-subspace-clustering-networks,68,2019-01-02
-Multi-Channel Weighted Nuclear Norm Minimization for Real Color Image Denoising,http://openaccess.thecvf.com/content_iccv_2017/html/Xu_Multi-Channel_Weighted_Nuclear_ICCV_2017_paper.html,ICCV,2017,https://github.com/csjunxu/MCWNNM-ICCV2017,61,2019-01-02
-Unsupervised Domain Adaptation for 3D Keypoint Estimation via View Consistency,http://openaccess.thecvf.com/content_ECCV_2018/html/Xingyi_Zhou_Unsupervised_Domain_Adaptation_ECCV_2018_paper.html,ECCV,2018,https://github.com/xingyizhou/3DKeypoints-DA,60,2019-01-02
-Learning Less Is More - 6D Camera Localization via 3D Surface Regression,http://openaccess.thecvf.com/content_cvpr_2018/papers/Brachmann_Learning_Less_Is_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/vislearn/LessMore,72,2019-01-02
-End-To-End 3D Face Reconstruction With Deep Neural Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Dou_End-To-End_3D_Face_CVPR_2017_paper.html,CVPR,2017,https://github.com/ShownX/mxnet-E2FAR,60,2019-01-02
-Learning Latent Super-Events to Detect Multiple Activities in Videos,http://openaccess.thecvf.com/content_cvpr_2018/papers/Piergiovanni_Learning_Latent_Super-Events_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/piergiaj/super-events-cvpr18,67,2019-01-02
-Factorized Bilinear Models for Image Recognition,http://openaccess.thecvf.com/content_iccv_2017/html/Li_Factorized_Bilinear_Models_ICCV_2017_paper.html,ICCV,2017,https://github.com/lyttonhao/Factorized-Bilinear-Network,55,2019-01-02
-Depth-aware CNN for RGB-D Segmentation,http://openaccess.thecvf.com/content_ECCV_2018/html/Weiyue_Wang_Depth-aware_CNN_for_ECCV_2018_paper.html,ECCV,2018,https://github.com/laughtervv/DepthAwareCNN,88,2019-01-02
-Online and Linear-Time Attention by Enforcing Monotonic Alignments,http://proceedings.mlr.press/v70/raffel17a.html,ICML,2017,https://github.com/craffel/mad,56,2019-01-02
-Unsupervised Discovery of Object Landmarks as Structural Representations,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Unsupervised_Discovery_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/YutingZhang/lmdis-rep,61,2019-01-02
-Crafting a Toolchain for Image Restoration by Deep Reinforcement Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yu_Crafting_a_Toolchain_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yuke93/RL-Restore,77,2019-01-02
-SparseMAP: Differentiable Sparse Structured Inference,http://proceedings.mlr.press/v80/niculae18a.html,ICML,2018,https://github.com/vene/sparsemap,75,2019-01-02
-Adversarial Feature Augmentation for Unsupervised Domain Adaptation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Volpi_Adversarial_Feature_Augmentation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ricvolpi/adversarial-feature-augmentation,67,2019-01-02
-Self-Supervised Adversarial Hashing Networks for Cross-Modal Retrieval,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Self-Supervised_Adversarial_Hashing_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/lelan-li/SSAH,72,2019-01-02
-Unsupervised Learning by Predicting Noise,http://proceedings.mlr.press/v70/bojanowski17a.html,ICML,2017,https://github.com/facebookresearch/noise-as-targets,60,2019-01-02
-Fast and Accurate Single Image Super-Resolution via Information Distillation Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hui_Fast_and_Accurate_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Zheng222/IDN-Caffe,71,2019-01-02
-CoupleNet: Coupling Global Structure With Local Parts for Object Detection,http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_CoupleNet_Coupling_Global_ICCV_2017_paper.html,ICCV,2017,https://github.com/tshizys/CoupleNet,59,2019-01-02
-A Deep Regression Architecture With Two-Stage Re-Initialization for High Performance Facial Landmark Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Lv_A_Deep_Regression_CVPR_2017_paper.html,CVPR,2017,https://github.com/shaoxiaohu/Face_Alignment_Two_Stage_Re-initialization,57,2019-01-02
-On-the-fly Operation Batching in Dynamic Computation Graphs,http://papers.nips.cc/paper/6986-on-the-fly-operation-batching-in-dynamic-computation-graphs.pdf,NIPS,2017,https://github.com/neulab/dynet-benchmark,54,2019-01-02
-Synthesizing 3D Shapes via Modeling Multi-View Depth Maps and Silhouettes With Deep Generative Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Soltani_Synthesizing_3D_Shapes_CVPR_2017_paper.html,CVPR,2017,https://github.com/Amir-Arsalan/Synthesize3DviaDepthOrSil,65,2019-01-02
-Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes,http://openaccess.thecvf.com/content_iccv_2017/html/Zhang_Curriculum_Domain_Adaptation_ICCV_2017_paper.html,ICCV,2017,https://github.com/YangZhang4065/AdaptationSeg,64,2019-01-02
-Deep Compositional Captioning: Describing Novel Object Categories Without Paired Training Data,http://openaccess.thecvf.com/content_cvpr_2016/html/Hendricks_Deep_Compositional_Captioning_CVPR_2016_paper.html,CVPR,2016,https://github.com/LisaAnne/DCC,57,2019-01-02
-Neural Style Transfer via Meta Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Shen_Neural_Style_Transfer_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/FalongShen/styletransfer,59,2019-01-02
-Deep Marching Cubes: Learning Explicit Surface Representations,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liao_Deep_Marching_Cubes_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yiyiliao/deep_marching_cubes,56,2019-01-02
-Shift-Net: Image Inpainting via Deep Feature Rearrangement,http://openaccess.thecvf.com/content_ECCV_2018/html/Zhaoyi_Yan_Shift-Net_Image_Inpainting_ECCV_2018_paper.html,ECCV,2018,https://github.com/Zhaoyi-Yan/Shift-Net_pytorch,74,2019-01-02
-Dense-Captioning Events in Videos,http://openaccess.thecvf.com/content_iccv_2017/html/Krishna_Dense-Captioning_Events_in_ICCV_2017_paper.html,ICCV,2017,https://github.com/ranjaykrishna/densevid_eval,55,2019-01-02
-Cascade R-CNN: Delving Into High Quality Object Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Cai_Cascade_R-CNN_Delving_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/guoruoqian/cascade-rcnn_Pytorch,93,2019-01-02
-Net-Trim: Convex Pruning of Deep Neural Networks with Performance Guarantee,http://papers.nips.cc/paper/6910-net-trim-convex-pruning-of-deep-neural-networks-with-performance-guarantee.pdf,NIPS,2017,https://github.com/DNNToolBox/Net-Trim-v1,54,2019-01-02
-Leveraging Unlabeled Data for Crowd Counting by Learning to Rank,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Leveraging_Unlabeled_Data_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/xialeiliu/CrowdCountingCVPR18,56,2019-01-02
-Learning From Synthetic Data: Addressing Domain Shift for Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sankaranarayanan_Learning_From_Synthetic_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/swamiviv/LSD-seg,56,2019-01-02
-Weakly-Supervised Semantic Segmentation Network With Deep Seeded Region Growing,http://openaccess.thecvf.com/content_cvpr_2018/papers/Huang_Weakly-Supervised_Semantic_Segmentation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/speedinghzl/DSRG,71,2019-01-02
-SST: Single-Stream Temporal Action Proposals,http://openaccess.thecvf.com/content_cvpr_2017/html/Buch_SST_Single-Stream_Temporal_CVPR_2017_paper.html,CVPR,2017,https://github.com/ranjaykrishna/SST,51,2019-01-02
-Fighting Fake News: Image Splice Detection via Learned Self-Consistency,http://openaccess.thecvf.com/content_ECCV_2018/html/Jacob_Huh_Fighting_Fake_News_ECCV_2018_paper.html,ECCV,2018,https://github.com/minyoungg/selfconsistency,62,2019-01-02
-Curiosity-driven Exploration by Self-supervised Prediction,http://proceedings.mlr.press/v70/pathak17a.html,ICML,2017,https://github.com/kimhc6028/pytorch-noreward-rl,56,2019-01-02
-Deep IV: A Flexible Approach for Counterfactual Prediction,http://proceedings.mlr.press/v70/hartford17a.html,ICML,2017,https://github.com/jhartford/DeepIV,52,2019-01-02
-Hierarchical Long-term Video Prediction without Supervision,http://proceedings.mlr.press/v80/wichers18a.html,ICML,2018,https://github.com/brain-research/long-term-video-prediction-without-supervision,60,2019-01-02
-PDE-Net: Learning PDEs from Data,http://proceedings.mlr.press/v80/long18a.html,ICML,2018,https://github.com/ZichaoLong/PDE-Net,75,2019-01-02
-Efficient 3D Room Shape Recovery From a Single Panorama,http://openaccess.thecvf.com/content_cvpr_2016/html/Yang_Efficient_3D_Room_CVPR_2016_paper.html,CVPR,2016,https://github.com/YANG-H/Panoramix,55,2019-01-02
-Learning Discrete Representations via Information Maximizing Self-Augmented Training,http://proceedings.mlr.press/v70/hu17b.html,ICML,2017,https://github.com/weihua916/imsat,49,2019-01-02
-Video Segmentation via Object Flow,http://openaccess.thecvf.com/content_cvpr_2016/html/Tsai_Video_Segmentation_via_CVPR_2016_paper.html,CVPR,2016,https://github.com/wasidennis/ObjectFlow,50,2019-01-02
-Person Search With Natural Language Description,http://openaccess.thecvf.com/content_cvpr_2017/html/Li_Person_Search_With_CVPR_2017_paper.html,CVPR,2017,https://github.com/ShuangLI59/Person-Search-with-Natural-Language-Description,61,2019-01-02
-Discriminability Objective for Training Descriptive Captions,http://openaccess.thecvf.com/content_cvpr_2018/papers/Luo_Discriminability_Objective_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ruotianluo/DiscCaptioning,54,2019-01-02
-Triangle Generative Adversarial Networks,http://papers.nips.cc/paper/7109-triangle-generative-adversarial-networks.pdf,NIPS,2017,https://github.com/LiqunChen0606/Triangle-GAN,51,2019-01-02
-The Neural Hawkes Process: A Neurally Self-Modulating Multivariate Point Process,http://papers.nips.cc/paper/7252-the-neural-hawkes-process-a-neurally-self-modulating-multivariate-point-process.pdf,NIPS,2017,https://github.com/HMEIatJHU/neurawkes,56,2019-01-02
-Finding Action Tubes,http://openaccess.thecvf.com/content_cvpr_2015/html/Gkioxari_Finding_Action_Tubes_2015_CVPR_paper.html,CVPR,2015,https://github.com/gkioxari/ActionTubes,51,2019-01-02
-Differentiable Learning of Logical Rules for Knowledge Base Reasoning,http://papers.nips.cc/paper/6826-differentiable-learning-of-logical-rules-for-knowledge-base-reasoning.pdf,NIPS,2017,https://github.com/fanyangxyz/Neural-LP,62,2019-01-02
-L2-Net: Deep Learning of Discriminative Patch Descriptor in Euclidean Space,http://openaccess.thecvf.com/content_cvpr_2017/html/Tian_L2-Net_Deep_Learning_CVPR_2017_paper.html,CVPR,2017,https://github.com/yuruntian/L2-Net,51,2019-01-02
-Visual Question Generation as Dual Task of Visual Question Answering,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Visual_Question_Generation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yikang-li/iQAN,50,2019-01-02
-DF-Net: Unsupervised Joint Learning of Depth and Flow using Cross-Task Consistency,http://openaccess.thecvf.com/content_ECCV_2018/html/Yuliang_Zou_DF-Net_Unsupervised_Joint_ECCV_2018_paper.html,ECCV,2018,https://github.com/vt-vl-lab/DF-Net,82,2019-01-02
-BlockDrop: Dynamic Inference Paths in Residual Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_BlockDrop_Dynamic_Inference_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Tushar-N/blockdrop,54,2019-01-02
-Efficient end-to-end learning for quantizable representations,http://proceedings.mlr.press/v80/jeong18a.html,ICML,2018,https://github.com/maestrojeong/Deep-Hash-Table-ICML18,50,2019-01-02
-Predicting Deeper Into the Future of Semantic Segmentation,http://openaccess.thecvf.com/content_iccv_2017/html/Luc_Predicting_Deeper_Into_ICCV_2017_paper.html,ICCV,2017,https://github.com/facebookresearch/SegmPred,51,2019-01-02
-Towards Diverse and Natural Image Descriptions via a Conditional GAN,http://openaccess.thecvf.com/content_iccv_2017/html/Dai_Towards_Diverse_and_ICCV_2017_paper.html,ICCV,2017,https://github.com/doubledaibo/gancaption_iccv2017,53,2019-01-02
-CDC: Convolutional-De-Convolutional Networks for Precise Temporal Action Localization in Untrimmed Videos,http://openaccess.thecvf.com/content_cvpr_2017/html/Shou_CDC_Convolutional-De-Convolutional_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/ColumbiaDVMM/CDC,53,2019-01-02
-Category-Specific Object Reconstruction From a Single Image,http://openaccess.thecvf.com/content_cvpr_2015/html/Kar_Category-Specific_Object_Reconstruction_2015_CVPR_paper.html,CVPR,2015,https://github.com/akar43/CategoryShapes,48,2019-01-02
-Learning to Find Good Correspondences,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yi_Learning_to_Find_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/vcg-uvic/learned-correspondence-release,72,2019-01-02
-Neural Expectation Maximization,http://papers.nips.cc/paper/7246-neural-expectation-maximization.pdf,NIPS,2017,https://github.com/sjoerdvansteenkiste/Neural-EM,56,2019-01-02
-Semantic Video CNNs Through Representation Warping,http://openaccess.thecvf.com/content_iccv_2017/html/Gadde_Semantic_Video_CNNs_ICCV_2017_paper.html,ICCV,2017,https://github.com/raghudeep/netwarp_public,46,2019-01-02
-EAST: An Efficient and Accurate Scene Text Detector,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhou_EAST_An_Efficient_CVPR_2017_paper.html,CVPR,2017,https://github.com/Kathrine94/EAST,51,2019-01-02
-Learning Blind Motion Deblurring,http://openaccess.thecvf.com/content_iccv_2017/html/Wieschollek_Learning_Blind_Motion_ICCV_2017_paper.html,ICCV,2017,https://github.com/cgtuebingen/learning-blind-motion-deblurring,54,2019-01-02
-Pose-Normalized Image Generation for Person Re-identification,http://openaccess.thecvf.com/content_ECCV_2018/html/Xuelin_Qian_Pose-Normalized_Image_Generation_ECCV_2018_paper.html,ECCV,2018,https://github.com/naiq/PN_GAN,75,2019-01-02
-Multi-Objective Convolutional Learning for Face Labeling,http://openaccess.thecvf.com/content_cvpr_2015/html/Liu_Multi-Objective_Convolutional_Learning_2015_CVPR_paper.html,CVPR,2015,https://github.com/Liusifei/Face_Parsing_2016,55,2019-01-02
-Wasserstein Introspective Neural Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lee_Wasserstein_Introspective_Neural_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kjunelee/WINN,51,2019-01-02
-Conditional Probability Models for Deep Image Compression,http://openaccess.thecvf.com/content_cvpr_2018/papers/Mentzer_Conditional_Probability_Models_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/fab-jul/imgcomp-cvpr,54,2019-01-02
-Efficient Diffusion on Region Manifolds: Recovering Small Objects With Compact CNN Representations,http://openaccess.thecvf.com/content_cvpr_2017/html/Iscen_Efficient_Diffusion_on_CVPR_2017_paper.html,CVPR,2017,https://github.com/ahmetius/diffusion-retrieval,48,2019-01-02
-Jointly Optimize Data Augmentation and Network Training: Adversarial Data Augmentation in Human Pose Estimation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Peng_Jointly_Optimize_Data_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zhiqiangdon/pose-adv-aug,54,2019-01-02
-PlaneMatch: Patch Coplanarity Prediction for Robust RGB-D Reconstruction,http://openaccess.thecvf.com/content_ECCV_2018/html/Yifei_Shi_PlaneMatch_Patch_Coplanarity_ECCV_2018_paper.html,ECCV,2018,https://github.com/yifeishi/PlaneMatch,57,2019-01-02
-Learning to Navigate for Fine-grained Classification,http://openaccess.thecvf.com/content_ECCV_2018/html/Ze_Yang_Learning_to_Navigate_ECCV_2018_paper.html,ECCV,2018,https://github.com/yangze0930/NTS-Net,74,2019-01-02
-Hybrid Reward Architecture for Reinforcement Learning,http://papers.nips.cc/paper/7123-hybrid-reward-architecture-for-reinforcement-learning.pdf,NIPS,2017,https://github.com/Maluuba/hra,50,2019-01-02
-Localizing Moments in Video With Natural Language,http://openaccess.thecvf.com/content_iccv_2017/html/Hendricks_Localizing_Moments_in_ICCV_2017_paper.html,ICCV,2017,https://github.com/LisaAnne/LocalizingMoments,60,2019-01-02
-FOTS: Fast Oriented Text Spotting With a Unified Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_FOTS_Fast_Oriented_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jiangxiluning/FOTS.PyTorch,118,2019-01-02
-Grammar Variational Autoencoder,http://proceedings.mlr.press/v70/kusner17a.html,ICML,2017,https://github.com/episodeyang/grammar_variational_autoencoder,46,2019-01-02
-Measuring abstract reasoning in neural networks,http://proceedings.mlr.press/v80/santoro18a.html,ICML,2018,https://github.com/deepmind/abstract-reasoning-matrices,51,2019-01-02
-Unsupervised Attention-guided Image-to-Image Translation,https://arxiv.org/abs/1806.02311,NIPS,2018,https://github.com/AlamiMejjati/Unsupervised-Attention-guided-Image-to-Image-Translation,110,2019-01-02
-Visual Translation Embedding Network for Visual Relation Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Visual_Translation_Embedding_CVPR_2017_paper.html,CVPR,2017,https://github.com/zawlin/cvpr17_vtranse,54,2019-01-02
-Learning towards Minimum Hyperspherical Energy,http://arxiv.org/abs/1805.09298v4,NIPS,2018,https://github.com/wy1iu/MHE,54,2019-01-02
-Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network,http://papers.nips.cc/paper/6854-predicting-organic-reaction-outcomes-with-weisfeiler-lehman-network.pdf,NIPS,2017,https://github.com/wengong-jin/nips17-rexgen,46,2019-01-02
-Structured Bayesian Pruning via Log-Normal Multiplicative Noise,http://papers.nips.cc/paper/7254-structured-bayesian-pruning-via-log-normal-multiplicative-noise.pdf,NIPS,2017,https://github.com/necludov/group-sparsity-sbp,44,2019-01-02
-Modulating early visual processing by language,http://papers.nips.cc/paper/7237-modulating-early-visual-processing-by-language.pdf,NIPS,2017,https://github.com/GuessWhatGame/guesswhat,49,2019-01-02
-Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam,http://proceedings.mlr.press/v80/khan18a.html,ICML,2018,https://github.com/emtiyaz/vadam,49,2019-01-02
-A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning,http://papers.nips.cc/paper/6951-a-disentangled-recognition-and-nonlinear-dynamics-model-for-unsupervised-learning.pdf,NIPS,2017,https://github.com/simonkamronn/kvae,53,2019-01-02
-Learning Pose Specific Representations by Predicting Different Views,http://openaccess.thecvf.com/content_cvpr_2018/papers/Poier_Learning_Pose_Specific_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/poier/PreView,44,2019-01-02
-Learning Rigidity in Dynamic Scenes with a Moving Camera for 3D Motion Field Estimation,http://openaccess.thecvf.com/content_ECCV_2018/html/Zhaoyang_Lv_Learning_Rigidity_in_ECCV_2018_paper.html,ECCV,2018,https://github.com/NVlabs/learningrigidity,61,2019-01-02
-Adversarial Examples for Semantic Segmentation and Object Detection,http://openaccess.thecvf.com/content_iccv_2017/html/Xie_Adversarial_Examples_for_ICCV_2017_paper.html,ICCV,2017,https://github.com/cihangxie/DAG,49,2019-01-02
-BING: Binarized Normed Gradients for Objectness Estimation at 300fps,http://openaccess.thecvf.com/content_cvpr_2014/html/Cheng_BING_Binarized_Normed_2014_CVPR_paper.html,CVPR,2014,https://github.com/alessandroferrari/BING-Objectness,44,2019-01-02
-Video Pixel Networks,http://proceedings.mlr.press/v70/kalchbrenner17a.html,ICML,2017,https://github.com/3ammor/Video-Pixel-Networks,45,2019-01-02
-Learning Residual Images for Face Attribute Manipulation,http://openaccess.thecvf.com/content_cvpr_2017/html/Shen_Learning_Residual_Images_CVPR_2017_paper.html,CVPR,2017,https://github.com/Zhongdao/FaceAttributeManipulation,43,2019-01-02
-Differentiable Compositional Kernel Learning for Gaussian Processes,http://proceedings.mlr.press/v80/sun18e.html,ICML,2018,https://github.com/ssydasheng/Neural-Kernel-Network,45,2019-01-02
-Learned D-AMP: Principled Neural Network based Compressive Image Recovery,http://papers.nips.cc/paper/6774-learned-d-amp-principled-neural-network-based-compressive-image-recovery.pdf,NIPS,2017,https://github.com/ricedsp/D-AMP_Toolbox,47,2019-01-02
-Accurate Optical Flow via Direct Cost Volume Processing,http://openaccess.thecvf.com/content_cvpr_2017/html/Xu_Accurate_Optical_Flow_CVPR_2017_paper.html,CVPR,2017,https://github.com/IntelVCL/dcflow,42,2019-01-02
-Learning From Massive Noisy Labeled Data for Image Classification,http://openaccess.thecvf.com/content_cvpr_2015/html/Xiao_Learning_From_Massive_2015_CVPR_paper.html,CVPR,2015,https://github.com/Cysu/noisy_label,45,2019-01-02
-Hierarchical Bilinear Pooling for Fine-Grained Visual Recognition,http://openaccess.thecvf.com/content_ECCV_2018/html/Chaojian_Yu_Hierarchical_Bilinear_Pooling_ECCV_2018_paper.html,ECCV,2018,https://github.com/ChaojianYu/Hierarchical-Bilinear-Pooling,57,2019-01-02
-CRAFT Objects From Images,http://openaccess.thecvf.com/content_cvpr_2016/html/Yang_CRAFT_Objects_From_CVPR_2016_paper.html,CVPR,2016,https://github.com/byangderek/CRAFT,41,2019-01-02
-Semantic Compositional Networks for Visual Captioning,http://openaccess.thecvf.com/content_cvpr_2017/html/Gan_Semantic_Compositional_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/zhegan27/Semantic_Compositional_Nets,45,2019-01-02
-Exploit the Unknown Gradually: One-Shot Video-Based Person Re-Identification by Stepwise Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Exploit_the_Unknown_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Yu-Wu/Exploit-Unknown-Gradually,59,2019-01-02
-Real-World Anomaly Detection in Surveillance Videos,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sultani_Real-World_Anomaly_Detection_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/WaqasSultani/AnomalyDetectionCVPR2018,72,2019-01-02
-Deriving Neural Architectures from Sequence and Graph Kernels,http://proceedings.mlr.press/v70/lei17a.html,ICML,2017,https://github.com/taolei87/icml17_knn,44,2019-01-02
-DeepVS: A Deep Learning Based Video Saliency Prediction Approach,http://openaccess.thecvf.com/content_ECCV_2018/html/Lai_Jiang_DeepVS_A_Deep_ECCV_2018_paper.html,ECCV,2018,https://github.com/remega/OMCNN_2CLSTM,53,2019-01-02
-Slicing Convolutional Neural Network for Crowd Video Understanding,http://openaccess.thecvf.com/content_cvpr_2016/html/Shao_Slicing_Convolutional_Neural_CVPR_2016_paper.html,CVPR,2016,https://github.com/amandajshao/Slicing-CNN,40,2019-01-02
-A Linear-Time Kernel Goodness-of-Fit Test,http://papers.nips.cc/paper/6630-a-linear-time-kernel-goodness-of-fit-test.pdf,NIPS,2017,https://github.com/wittawatj/kernel-gof,40,2019-01-02
-Stabilizing Training of Generative Adversarial Networks through Regularization,http://papers.nips.cc/paper/6797-stabilizing-training-of-generative-adversarial-networks-through-regularization.pdf,NIPS,2017,https://github.com/rothk/Stabilizing_GANs,45,2019-01-02
-RayNet: Learning Volumetric 3D Reconstruction With Ray Potentials,http://openaccess.thecvf.com/content_cvpr_2018/papers/Paschalidou_RayNet_Learning_Volumetric_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/paschalidoud/raynet,51,2019-01-02
-Rotation-Sensitive Regression for Oriented Scene Text Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liao_Rotation-Sensitive_Regression_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/MhLiao/RRD,61,2019-01-02
-Learning Intrinsic Image Decomposition From Watching the World,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Learning_Intrinsic_Image_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/lixx2938/unsupervised-learning-intrinsic-images,45,2019-01-02
-Learning Efficient Single-stage Pedestrian Detectors by Asymptotic Localization Fitting,http://openaccess.thecvf.com/content_ECCV_2018/html/Wei_Liu_Learning_Efficient_Single-stage_ECCV_2018_paper.html,ECCV,2018,https://github.com/liuwei16/ALFNet,52,2019-01-02
-Neural Scene De-Rendering,http://openaccess.thecvf.com/content_cvpr_2017/html/Wu_Neural_Scene_De-Rendering_CVPR_2017_paper.html,CVPR,2017,https://github.com/jiajunwu/nsd,40,2019-01-02
-P-CNN: Pose-Based CNN Features for Action Recognition,http://openaccess.thecvf.com/content_iccv_2015/html/Cheron_P-CNN_Pose-Based_CNN_ICCV_2015_paper.html,ICCV,2015,https://github.com/gcheron/P-CNN,45,2019-01-02
-Video Re-localization,http://openaccess.thecvf.com/content_ECCV_2018/html/Yang_Feng_Video_Re-localization_via_ECCV_2018_paper.html,ECCV,2018,https://github.com/fengyang0317/video_reloc,46,2019-01-02
-Image Manipulation with Perceptual Discriminators,http://openaccess.thecvf.com/content_ECCV_2018/html/Diana_Sungatullina_Image_Manipulation_with_ECCV_2018_paper.html,ECCV,2018,https://github.com/egorzakharov/PerceptualGAN,45,2019-01-02
-Unsupervised Adaptation for Deep Stereo,http://openaccess.thecvf.com/content_iccv_2017/html/Tonioni_Unsupervised_Adaptation_for_ICCV_2017_paper.html,ICCV,2017,https://github.com/CVLAB-Unibo/Unsupervised-Adaptation-for-Deep-Stereo,44,2019-01-02
-Generalized Orderless Pooling Performs Implicit Salient Matching,http://openaccess.thecvf.com/content_iccv_2017/html/Simon_Generalized_Orderless_Pooling_ICCV_2017_paper.html,ICCV,2017,https://github.com/cvjena/alpha_pooling,42,2019-01-02
-Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model,http://openaccess.thecvf.com/content_ECCV_2018/html/Baris_Gecer_Semi-supervised_Adversarial_Learning_ECCV_2018_paper.html,ECCV,2018,https://github.com/barisgecer/facegan,55,2019-01-02
-Comparative Evaluation of Hand-Crafted and Learned Local Features,http://openaccess.thecvf.com/content_cvpr_2017/html/Schonberger_Comparative_Evaluation_of_CVPR_2017_paper.html,CVPR,2017,https://github.com/ahojnnes/local-feature-evaluation,42,2019-01-02
-Deep Region and Multi-Label Learning for Facial Action Unit Detection,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhao_Deep_Region_and_CVPR_2016_paper.html,CVPR,2016,https://github.com/zkl20061823/DRML,43,2019-01-02
-On-Demand Learning for Deep Image Restoration,http://openaccess.thecvf.com/content_iccv_2017/html/Gao_On-Demand_Learning_for_ICCV_2017_paper.html,ICCV,2017,https://github.com/rhgao/on-demand-learning,45,2019-01-02
-Wavelet-SRNet: A Wavelet-Based CNN for Multi-Scale Face Super Resolution,http://openaccess.thecvf.com/content_iccv_2017/html/Huang_Wavelet-SRNet_A_Wavelet-Based_ICCV_2017_paper.html,ICCV,2017,https://github.com/hhb072/WaveletSRNet,56,2019-01-02
-Coloring with Words: Guiding Image Colorization Through Text-based Palette Generation,http://openaccess.thecvf.com/content_ECCV_2018/html/Hyojin_Bahng_Coloring_with_Words_ECCV_2018_paper.html,ECCV,2018,https://github.com/awesome-davian/Text2Colors,50,2019-01-02
-SchNet: A continuous-filter convolutional neural network for modeling quantum interactions,http://papers.nips.cc/paper/6700-schnet-a-continuous-filter-convolutional-neural-network-for-modeling-quantum-interactions.pdf,NIPS,2017,https://github.com/atomistic-machine-learning/SchNet,41,2019-01-02
-Diversified Texture Synthesis With Feed-Forward Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Li_Diversified_Texture_Synthesis_CVPR_2017_paper.html,CVPR,2017,https://github.com/Yijunmaverick/MultiTextureSynthesis,39,2019-01-02
-Deep k-Means: Re-Training and Parameter Sharing with Harder Cluster Assignments for Compressing Deep Convolutions,http://proceedings.mlr.press/v80/wu18h.html,ICML,2018,https://github.com/Sandbox3aster/Deep-K-Means-pytorch,48,2019-01-02
-Superpixel Sampling Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Varun_Jampani_Superpixel_Sampling_Networks_ECCV_2018_paper.html,ECCV,2018,https://github.com/NVlabs/ssn_superpixels,74,2019-01-02
-Multiple People Tracking by Lifted Multicut and Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2017/html/Tang_Multiple_People_Tracking_CVPR_2017_paper.html,CVPR,2017,https://github.com/jutanke/cabbage,47,2019-01-02
-TALL: Temporal Activity Localization via Language Query,http://openaccess.thecvf.com/content_iccv_2017/html/Gao_TALL_Temporal_Activity_ICCV_2017_paper.html,ICCV,2017,https://github.com/jiyanggao/TALL,50,2019-01-02
-Learning Pixel-Level Semantic Affinity With Image-Level Supervision for Weakly Supervised Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Ahn_Learning_Pixel-Level_Semantic_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jiwoon-ahn/psa,52,2019-01-02
-Least Squares Generative Adversarial Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Mao_Least_Squares_Generative_ICCV_2017_paper.html,ICCV,2017,https://github.com/GunhoChoi/LSGAN-TF,39,2019-01-02
-Masked Autoregressive Flow for Density Estimation,http://papers.nips.cc/paper/6828-masked-autoregressive-flow-for-density-estimation.pdf,NIPS,2017,https://github.com/gpapamak/maf,44,2019-01-02
-Fast Fourier Color Constancy,http://openaccess.thecvf.com/content_cvpr_2017/html/Barron_Fast_Fourier_Color_CVPR_2017_paper.html,CVPR,2017,https://github.com/google/ffcc,49,2019-01-02
-A Generic Deep Architecture for Single Image Reflection Removal and Image Smoothing,http://openaccess.thecvf.com/content_iccv_2017/html/Fan_A_Generic_Deep_ICCV_2017_paper.html,ICCV,2017,https://github.com/fqnchina/CEILNet,52,2019-01-02
-Neural Episodic Control,http://proceedings.mlr.press/v70/pritzel17a.html,ICML,2017,https://github.com/EndingCredits/Neural-Episodic-Control,37,2019-01-02
-Multiplicative Normalizing Flows for Variational Bayesian Neural Networks,http://proceedings.mlr.press/v70/louizos17a.html,ICML,2017,https://github.com/AMLab-Amsterdam/MNF_VBNN,41,2019-01-02
-CBAM: Convolutional Block Attention Module,http://openaccess.thecvf.com/content_ECCV_2018/html/Sanghyun_Woo_Convolutional_Block_Attention_ECCV_2018_paper.html,ECCV,2018,https://github.com/Youngkl0726/Convolutional-Block-Attention-Module,57,2019-01-02
-Self-produced Guidance for Weakly-supervised Object Localization,http://openaccess.thecvf.com/content_ECCV_2018/html/Xiaolin_Zhang_Self-produced_Guidance_for_ECCV_2018_paper.html,ECCV,2018,https://github.com/xiaomengyc/SPG,51,2019-01-02
-Deep Spectral Clustering Learning,http://proceedings.mlr.press/v70/law17a.html,ICML,2017,https://github.com/wlwkgus/DeepSpectralClustering,45,2019-01-02
-"Face Normals ""In-The-Wild"" Using Fully Convolutional Networks",http://openaccess.thecvf.com/content_cvpr_2017/html/Trigeorgis_Face_Normals_In-The-Wild_CVPR_2017_paper.html,CVPR,2017,https://github.com/trigeorgis/face_normals_cvpr17,38,2019-01-02
-What's in a Question: Using Visual Questions as a Form of Supervision,http://openaccess.thecvf.com/content_cvpr_2017/html/Ganju_Whats_in_a_CVPR_2017_paper.html,CVPR,2017,https://github.com/sidgan/whats_in_a_question,38,2019-01-02
-Surface Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kostrikov_Surface_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jiangzhongshi/SurfaceNetworks,48,2019-01-02
-PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning,http://proceedings.mlr.press/v80/wang18b.html,ICML,2018,https://github.com/Yunbo426/predrnn-pp,42,2019-01-02
-FC4: Fully Convolutional Color Constancy With Confidence-Weighted Pooling,http://openaccess.thecvf.com/content_cvpr_2017/html/Hu_FC4_Fully_Convolutional_CVPR_2017_paper.html,CVPR,2017,https://github.com/yuanming-hu/fc4,47,2019-01-02
-Convolutional Color Constancy,http://openaccess.thecvf.com/content_iccv_2015/html/Barron_Convolutional_Color_Constancy_ICCV_2015_paper.html,ICCV,2015,https://github.com/yuanming-hu/fc4,47,2019-01-02
-Deep Supervised Hashing for Fast Image Retrieval,http://openaccess.thecvf.com/content_cvpr_2016/html/Liu_Deep_Supervised_Hashing_CVPR_2016_paper.html,CVPR,2016,https://github.com/yg33717/DSH_tensorflow,50,2019-01-02
-SketchyGAN: Towards Diverse and Realistic Sketch to Image Synthesis,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_SketchyGAN_Towards_Diverse_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/wchen342/SketchyGAN,51,2019-01-02
-Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples,http://proceedings.mlr.press/v80/weiss18a.html,ICML,2018,https://github.com/tech-srl/lstar_extraction,37,2019-01-02
-Template Matching With Deformable Diversity Similarity,http://openaccess.thecvf.com/content_cvpr_2017/html/Talmi_Template_Matching_With_CVPR_2017_paper.html,CVPR,2017,https://github.com/roimehrez/DDIS,38,2019-01-02
-Temporal Generative Adversarial Nets With Singular Value Clipping,http://openaccess.thecvf.com/content_iccv_2017/html/Saito_Temporal_Generative_Adversarial_ICCV_2017_paper.html,ICCV,2017,https://github.com/pfnet-research/tgan,41,2019-01-02
-Structured Embedding Models for Grouped Data,http://papers.nips.cc/paper/6629-structured-embedding-models-for-grouped-data.pdf,NIPS,2017,https://github.com/mariru/structured_embeddings,36,2019-01-02
-Overcoming Catastrophic Forgetting with Hard Attention to the Task,http://proceedings.mlr.press/v80/serra18a.html,ICML,2018,https://github.com/joansj/hat,44,2019-01-02
-Predicting Matchability,http://openaccess.thecvf.com/content_cvpr_2014/html/Hartmann_Predicting_Matchability_2014_CVPR_paper.html,CVPR,2014,https://github.com/jacekm-git/BetBoy,38,2019-01-02
-3D Reconstruction from Accidental Motion,http://openaccess.thecvf.com/content_cvpr_2014/html/Yu_3D_Reconstruction_from_2014_CVPR_paper.html,CVPR,2014,https://github.com/fyu/tiny,42,2019-01-02
-Neural Autoregressive Flows,http://proceedings.mlr.press/v80/huang18d.html,ICML,2018,https://github.com/CW-Huang/NAF,47,2019-01-02
-Image Specificity,http://openaccess.thecvf.com/content_cvpr_2015/html/Jas_Image_Specificity_2015_CVPR_paper.html,CVPR,2015,https://github.com/burliEnterprises/tensorflow-image-classifier,40,2019-01-02
-Robust Classification With Convolutional Prototype Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_Robust_Classification_With_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/YangHM/Convolutional-Prototype-Learning,43,2019-01-02
-Transfer Joint Matching for Unsupervised Domain Adaptation,http://openaccess.thecvf.com/content_cvpr_2014/html/Long_Transfer_Joint_Matching_2014_CVPR_paper.html,CVPR,2014,https://github.com/USTCPCS/CVPR2018_attention,67,2019-01-02
-Deep Transfer Learning with Joint Adaptation Networks,http://proceedings.mlr.press/v70/long17a.html,ICML,2017,https://github.com/USTCPCS/CVPR2018_attention,67,2019-01-02
-Face Flow,http://openaccess.thecvf.com/content_iccv_2015/html/Snape_Face_Flow_ICCV_2015_paper.html,ICCV,2015,https://github.com/shashanktyagi/HyperFace-TensorFlow-implementation,45,2019-01-02
-Sketch Me That Shoe,http://openaccess.thecvf.com/content_cvpr_2016/html/Yu_Sketch_Me_That_CVPR_2016_paper.html,CVPR,2016,https://github.com/seuliufeng/DeepSBIR,39,2019-01-02
-Learning to Generate Long-term Future via Hierarchical Prediction,http://proceedings.mlr.press/v70/villegas17a.html,ICML,2017,https://github.com/rubenvillegas/icml2017hierchvid,43,2019-01-02
-"Predicting Depth, Surface Normals and Semantic Labels With a Common Multi-Scale Convolutional Architecture",http://openaccess.thecvf.com/content_iccv_2015/html/Eigen_Predicting_Depth_Surface_ICCV_2015_paper.html,ICCV,2015,https://github.com/Rostifar/NYUDepthNet,35,2019-01-02
-One Millisecond Face Alignment with an Ensemble of Regression Trees,http://openaccess.thecvf.com/content_cvpr_2014/html/Kazemi_One_Millisecond_Face_2014_CVPR_paper.html,CVPR,2014,https://github.com/jjrCN/ERT-GBDT_Face_Alignment,43,2019-01-02
-Neural Activation Constellations: Unsupervised Part Model Discovery With Convolutional Networks,http://openaccess.thecvf.com/content_iccv_2015/html/Simon_Neural_Activation_Constellations_ICCV_2015_paper.html,ICCV,2015,https://github.com/cvjena/part_constellation_models,35,2019-01-02
-Mid-Level Deep Pattern Mining,http://openaccess.thecvf.com/content_cvpr_2015/html/Li_Mid-Level_Deep_Pattern_2015_CVPR_paper.html,CVPR,2015,https://github.com/yaoliUoA/MDPM,34,2019-01-02
-Partial Adversarial Domain Adaptation,http://openaccess.thecvf.com/content_ECCV_2018/html/Zhangjie_Cao_Partial_Adversarial_Domain_ECCV_2018_paper.html,ECCV,2018,https://github.com/thuml/PADA,43,2019-01-02
-Real Time Image Saliency for Black Box Classifiers,http://papers.nips.cc/paper/7272-real-time-image-saliency-for-black-box-classifiers.pdf,NIPS,2017,https://github.com/PiotrDabkowski/pytorch-saliency,48,2019-01-02
-Pose Partition Networks for Multi-Person Pose Estimation,http://openaccess.thecvf.com/content_ECCV_2018/html/Xuecheng_Nie_Pose_Partition_Networks_ECCV_2018_paper.html,ECCV,2018,https://github.com/NieXC/pytorch-ppn,47,2019-01-02
-Mutual Learning to Adapt for Joint Human Parsing and Pose Estimation,http://openaccess.thecvf.com/content_ECCV_2018/html/Xuecheng_Nie_Mutual_Learning_to_ECCV_2018_paper.html,ECCV,2018,https://github.com/NieXC/pytorch-mula,43,2019-01-02
-Frame-Recurrent Video Super-Resolution,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sajjadi_Frame-Recurrent_Video_Super-Resolution_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/msmsajjadi/FRVSR,58,2019-01-02
-VQA: Visual Question Answering,http://openaccess.thecvf.com/content_iccv_2015/html/Antol_VQA_Visual_Question_ICCV_2015_paper.html,ICCV,2015,https://github.com/imatge-upc/vqa-2016-cvprw,35,2019-01-02
-Multi-View Silhouette and Depth Decomposition for High Resolution 3D Object Representation,https://arxiv.org/abs/1802.09987,NIPS,2018,https://github.com/EdwardSmith1884/Multi-View-Silhouette-and-Depth-Decomposition-for-High-Resolution-3D-Object-Representation,40,2019-01-02
-Part-Aligned Bilinear Representations for Person Re-Identification,http://openaccess.thecvf.com/content_ECCV_2018/html/Yumin_Suh_Part-Aligned_Bilinear_Representations_ECCV_2018_paper.html,ECCV,2018,https://github.com/yuminsuh/part_bilinear_reid,64,2019-01-02
-Structured Attentions for Visual Question Answering,http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Structured_Attentions_for_ICCV_2017_paper.html,ICCV,2017,https://github.com/shtechair/vqa-sva,34,2019-01-02
-Generalisation in humans and deep neural networks,http://arxiv.org/abs/1808.08750v1,NIPS,2018,https://github.com/rgeirhos/generalisation-humans-DNNs,41,2019-01-02
-Using Ranking-CNN for Age Estimation,http://openaccess.thecvf.com/content_cvpr_2017/html/Chen_Using_Ranking-CNN_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/RankingCNN/Using-Ranking-CNN-for-Age-Estimation,33,2019-01-02
-Generative Adversarial Perturbations,http://openaccess.thecvf.com/content_cvpr_2018/papers/Poursaeed_Generative_Adversarial_Perturbations_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/OmidPoursaeed/Generative_Adversarial_Perturbations,40,2019-01-02
-EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis,http://openaccess.thecvf.com/content_iccv_2017/html/Sajjadi_EnhanceNet_Single_Image_ICCV_2017_paper.html,ICCV,2017,https://github.com/msmsajjadi/EnhanceNet-Code,46,2019-01-02
-A Dual-Source Approach for 3D Pose Estimation From a Single Image,http://openaccess.thecvf.com/content_cvpr_2016/html/Yasin_A_Dual-Source_Approach_CVPR_2016_paper.html,CVPR,2016,https://github.com/iqbalu/3D_Pose_Estimation_CVPR2016,32,2019-01-02
-Human Semantic Parsing for Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kalayeh_Human_Semantic_Parsing_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/emrahbasaran/SPReID,61,2019-01-02
-Car That Knows Before You Do: Anticipating Maneuvers via Learning Temporal Driving Models,http://openaccess.thecvf.com/content_iccv_2015/html/Jain_Car_That_Knows_ICCV_2015_paper.html,ICCV,2015,https://github.com/asheshjain399/ICCV2015_Brain4Cars,33,2019-01-02
-3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation,http://openaccess.thecvf.com/content_ECCV_2018/html/Angela_Dai_3DMV_Joint_3D-Multi-View_ECCV_2018_paper.html,ECCV,2018,https://github.com/angeladai/3DMV,74,2019-01-02
-Towards Binary-Valued Gates for Robust LSTM Training,http://proceedings.mlr.press/v80/li18c.html,ICML,2018,https://github.com/zhuohan123/g2-lstm,41,2019-01-02
-Dynamic Word Embeddings,http://proceedings.mlr.press/v70/bamler17a.html,ICML,2017,https://github.com/YingyuLiang/SemanticVector,32,2019-01-02
-Holistic 3D Scene Parsing and Reconstruction from a Single RGB Image,http://openaccess.thecvf.com/content_ECCV_2018/html/Siyuan_Huang_Monocular_Scene_Parsing_ECCV_2018_paper.html,ECCV,2018,https://github.com/thusiyuan/holistic_scene_parsing,72,2019-01-02
-Unified Deep Supervised Domain Adaptation and Generalization,http://openaccess.thecvf.com/content_iccv_2017/html/Motiian_Unified_Deep_Supervised_ICCV_2017_paper.html,ICCV,2017,https://github.com/samotiian/CCSA,35,2019-01-02
-Conditional Image Synthesis with Auxiliary Classifier GANs,http://proceedings.mlr.press/v70/odena17a.html,ICML,2017,https://github.com/kimhc6028/acgan-pytorch,37,2019-01-02
-Few-Shot Image Recognition by Predicting Parameters From Activations,http://openaccess.thecvf.com/content_cvpr_2018/papers/Qiao_Few-Shot_Image_Recognition_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/joe-siyuan-qiao/FewShot-CVPR,37,2019-01-02
-Actor and Observer: Joint Modeling of First and Third-Person Videos,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sigurdsson_Actor_and_Observer_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/gsig/actor-observer,48,2019-01-02
-Visualizing and Understanding Atari Agents,http://proceedings.mlr.press/v80/greydanus18a.html,ICML,2018,https://github.com/greydanus/visualize_atari,45,2019-01-02
-A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation,http://openaccess.thecvf.com/content_cvpr_2016/html/Perazzi_A_Benchmark_Dataset_CVPR_2016_paper.html,CVPR,2016,https://github.com/davisvideochallenge/davis-matlab,33,2019-01-02
-NetGAN: Generating Graphs via Random Walks,http://proceedings.mlr.press/v80/bojchevski18a.html,ICML,2018,https://github.com/danielzuegner/netgan,39,2019-01-02
-Hyperbolic Entailment Cones for Learning Hierarchical Embeddings,http://proceedings.mlr.press/v80/ganea18a.html,ICML,2018,https://github.com/dalab/hyperbolic_cones,46,2019-01-02
-Semantic Image Inpainting With Deep Generative Models,http://openaccess.thecvf.com/content_cvpr_2017/html/Yeh_Semantic_Image_Inpainting_CVPR_2017_paper.html,CVPR,2017,https://github.com/ChengBinJin/semantic-image-inpainting,40,2019-01-02
-Image Captioning With Semantic Attention,http://openaccess.thecvf.com/content_cvpr_2016/html/You_Image_Captioning_With_CVPR_2016_paper.html,CVPR,2016,https://github.com/chapternewscu/image-captioning-with-semantic-attention,35,2019-01-02
-Safe Model-based Reinforcement Learning with Stability Guarantees,http://papers.nips.cc/paper/6692-safe-model-based-reinforcement-learning-with-stability-guarantees.pdf,NIPS,2017,https://github.com/befelix/safe_learning,45,2019-01-02
-Learning Detection With Diverse Proposals,http://openaccess.thecvf.com/content_cvpr_2017/html/Azadi_Learning_Detection_With_CVPR_2017_paper.html,CVPR,2017,https://github.com/azadis/LDDP,31,2019-01-02
-Learning-based Video Motion Magnification,http://openaccess.thecvf.com/content_ECCV_2018/html/Tae-Hyun_Oh_Learning-based_Video_Motion_ECCV_2018_paper.html,ECCV,2018,https://github.com/12dmodel/deep_motion_mag,47,2019-01-02
-Choose Your Neuron: Incorporating Domain Knowledge through Neuron-Importance,http://openaccess.thecvf.com/content_ECCV_2018/html/Ramprasaath_Ramasamy_Selvaraju_Choose_Your_Neuron_ECCV_2018_paper.html,ECCV,2018,https://github.com/ramprs/neuron-importance-zsl,40,2019-01-02
-Mean Field Multi-Agent Reinforcement Learning,http://proceedings.mlr.press/v80/yang18d.html,ICML,2018,https://github.com/mlii/mfrl,43,2019-01-02
-Learning Active Learning from Data,http://papers.nips.cc/paper/7010-learning-active-learning-from-data.pdf,NIPS,2017,https://github.com/ksenia-konyushkova/LAL,36,2019-01-02
-TILDE: A Temporally Invariant Learned DEtector,http://openaccess.thecvf.com/content_cvpr_2015/html/Verdie_TILDE_A_Temporally_2015_CVPR_paper.html,CVPR,2015,https://github.com/kmyid/TILDE,30,2019-01-02
-Deep Saliency With Encoded Low Level Distance Map and High Level Features,http://openaccess.thecvf.com/content_cvpr_2016/html/Lee_Deep_Saliency_With_CVPR_2016_paper.html,CVPR,2016,https://github.com/gylee1103/SaliencyELD,34,2019-01-02
-Learning Visual Question Answering by Bootstrapping Hard Attention,http://openaccess.thecvf.com/content_ECCV_2018/html/Mateusz_Malinowski_Learning_Visual_Question_ECCV_2018_paper.html,ECCV,2018,https://github.com/gnouhp/PyTorch-AdaHAN,33,2019-01-02
-Non-Local Image Dehazing,http://openaccess.thecvf.com/content_cvpr_2016/html/Berman_Non-Local_Image_Dehazing_CVPR_2016_paper.html,CVPR,2016,https://github.com/danaberman/non-local-dehazing,50,2019-01-02
-QMDP-Net: Deep Learning for Planning under Partial Observability,http://papers.nips.cc/paper/7055-qmdp-net-deep-learning-for-planning-under-partial-observability.pdf,NIPS,2017,https://github.com/AdaCompNUS/qmdp-net,34,2019-01-02
-3D-PRNN: Generating Shape Primitives With Recurrent Neural Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Zou_3D-PRNN_Generating_Shape_ICCV_2017_paper.html,ICCV,2017,https://github.com/zouchuhang/3D-PRNN,37,2019-01-02
-Learning Local Image Descriptors With Deep Siamese and Triplet Convolutional Networks by Minimising Global Loss Functions,http://openaccess.thecvf.com/content_cvpr_2016/html/G_Learning_Local_Image_CVPR_2016_paper.html,CVPR,2016,https://github.com/vijaykbg/deep-patchmatch,30,2019-01-02
-Transformation-Grounded Image Generation Network for Novel 3D View Synthesis,http://openaccess.thecvf.com/content_cvpr_2017/html/Park_Transformation-Grounded_Image_Generation_CVPR_2017_paper.html,CVPR,2017,https://github.com/silverbottlep/tvsn,35,2019-01-02
-Zero-Shot Object Detection,http://openaccess.thecvf.com/content_ECCV_2018/html/Ankan_Bansal_Zero-Shot_Object_Detection_ECCV_2018_paper.html,ECCV,2018,https://github.com/salman-h-khan/ZSD_Release,43,2019-01-02
-Speaking the Same Language: Matching Machine to Human Captions by Adversarial Training,http://openaccess.thecvf.com/content_iccv_2017/html/Shetty_Speaking_the_Same_ICCV_2017_paper.html,ICCV,2017,https://github.com/rakshithShetty/captionGAN,30,2019-01-02
-Black-box Adversarial Attacks with Limited Queries and Information,http://proceedings.mlr.press/v80/ilyas18a.html,ICML,2018,https://github.com/labsix/limited-blackbox-attacks,46,2019-01-02
-Stacked Cross Attention for Image-Text Matching,http://openaccess.thecvf.com/content_ECCV_2018/html/Kuang-Huei_Lee_Stacked_Cross_Attention_ECCV_2018_paper.html,ECCV,2018,https://github.com/kuanghuei/SCAN,48,2019-01-02
-StyleNet: Generating Attractive Visual Captions With Styles,http://openaccess.thecvf.com/content_cvpr_2017/html/Gan_StyleNet_Generating_Attractive_CVPR_2017_paper.html,CVPR,2017,https://github.com/kacky24/stylenet,32,2019-01-02
-Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes,http://openaccess.thecvf.com/content_cvpr_2017/html/Pohlen_Full-Resolution_Residual_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/hiwonjoon/tf-frrn,31,2019-01-02
-Geometric Loss Functions for Camera Pose Regression With Deep Learning,http://openaccess.thecvf.com/content_cvpr_2017/html/Kendall_Geometric_Loss_Functions_CVPR_2017_paper.html,CVPR,2017,https://github.com/futurely/deep-camera-relocalization,34,2019-01-02
-VidLoc: A Deep Spatio-Temporal Model for 6-DoF Video-Clip Relocalization,http://openaccess.thecvf.com/content_cvpr_2017/html/Clark_VidLoc_A_Deep_CVPR_2017_paper.html,CVPR,2017,https://github.com/futurely/deep-camera-relocalization,34,2019-01-02
-PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization,http://openaccess.thecvf.com/content_iccv_2015/html/Kendall_PoseNet_A_Convolutional_ICCV_2015_paper.html,ICCV,2015,https://github.com/futurely/deep-camera-relocalization,34,2019-01-02
-The Statistical Recurrent Unit,http://proceedings.mlr.press/v70/oliva17a.html,ICML,2017,https://github.com/DLHacks/SRU,29,2019-01-02
-SplitNet: Learning to Semantically Split Deep Networks for Parameter Reduction and Model Parallelization,http://proceedings.mlr.press/v70/kim17b.html,ICML,2017,https://github.com/dalgu90/splitnet-wrn,29,2019-01-02
-Graphical Generative Adversarial Networks,http://arxiv.org/abs/1804.03429v1,NIPS,2018,https://github.com/zhenxuan00/graphical-gan,36,2019-01-02
-Fast Bilateral-Space Stereo for Synthetic Defocus,http://openaccess.thecvf.com/content_cvpr_2015/html/Barron_Fast_Bilateral-Space_Stereo_2015_CVPR_paper.html,CVPR,2015,https://github.com/tvandenzegel/fast_bilateral_space_stereo,29,2019-01-02
-Gated Fusion Network for Single Image Dehazing,http://openaccess.thecvf.com/content_cvpr_2018/papers/Ren_Gated_Fusion_Network_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/rwenqi/GFN-dehazing,35,2019-01-02
-Isolating Sources of Disentanglement in Variational Autoencoders,http://arxiv.org/abs/1802.04942v2,NIPS,2018,https://github.com/rtqichen/beta-tcvae,62,2019-01-02
-Learning Semantic Representations for Unsupervised Domain Adaptation,http://proceedings.mlr.press/v80/xie18c.html,ICML,2018,https://github.com/Mid-Push/Moving-Semantic-Transfer-Network,39,2019-01-02
-GP CaKe: Effective brain connectivity with causal kernels,http://papers.nips.cc/paper/6696-gp-cake-effective-brain-connectivity-with-causal-kernels.pdf,NIPS,2017,https://github.com/LucaAmbrogioni/GP-CaKe-project,46,2019-01-02
-CleanNet: Transfer Learning for Scalable Image Classifier Training With Label Noise,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lee_CleanNet_Transfer_Learning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kuanghuei/clean-net,33,2019-01-02
-Recurrent Convolutional Neural Network for Object Recognition,http://openaccess.thecvf.com/content_cvpr_2015/html/Liang_Recurrent_Convolutional_Neural_2015_CVPR_paper.html,CVPR,2015,https://github.com/JimLee4530/RCNN,32,2019-01-02
-On the Robustness of Semantic Segmentation Models to Adversarial Attacks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Arnab_On_the_Robustness_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/hmph/adversarial-attacks,31,2019-01-02
-3D Point Cloud Registration for Localization Using a Deep Neural Network Auto-Encoder,http://openaccess.thecvf.com/content_cvpr_2017/html/Elbaz_3D_Point_Cloud_CVPR_2017_paper.html,CVPR,2017,https://github.com/gilbaz/LORAX,32,2019-01-02
-Continual Learning Through Synaptic Intelligence,http://proceedings.mlr.press/v70/zenke17a.html,ICML,2017,https://github.com/ganguli-lab/pathint,31,2019-01-02
-In Defense of Color-Based Model-Free Tracking,http://openaccess.thecvf.com/content_cvpr_2015/html/Possegger_In_Defense_of_2015_CVPR_paper.html,CVPR,2015,https://github.com/foolwood/DAT,30,2019-01-02
-SeGAN: Segmenting and Generating the Invisible,http://openaccess.thecvf.com/content_cvpr_2018/papers/Ehsani_SeGAN_Segmenting_and_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ehsanik/SeGAN,36,2019-01-02
-Unsupervised Learning of Disentangled Representations from Video,http://papers.nips.cc/paper/7028-unsupervised-learning-of-disentangled-representations-from-video.pdf,NIPS,2017,https://github.com/edenton/drnet-py,32,2019-01-02
-Deeply Learned Attributes for Crowded Scene Understanding,http://openaccess.thecvf.com/content_cvpr_2015/html/Shao_Deeply_Learned_Attributes_2015_CVPR_paper.html,CVPR,2015,https://github.com/amandajshao/www_deep_crowd,27,2019-01-02
-Parsimonious Labeling,http://openaccess.thecvf.com/content_iccv_2015/html/Dokania_Parsimonious_Labeling_ICCV_2015_paper.html,ICCV,2015,https://github.com/aimerykong/Pixel-Attentional-Gating,33,2019-01-02
-Deep Learning on Lie Groups for Skeleton-Based Action Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Deep_Learning_on_CVPR_2017_paper.html,CVPR,2017,https://github.com/zzhiwu/LieNet,32,2019-01-02
-A Unified Approach of Multi-Scale Deep and Hand-Crafted Features for Defocus Estimation,http://openaccess.thecvf.com/content_cvpr_2017/html/Park_A_Unified_Approach_CVPR_2017_paper.html,CVPR,2017,https://github.com/zzangjinsun/DHDE_CVPR17,28,2019-01-02
-Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Jiang_Super_SloMo_High_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/TheFairBear/Super-SlowMo,47,2019-01-02
-Human-Centric Indoor Scene Synthesis Using Stochastic Grammar,http://openaccess.thecvf.com/content_cvpr_2018/papers/Qi_Human-Centric_Indoor_Scene_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/SiyuanQi/human-centric-scene-synthesis,33,2019-01-02
-The Sound of Pixels,http://openaccess.thecvf.com/content_ECCV_2018/html/Hang_Zhao_The_Sound_of_ECCV_2018_paper.html,ECCV,2018,https://github.com/roudimit/MUSIC_dataset,40,2019-01-02
-Video Rain Streak Removal by Multiscale Convolutional Sparse Coding,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Video_Rain_Streak_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/MinghanLi/MS-CSC-Rain-Streak-Removal,29,2019-01-02
-Adversarial Logit Pairing,http://arxiv.org/abs/1803.06373v1,NIPS,2018,https://github.com/labsix/adversarial-logit-pairing-analysis,32,2019-01-02
-Deflecting Adversarial Attacks With Pixel Deflection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Prakash_Deflecting_Adversarial_Attacks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/iamaaditya/pixel-deflection,34,2019-01-02
-LCNN: Lookup-Based Convolutional Neural Network,http://openaccess.thecvf.com/content_cvpr_2017/html/Bagherinezhad_LCNN_Lookup-Based_Convolutional_CVPR_2017_paper.html,CVPR,2017,https://github.com/hessamb/lcnn,31,2019-01-02
-Deep Model-Based 6D Pose Refinement in RGB,http://openaccess.thecvf.com/content_ECCV_2018/html/Fabian_Manhardt_Deep_Model-Based_6D_ECCV_2018_paper.html,ECCV,2018,https://github.com/fabi92/eccv18-rgb_pose_refinement,30,2019-01-02
-No Fuss Distance Metric Learning Using Proxies,http://openaccess.thecvf.com/content_iccv_2017/html/Movshovitz-Attias_No_Fuss_Distance_ICCV_2017_paper.html,ICCV,2017,https://github.com/dichotomies/proxy-nca,38,2019-01-02
-Learning Warped Guidance for Blind Face Restoration,http://openaccess.thecvf.com/content_ECCV_2018/html/Xiaoming_Li_Learning_Warped_Guidance_ECCV_2018_paper.html,ECCV,2018,https://github.com/csxmli2016/GFRNet,39,2019-01-02
-Structured Feature Learning for Pose Estimation,http://openaccess.thecvf.com/content_cvpr_2016/html/Chu_Structured_Feature_Learning_CVPR_2016_paper.html,CVPR,2016,https://github.com/chuxiaoselena/StructuredFeature,29,2019-01-02
-Dense Semantic Image Segmentation with Objects and Attributes,http://openaccess.thecvf.com/content_cvpr_2014/html/Zheng_Dense_Semantic_Image_2014_CVPR_paper.html,CVPR,2014,https://github.com/bittnt/ImageSpirit,28,2019-01-02
-Scene-Independent Group Profiling in Crowd,http://openaccess.thecvf.com/content_cvpr_2014/html/Shao_Scene-Independent_Group_Profiling_2014_CVPR_paper.html,CVPR,2014,https://github.com/amandajshao/crowd_group_profile,28,2019-01-02
-Hierarchical Boundary-Aware Neural Encoder for Video Captioning,http://openaccess.thecvf.com/content_cvpr_2017/html/Baraldi_Hierarchical_Boundary-Aware_Neural_CVPR_2017_paper.html,CVPR,2017,https://github.com/Yugnaynehc/banet,33,2019-01-02
-Neural Guided Constraint Logic Programming for Program Synthesis,http://arxiv.org/abs/1809.02840v2,NIPS,2018,https://github.com/xuexue/neuralkanren,32,2019-01-02
-Ordinal Regression With Multiple Output CNN for Age Estimation,http://openaccess.thecvf.com/content_cvpr_2016/html/Niu_Ordinal_Regression_With_CVPR_2016_paper.html,CVPR,2016,https://github.com/luoyetx/OrdinalRegression,30,2019-01-02
-Unsupervised Learning of Edges,http://openaccess.thecvf.com/content_cvpr_2016/html/Li_Unsupervised_Learning_of_CVPR_2016_paper.html,CVPR,2016,https://github.com/happyharrycn/unsupervised_edges,29,2019-01-02
-TOM-Net: Learning Transparent Object Matting From a Single Image,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_TOM-Net_Learning_Transparent_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/guanyingc/TOM-Net,30,2019-01-02
-Harvesting Multiple Views for Marker-Less 3D Human Pose Annotations,http://openaccess.thecvf.com/content_cvpr_2017/html/Pavlakos_Harvesting_Multiple_Views_CVPR_2017_paper.html,CVPR,2017,https://github.com/geopavlakos/harvesting,27,2019-01-02
-PatchBatch: A Batch Augmented Loss for Optical Flow,http://openaccess.thecvf.com/content_cvpr_2016/html/Gadot_PatchBatch_A_Batch_CVPR_2016_paper.html,CVPR,2016,https://github.com/DediGadot/PatchBatch,27,2019-01-02
-Real-Time Monocular Depth Estimation Using Synthetic Data With Domain Adaptation via Image Style Transfer,http://openaccess.thecvf.com/content_cvpr_2018/papers/Atapour-Abarghouei_Real-Time_Monocular_Depth_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/atapour/monocularDepth-Inference,37,2019-01-02
-Deep Co-Occurrence Feature Learning for Visual Object Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Shih_Deep_Co-Occurrence_Feature_CVPR_2017_paper.html,CVPR,2017,https://github.com/yafangshih/Deep-COOC,29,2019-01-02
-"Understanding Tools: Task-Oriented Object Modeling, Learning and Recognition",http://openaccess.thecvf.com/content_cvpr_2015/html/Zhu_Understanding_Tools_Task-Oriented_2015_CVPR_paper.html,CVPR,2015,https://github.com/xiaozhuchacha/Kinect2Toolbox,27,2019-01-02
-Quaternion Convolutional Neural Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Xuanyu_Zhu_Quaternion_Convolutional_Neural_ECCV_2018_paper.html,ECCV,2018,https://github.com/TParcollet/Quaternion-Convolutional-Neural-Networks-for-End-to-End-Automatic-Speech-Recognition,30,2019-01-02
-Learning Dynamic Memory Networks for Object Tracking,http://openaccess.thecvf.com/content_ECCV_2018/html/Tianyu_Yang_Learning_Dynamic_Memory_ECCV_2018_paper.html,ECCV,2018,https://github.com/skyoung/MemTrack,32,2019-01-02
-Viewpoints and Keypoints,http://openaccess.thecvf.com/content_cvpr_2015/html/Tulsiani_Viewpoints_and_Keypoints_2015_CVPR_paper.html,CVPR,2015,https://github.com/shubhtuls/ViewpointsAndKeypoints,25,2019-01-02
-DeepCD: Learning Deep Complementary Descriptors for Patch Representations,http://openaccess.thecvf.com/content_iccv_2017/html/Yang_DeepCD_Learning_Deep_ICCV_2017_paper.html,ICCV,2017,https://github.com/shamangary/DeepCD,26,2019-01-02
-Interpretable Convolutional Neural Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Interpretable_Convolutional_Neural_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/seongjunyun/CNN-with-Dual-Local-and-Global-Attention,40,2019-01-02
-Learning to Detect Salient Objects With Image-Level Supervision,http://openaccess.thecvf.com/content_cvpr_2017/html/Wang_Learning_to_Detect_CVPR_2017_paper.html,CVPR,2017,https://github.com/scott89/WSS,26,2019-01-02
-Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields,http://openaccess.thecvf.com/content_cvpr_2017/html/Cao_Realtime_Multi-Person_2D_CVPR_2017_paper.html,CVPR,2017,https://github.com/PoseAIChallenger/mxnet_pose_for_AI_challenger,29,2019-01-02
-Deep Variation-Structured Reinforcement Learning for Visual Relationship and Attribute Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Liang_Deep_Variation-Structured_Reinforcement_CVPR_2017_paper.html,CVPR,2017,https://github.com/nexusapoorvacus/DeepVariationStructuredRL,32,2019-01-02
-State-Frequency Memory Recurrent Neural Networks,http://proceedings.mlr.press/v70/hu17c.html,ICML,2017,https://github.com/hhkunming/State-Frequency-Memory-Recurrent-Neural-Networks,27,2019-01-02
-Deep 360 Pilot: Learning a Deep Agent for Piloting Through 360deg Sports Videos,http://openaccess.thecvf.com/content_cvpr_2017/html/Hu_Deep_360_Pilot_CVPR_2017_paper.html,CVPR,2017,https://github.com/eborboihuc/Deep360Pilot-CVPR17,27,2019-01-02
-Mask-Guided Contrastive Attention Model for Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2018/papers/Song_Mask-Guided_Contrastive_Attention_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/developfeng/MGCAM,41,2019-01-02
-Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain Surgeon,http://papers.nips.cc/paper/7071-learning-to-prune-deep-neural-networks-via-layer-wise-optimal-brain-surgeon.pdf,NIPS,2017,https://github.com/csyhhu/L-OBS,31,2019-01-02
-Neural Message Passing for Quantum Chemistry,http://proceedings.mlr.press/v70/gilmer17a.html,ICML,2017,https://github.com/brain-research/mpnn,27,2019-01-02
-Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite Sum Structure,http://papers.nips.cc/paper/6760-stochastic-optimization-with-variance-reduction-for-infinite-datasets-with-finite-sum-structure.pdf,NIPS,2017,https://github.com/albietz/stochs,26,2019-01-02
-Recurrent Scene Parsing With Perspective Understanding in the Loop,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kong_Recurrent_Scene_Parsing_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/aimerykong/Recurrent-Scene-Parsing-with-Perspective-Understanding-in-the-loop,29,2019-01-02
-Disentangling by Factorising,http://proceedings.mlr.press/v80/kim18b.html,ICML,2018,https://github.com/1Konny/FactorVAE,37,2019-01-02
-Actionness Estimation Using Hybrid Fully Convolutional Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Wang_Actionness_Estimation_Using_CVPR_2016_paper.html,CVPR,2016,https://github.com/wanglimin/Actionness-Estimation,26,2019-01-02
-Tangent Convolutions for Dense Prediction in 3D,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tatarchenko_Tangent_Convolutions_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/tatarchm/tangent_conv,37,2019-01-02
-SketchyScene: Richly-Annotated Scene Sketches,http://openaccess.thecvf.com/content_ECCV_2018/html/Changqing_Zou_SketchyScene_Richly-Annotated_Scene_ECCV_2018_paper.html,ECCV,2018,https://github.com/SketchyScene/SketchyScene,31,2019-01-02
-Learning to Evaluate Image Captioning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Cui_Learning_to_Evaluate_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/richardaecn/cvpr18-caption-eval,38,2019-01-02
-Joint distribution optimal transportation for domain adaptation,http://papers.nips.cc/paper/6963-joint-distribution-optimal-transportation-for-domain-adaptation.pdf,NIPS,2017,https://github.com/rflamary/JDOT,29,2019-01-02
-Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors,http://openaccess.thecvf.com/content_cvpr_2017/html/Huang_SpeedAccuracy_Trade-Offs_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/rayanelleuch/Speed-accuracy-trade-offs-for-modern-convolutional-object-detectors,26,2019-01-02
-Unconstrained 3D Face Reconstruction,http://openaccess.thecvf.com/content_cvpr_2015/html/Roth_Unconstrained_3D_Face_2015_CVPR_paper.html,CVPR,2015,https://github.com/NJUPole/CVPR2015-Unconstrained-3D-Face-Reconstruction,26,2019-01-02
-Adversarially Learned One-Class Classifier for Novelty Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sabokrou_Adversarially_Learned_One-Class_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/khalooei/ALOCC-CVPR2018,37,2019-01-02
-Layer-structured 3D Scene Inference via View Synthesis,http://openaccess.thecvf.com/content_ECCV_2018/html/Shubham_Tulsiani_Layer-structured_3D_Scene_ECCV_2018_paper.html,ECCV,2018,https://github.com/google/layered-scene-inference,28,2019-01-02
-Learning Spread-Out Local Feature Descriptors,http://openaccess.thecvf.com/content_iccv_2017/html/Zhang_Learning_Spread-Out_Local_ICCV_2017_paper.html,ICCV,2017,https://github.com/ColumbiaDVMM/Spread-out_Local_Feature_Descriptor,28,2019-01-02
-Recurrent Attention Models for Depth-Based Person Identification,http://openaccess.thecvf.com/content_cvpr_2016/html/Haque_Recurrent_Attention_Models_CVPR_2016_paper.html,CVPR,2016,https://github.com/ahaque/ram_person_id,24,2018-09-16
-Bidirectional Feature Pyramid Network with Recurrent Attention Residual Modules for Shadow Detection,http://openaccess.thecvf.com/content_ECCV_2018/html/Lei_Zhu_Bi-directional_Feature_Pyramid_ECCV_2018_paper.html,ECCV,2018,https://github.com/zijundeng/BDRAR,32,2019-01-02
-Controllable Video Generation With Sparse Trajectories,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hao_Controllable_Video_Generation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zekunhao1995/ControllableVideoGen,28,2019-01-02
-First Order Generative Adversarial Networks,http://proceedings.mlr.press/v80/seward18a.html,ICML,2018,https://github.com/zalandoresearch/first_order_gan,25,2019-01-02
-Data-Driven 3D Voxel Patterns for Object Category Recognition,http://openaccess.thecvf.com/content_cvpr_2015/html/Xiang_Data-Driven_3D_Voxel_2015_CVPR_paper.html,CVPR,2015,https://github.com/yuxng/3DVP,24,2019-01-02
-Blazingly Fast Video Object Segmentation With Pixel-Wise Metric Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Blazingly_Fast_Video_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yuhuayc/fast-vos,30,2019-01-02
-Revisiting Video Saliency: A Large-Scale Benchmark and a New Model,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Revisiting_Video_Saliency_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/wenguanwang/DHF1K,30,2019-01-02
-Temporal Context Network for Activity Localization in Videos,http://openaccess.thecvf.com/content_iccv_2017/html/Dai_Temporal_Context_Network_ICCV_2017_paper.html,ICCV,2017,https://github.com/vdavid70619/TCN,24,2019-01-02
-Universal Adversarial Perturbations,http://openaccess.thecvf.com/content_cvpr_2017/html/Moosavi-Dezfooli_Universal_Adversarial_Perturbations_CVPR_2017_paper.html,CVPR,2017,https://github.com/val-iisc/fast-feature-fool,24,2019-01-02
-Shrinkage Fields for Effective Image Restoration,http://openaccess.thecvf.com/content_cvpr_2014/html/Schmidt_Shrinkage_Fields_for_2014_CVPR_paper.html,CVPR,2014,https://github.com/uschmidt83/shrinkage-fields,25,2019-01-02
-Interpretable Intuitive Physics Model,http://openaccess.thecvf.com/content_ECCV_2018/html/Tian_Ye_Interpretable_Intuitive_Physics_ECCV_2018_paper.html,ECCV,2018,https://github.com/tianye95/interpretable-intuitive-physics-model,27,2019-01-02
-Holistically-Nested Edge Detection,http://openaccess.thecvf.com/content_iccv_2015/html/Xie_Holistically-Nested_Edge_Detection_ICCV_2015_paper.html,ICCV,2015,https://github.com/s9xie/hed_release-deprecated,25,2019-01-02
-Improved Variational Autoencoders for Text Modeling using Dilated Convolutions,http://proceedings.mlr.press/v70/yang17d.html,ICML,2017,https://github.com/ryokamoi/dcnn_textvae,26,2019-01-02
-YASS: Yet Another Spike Sorter,http://papers.nips.cc/paper/6989-yass-yet-another-spike-sorter.pdf,NIPS,2017,https://github.com/paninski-lab/yass,25,2019-01-02
-Phase-Based Frame Interpolation for Video,http://openaccess.thecvf.com/content_cvpr_2015/html/Meyer_Phase-Based_Frame_Interpolation_2015_CVPR_paper.html,CVPR,2015,https://github.com/owang/PhaseBasedInterpolation,28,2019-01-02
-Going Deeper With Convolutions,http://openaccess.thecvf.com/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html,CVPR,2015,https://github.com/nutszebra/googlenet,25,2019-01-02
-Shading Annotations in the Wild,http://openaccess.thecvf.com/content_cvpr_2017/html/Kovacs_Shading_Annotations_in_CVPR_2017_paper.html,CVPR,2017,https://github.com/kovibalu/saw_release,24,2019-01-02
-Deep Texture Manifold for Ground Terrain Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Xue_Deep_Texture_Manifold_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jiaxue1993/Deep-Encoding-Pooling-Network-DEP-,25,2019-01-02
-Structured Attention Guided Convolutional Neural Fields for Monocular Depth Estimation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Xu_Structured_Attention_Guided_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/danxuhk/StructuredAttentionDepthEstimation,46,2019-01-02
-IQA: Visual Question Answering in Interactive Environments,http://openaccess.thecvf.com/content_cvpr_2018/papers/Gordon_IQA_Visual_Question_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/danielgordon10/thor-iqa-cvpr-2018,60,2019-01-02
-Real-Time Neural Style Transfer for Videos,http://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Real-Time_Neural_Style_CVPR_2017_paper.html,CVPR,2017,https://github.com/curaai00/RT-StyleTransfer-forVideo,30,2019-01-02
-Deep Regression Tracking with Shrinkage Loss,http://openaccess.thecvf.com/content_ECCV_2018/html/Xiankai_Lu_Deep_Regression_Tracking_ECCV_2018_paper.html,ECCV,2018,https://github.com/chaoma99/DSLT,34,2019-01-02
-Multi-Agent Diverse Generative Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Ghosh_Multi-Agent_Diverse_Generative_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/arnabgho/MADGAN,23,2018-09-16
-Reducing Reparameterization Gradient Variance,http://papers.nips.cc/paper/6961-reducing-reparameterization-gradient-variance.pdf,NIPS,2017,https://github.com/andymiller/ReducedVarianceReparamGradients,24,2019-01-02
-"You Only Look Once: Unified, Real-Time Object Detection",http://openaccess.thecvf.com/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html,CVPR,2016,https://github.com/andersy005/keras-yolo,26,2019-01-02
-Fast Training of Triplet-Based Deep Binary Embedding Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhuang_Fast_Training_of_CVPR_2016_paper.html,CVPR,2016,https://github.com/xwzy/Triplet-deep-hash-pytorch,25,2019-01-02
-L0TV: A New Method for Image Restoration in the Presence of Impulse Noise,http://openaccess.thecvf.com/content_cvpr_2015/html/Yuan_L0TV_A_New_2015_CVPR_paper.html,CVPR,2015,https://github.com/peisuke/L0TV,22,2019-01-02
-Adaptive Color Attributes for Real-Time Visual Tracking,http://openaccess.thecvf.com/content_cvpr_2014/html/Danelljan_Adaptive_Color_Attributes_2014_CVPR_paper.html,CVPR,2014,https://github.com/mostafaizz/ColorTracker,25,2019-01-02
-Domain-Adaptive Deep Network Compression,http://openaccess.thecvf.com/content_iccv_2017/html/Masana_Domain-Adaptive_Deep_Network_ICCV_2017_paper.html,ICCV,2017,https://github.com/mmasana/DALR,24,2019-01-02
-Interspecies Knowledge Transfer for Facial Keypoint Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Rashid_Interspecies_Knowledge_Transfer_CVPR_2017_paper.html,CVPR,2017,https://github.com/menorashid/animal_human_kp,25,2019-01-02
-Zero-Order Reverse Filtering,http://openaccess.thecvf.com/content_iccv_2017/html/Tao_Zero-Order_Reverse_Filtering_ICCV_2017_paper.html,ICCV,2017,https://github.com/jiangsutx/DeFilter,23,2019-01-02
-Reconstructing the World* in Six Days *(As Captured by the Yahoo 100 Million Image Dataset),http://openaccess.thecvf.com/content_cvpr_2015/html/Heinly_Reconstructing_the_World_2015_CVPR_paper.html,CVPR,2015,https://github.com/jheinly/streaming_connected_component_discovery,25,2019-01-02
-Learning High Dynamic Range From Outdoor Panoramas,http://openaccess.thecvf.com/content_iccv_2017/html/Zhang_Learning_High_Dynamic_ICCV_2017_paper.html,ICCV,2017,https://github.com/jacenfox/ldr2hdr-public,26,2019-01-02
-A Dirichlet Mixture Model of Hawkes Processes for Event Sequence Clustering,http://papers.nips.cc/paper/6734-a-dirichlet-mixture-model-of-hawkes-processes-for-event-sequence-clustering.pdf,NIPS,2017,https://github.com/HongtengXu/Hawkes-Process-Toolkit,24,2019-01-02
-Multimodal Transfer: A Hierarchical Deep Convolutional Neural Network for Fast Artistic Style Transfer,http://openaccess.thecvf.com/content_cvpr_2017/html/Wang_Multimodal_Transfer_A_CVPR_2017_paper.html,CVPR,2017,https://github.com/fullfanta/multimodal_transfer,22,2019-01-02
-Contrastive Learning for Image Captioning,http://papers.nips.cc/paper/6691-contrastive-learning-for-image-captioning.pdf,NIPS,2017,https://github.com/doubledaibo/clcaption_nips2017,26,2019-01-02
-Graph-Cut RANSAC,http://openaccess.thecvf.com/content_cvpr_2018/papers/Barath_Graph-Cut_RANSAC_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/danini/graph-cut-ransac,32,2019-01-02
-A Trilateral Weighted Sparse Coding Scheme for Real-World Image Denoising,http://openaccess.thecvf.com/content_ECCV_2018/html/XU_JUN_A_Trilateral_Weighted_ECCV_2018_paper.html,ECCV,2018,https://github.com/csjunxu/TWSC-ECCV2018,30,2019-01-02
-Phrase Localization and Visual Relationship Detection With Comprehensive Image-Language Cues,http://openaccess.thecvf.com/content_iccv_2017/html/Plummer_Phrase_Localization_and_ICCV_2017_paper.html,ICCV,2017,https://github.com/BryanPlummer/pl-clc,27,2019-01-02
-Conditional Image-to-Image Translation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lin_Conditional_Image-to-Image_Translation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/znxlwm/pytorch-Conditional-image-to-image-translation,25,2019-01-02
-Learning to Promote Saliency Detectors,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zeng_Learning_to_Promote_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zengxianyu/lps,21,2019-01-02
-LF-Net: Learning Local Features from Images,https://arxiv.org/abs/1805.09662,NIPS,2018,https://github.com/vcg-uvic/lf-net-release,55,2019-01-02
-Straight to Shapes: Real-Time Detection of Encoded Shapes,http://openaccess.thecvf.com/content_cvpr_2017/html/Jetley_Straight_to_Shapes_CVPR_2017_paper.html,CVPR,2017,https://github.com/torrvision/straighttoshapes,23,2019-01-02
-Visualizing the Loss Landscape of Neural Nets,http://arxiv.org/abs/1712.09913v2,NIPS,2018,https://github.com/tomgoldstein/loss-landscape,724,2019-01-02
-First Person Action Recognition Using Deep Learned Descriptors,http://openaccess.thecvf.com/content_cvpr_2016/html/Singh_First_Person_Action_CVPR_2016_paper.html,CVPR,2016,https://github.com/suriyasingh/EgoConvNet,21,2019-01-02
-Exploring Disentangled Feature Representation Beyond Face Identification,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Exploring_Disentangled_Feature_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/sciencefans/D2AE-Face-Generator,29,2019-01-02
-Between-Class Learning for Image Classification,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tokozume_Between-Class_Learning_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/mil-tokyo/bc_learning_image,26,2019-01-02
-CBMV: A Coalesced Bidirectional Matching Volume for Disparity Estimation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Batsos_CBMV_A_Coalesced_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kbatsos/CBMV,25,2019-01-02
-Dense Human Body Correspondences Using Convolutional Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Wei_Dense_Human_Body_CVPR_2016_paper.html,CVPR,2016,https://github.com/halimacc/DenseHumanBodyCorrespondences,27,2019-01-02
-Hash Embeddings for Efficient Word Representations,http://papers.nips.cc/paper/7078-hash-embeddings-for-efficient-word-representations.pdf,NIPS,2017,https://github.com/dsv77/hashembedding/,21,2018-09-16
-Exploiting Saliency for Object Segmentation From Image Level Labels,http://openaccess.thecvf.com/content_cvpr_2017/html/Oh_Exploiting_Saliency_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/coallaoh/GuidedLabelling,24,2019-01-02
-Improving Shape Deformation in Unsupervised Image-to-Image Translation,http://openaccess.thecvf.com/content_ECCV_2018/html/Aaron_Gokaslan_Improving_Shape_Deformation_ECCV_2018_paper.html,ECCV,2018,https://github.com/brownvc/ganimorph,33,2019-01-02
-Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net,http://papers.nips.cc/paper/7026-variational-walkback-learning-a-transition-operator-as-a-stochastic-recurrent-net.pdf,NIPS,2017,https://github.com/anirudh9119/walkback_nips17,23,2019-01-02
-Eye In-Painting With Exemplar Generative Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Dolhansky_Eye_In-Painting_With_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zhangqianhui/Exemplar-GAN-Eye-Inpainting-Tensorflow,35,2019-01-02
-EC-Net: an Edge-aware Point set Consolidation Network,http://openaccess.thecvf.com/content_ECCV_2018/html/Lequan_Yu_EC-Net_an_Edge-aware_ECCV_2018_paper.html,ECCV,2018,https://github.com/yulequan/EC-Net,27,2019-01-02
-Asymmetric Tri-training for Unsupervised Domain Adaptation,http://proceedings.mlr.press/v70/saito17a.html,ICML,2017,https://github.com/vtddggg/ATDA,24,2019-01-02
-Detecting Vanishing Points Using Global Image Context in a Non-Manhattan World,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhai_Detecting_Vanishing_Points_CVPR_2016_paper.html,CVPR,2016,https://github.com/viibridges/gc-horizon-detector,22,2019-01-02
-STD2P: RGBD Semantic Segmentation Using Spatio-Temporal Data-Driven Pooling,http://openaccess.thecvf.com/content_cvpr_2017/html/He_STD2P_RGBD_Semantic_CVPR_2017_paper.html,CVPR,2017,https://github.com/SSAW14/STD2P,22,2019-01-02
-Deep Mean-Shift Priors for Image Restoration,http://papers.nips.cc/paper/6678-deep-mean-shift-priors-for-image-restoration.pdf,NIPS,2017,https://github.com/siavashBigdeli/DMSP,20,2019-01-02
-Beyond Frontal Faces: Improving Person Recognition Using Multiple Cues,http://openaccess.thecvf.com/content_cvpr_2015/html/Zhang_Beyond_Frontal_Faces_2015_CVPR_paper.html,CVPR,2015,https://github.com/sciencefans/Beyond-Frontal-Faces,21,2019-01-02
-SimplE Embedding for Link Prediction in Knowledge Graphs,http://arxiv.org/abs/1802.04868v1,NIPS,2018,https://github.com/Mehran-k/SimplE,42,2019-01-02
-Learning Continuous Semantic Representations of Symbolic Expressions,http://proceedings.mlr.press/v70/allamanis17a.html,ICML,2017,https://github.com/mast-group/eqnet,22,2019-01-02
-CondenseNet: An Efficient DenseNet Using Learned Group Convolutions,http://openaccess.thecvf.com/content_cvpr_2018/papers/Huang_CondenseNet_An_Efficient_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/markdtw/condensenet-tensorflow,22,2019-01-02
-The Numerics of GANs,http://papers.nips.cc/paper/6779-the-numerics-of-gans.pdf,NIPS,2017,https://github.com/LMescheder/TheNumericsOfGANs,20,2019-01-02
-Dense Captioning With Joint Inference and Visual Context,http://openaccess.thecvf.com/content_cvpr_2017/html/Yang_Dense_Captioning_With_CVPR_2017_paper.html,CVPR,2017,https://github.com/linjieyangsc/densecap,24,2019-01-02
-Learning Convolutional Networks for Content-Weighted Image Compression,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Learning_Convolutional_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/limuhit/ImageCompression,25,2019-01-02
-SYQ: Learning Symmetric Quantization for Efficient Deep Neural Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Faraone_SYQ_Learning_Symmetric_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/julianfaraone/SYQ,24,2019-01-02
-Weakly-Supervised Learning of Visual Relations,http://openaccess.thecvf.com/content_iccv_2017/html/Peyre_Weakly-Supervised_Learning_of_ICCV_2017_paper.html,ICCV,2017,https://github.com/jpeyre/unrel,20,2019-01-02
-CSGNet: Neural Shape Parser for Constructive Solid Geometry,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sharma_CSGNet_Neural_Shape_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Hippogriff/CSGNet,21,2019-01-02
-Towards Accurate Multi-Person Pose Estimation in the Wild,http://openaccess.thecvf.com/content_cvpr_2017/html/Papandreou_Towards_Accurate_Multi-Person_CVPR_2017_paper.html,CVPR,2017,https://github.com/hackiey/keypoints,30,2019-01-02
-Improved Fusion of Visual and Language Representations by Dense Symmetric Co-Attention for Visual Question Answering,http://openaccess.thecvf.com/content_cvpr_2018/papers/Nguyen_Improved_Fusion_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/cvlab-tohoku/Dense-CoAttention-Network,33,2019-01-02
-Real-time 'Actor-Critic' Tracking,http://openaccess.thecvf.com/content_ECCV_2018/html/Boyu_Chen_Real-time_Actor-Critic_Tracking_ECCV_2018_paper.html,ECCV,2018,https://github.com/bychen515/ACT,46,2019-01-02
-Flow-Grounded Spatial-Temporal Video Prediction from Still Images,http://openaccess.thecvf.com/content_ECCV_2018/html/Yijun_Li_Flow-Grounded_Spatial-Temporal_Video_ECCV_2018_paper.html,ECCV,2018,https://github.com/Yijunmaverick/FlowGrounded-VideoPrediction,32,2019-01-02
-Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings,http://proceedings.mlr.press/v80/co-reyes18a.html,ICML,2018,https://github.com/wyndwarrior/Sectar,29,2019-01-02
-Dual Discriminator Generative Adversarial Nets,http://papers.nips.cc/paper/6860-dual-discriminator-generative-adversarial-nets.pdf,NIPS,2017,https://github.com/tund/D2GAN,23,2019-01-02
-Partial Transfer Learning With Selective Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Cao_Partial_Transfer_Learning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/thuml/SAN,26,2019-01-02
-Learning Single-View 3D Reconstruction with Limited Pose Supervision,http://openaccess.thecvf.com/content_ECCV_2018/html/Guandao_Yang_A_Unified_Framework_ECCV_2018_paper.html,ECCV,2018,https://github.com/stevenygd/3d-recon,33,2019-01-02
-Cross-Modal Deep Variational Hand Pose Estimation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Spurr_Cross-Modal_Deep_Variational_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/spurra/vae-hands-3d,26,2019-01-02
-Exploiting the Potential of Standard Convolutional Autoencoders for Image Restoration by Evolutionary Search,http://proceedings.mlr.press/v80/suganuma18a.html,ICML,2018,https://github.com/sg-nm/Evolutionary-Autoencoders,23,2019-01-02
-Long Short-Term Memory Kalman Filters: Recurrent Neural Estimators for Pose Regularization,http://openaccess.thecvf.com/content_iccv_2017/html/Coskun_Long_Short-Term_Memory_ICCV_2017_paper.html,ICCV,2017,https://github.com/Seleucia/lstmkf_ICCV2017,24,2019-01-02
-Speaker-Follower Models for Vision-and-Language Navigation,https://arxiv.org/abs/1806.02724,NIPS,2018,https://github.com/ronghanghu/speaker_follower,33,2019-01-02
-Learning Mid-level Filters for Person Re-identification,http://openaccess.thecvf.com/content_cvpr_2014/html/Zhao_Learning_Mid-level_Filters_2014_CVPR_paper.html,CVPR,2014,https://github.com/Robert0812/midfilter_reid,20,2019-01-02
-Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation,http://openaccess.thecvf.com/content_ECCV_2018/html/Liang-Chieh_Chen_Encoder-Decoder_with_Atrous_ECCV_2018_paper.html,ECCV,2018,https://github.com/qixuxiang/deeplabv3plus,28,2019-01-02
-Deep Growing Learning,http://openaccess.thecvf.com/content_iccv_2017/html/Wang_Deep_Growing_Learning_ICCV_2017_paper.html,ICCV,2017,https://github.com/QData/deep2Read,21,2019-01-02
-When Unsupervised Domain Adaptation Meets Tensor Representations,http://openaccess.thecvf.com/content_iccv_2017/html/Lu_When_Unsupervised_Domain_ICCV_2017_paper.html,ICCV,2017,https://github.com/poppinace/TAISL,22,2019-01-02
-DropoutNet: Addressing Cold Start in Recommender Systems,http://papers.nips.cc/paper/7081-dropoutnet-addressing-cold-start-in-recommender-systems.pdf,NIPS,2017,https://github.com/layer6ai-labs/DropoutNet,27,2019-01-02
-Incremental Learning of Object Detectors Without Catastrophic Forgetting,http://openaccess.thecvf.com/content_iccv_2017/html/Shmelkov_Incremental_Learning_of_ICCV_2017_paper.html,ICCV,2017,https://github.com/kshmelkov/incremental_detectors,24,2019-01-02
-Adversarial Feature Matching for Text Generation,http://proceedings.mlr.press/v70/zhang17b.html,ICML,2017,https://github.com/Jeff-HOU/UROP-Adversarial-Feature-Matching-for-Text-Generation,18,2019-01-02
-Explicit Inductive Bias for Transfer Learning with Convolutional Networks,http://proceedings.mlr.press/v80/li18a.html,ICML,2018,https://github.com/holyseven/TransferLearningClassification,24,2019-01-02
-Learning to Blend Photos,http://openaccess.thecvf.com/content_ECCV_2018/html/Wei-Chih_Hung_Learning_to_Blend_ECCV_2018_paper.html,ECCV,2018,https://github.com/hfslyc/LearnToBlend,42,2019-01-02
-Open Set Domain Adaptation,http://openaccess.thecvf.com/content_iccv_2017/html/Busto_Open_Set_Domain_ICCV_2017_paper.html,ICCV,2017,https://github.com/Heliot7/open-set-da,25,2019-01-02
-Learning to Pivot with Adversarial Networks,http://papers.nips.cc/paper/6699-learning-to-pivot-with-adversarial-networks.pdf,NIPS,2017,https://github.com/glouppe/paper-learning-to-pivot,21,2019-01-02
-A Generative Adversarial Approach for Zero-Shot Learning From Noisy Texts,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhu_A_Generative_Adversarial_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/EthanZhu90/ZSL_GAN_CVPR18,122,2019-01-02
-Event-Based Visual Inertial Odometry,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhu_Event-Based_Visual_Inertial_CVPR_2017_paper.html,CVPR,2017,https://github.com/daniilidis-group/event_feature_tracking,27,2019-01-02
-Hyperbolic Neural Networks,http://arxiv.org/abs/1805.09112v2,NIPS,2018,https://github.com/dalab/hyperbolic_nn,37,2019-01-02
-LEGO: Learning Edge With Geometry All at Once by Watching Videos,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_LEGO_Learning_Edge_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zhenheny/LEGO,24,2019-01-02
-Audio-Visual Event Localization in Unconstrained Videos,http://openaccess.thecvf.com/content_ECCV_2018/html/Yapeng_Tian_Audio-Visual_Event_Localization_ECCV_2018_paper.html,ECCV,2018,https://github.com/YapengTian/AVE-ECCV18,25,2019-01-02
-Learning Dynamic Siamese Network for Visual Object Tracking,http://openaccess.thecvf.com/content_iccv_2017/html/Guo_Learning_Dynamic_Siamese_ICCV_2017_paper.html,ICCV,2017,https://github.com/tsingqguo/DSiam,21,2019-01-02
-Structured Generative Adversarial Networks,http://papers.nips.cc/paper/6979-structured-generative-adversarial-networks.pdf,NIPS,2017,https://github.com/thudzj/StructuredGAN,19,2019-01-02
-Neural Code Comprehension: A Learnable Representation of Code Semantics,http://arxiv.org/abs/1806.07336v2,NIPS,2018,https://github.com/spcl/ncc,35,2019-01-02
-Im2Flow: Motion Hallucination From Static Images for Action Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Gao_Im2Flow_Motion_Hallucination_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/rhgao/Im2Flow,22,2019-01-02
-Deep Reinforcement Learning of Marked Temporal Point Processes,http://arxiv.org/abs/1805.09360v1,NIPS,2018,https://github.com/Networks-Learning/tpprl,24,2019-01-02
-Understanding Deep Features With Computer-Generated Imagery,http://openaccess.thecvf.com/content_iccv_2015/html/Aubry_Understanding_Deep_Features_ICCV_2015_paper.html,ICCV,2015,https://github.com/mathieuaubry/features_analysis,19,2019-01-02
-Single Shot Scene Text Retrieval,http://openaccess.thecvf.com/content_ECCV_2018/html/Lluis_Gomez_Single_Shot_Scene_ECCV_2018_paper.html,ECCV,2018,https://github.com/lluisgomez/single-shot-str,29,2019-01-02
-Deep Randomized Ensembles for Metric Learning,http://openaccess.thecvf.com/content_ECCV_2018/html/Hong_Xuan_Randomized_Ensemble_Embeddings_ECCV_2018_paper.html,ECCV,2018,https://github.com/littleredxh/DREML,30,2019-01-02
-Image Super-Resolution Using Dense Skip Connections,http://openaccess.thecvf.com/content_iccv_2017/html/Tong_Image_Super-Resolution_Using_ICCV_2017_paper.html,ICCV,2017,https://github.com/kweisamx/TensorFlow-SR-DenseNet,22,2019-01-02
-Hallucinated-IQA: No-Reference Image Quality Assessment via Adversarial Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lin_Hallucinated-IQA_No-Reference_Image_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kwanyeelin/HIQA,22,2019-01-02
-Neural Architecture Search with Bayesian Optimisation and Optimal Transport,https://arxiv.org/abs/1802.07191,NIPS,2018,https://github.com/kirthevasank/nasbot,39,2019-01-02
-Joint Gap Detection and Inpainting of Line Drawings,http://openaccess.thecvf.com/content_cvpr_2017/html/Sasaki_Joint_Gap_Detection_CVPR_2017_paper.html,CVPR,2017,https://github.com/kaidlc/CVPR2017_linedrawings,19,2019-01-02
-Learning to Multitask,http://arxiv.org/abs/1805.07541v1,NIPS,2018,https://github.com/jfutoma/MGP-RNN,22,2019-01-02
-Learning to Detect Sepsis with a Multitask Gaussian Process RNN Classifier,http://proceedings.mlr.press/v70/futoma17a.html,ICML,2017,https://github.com/jfutoma/MGP-RNN,22,2019-01-02
-Combined Group and Exclusive Sparsity for Deep Neural Networks,http://proceedings.mlr.press/v70/yoon17a.html,ICML,2017,https://github.com/jaehong-yoon93/CGES,21,2019-01-02
-Skeleton Key: Image Captioning by Skeleton-Attribute Decomposition,http://openaccess.thecvf.com/content_cvpr_2017/html/Wang_Skeleton_Key_Image_CVPR_2017_paper.html,CVPR,2017,https://github.com/feiyu1990/Skeleton-key,20,2019-01-02
-Deep High Dynamic Range Imaging with Large Foreground Motions,http://openaccess.thecvf.com/content_ECCV_2018/html/Shangzhe_Wu_Deep_High_Dynamic_ECCV_2018_paper.html,ECCV,2018,https://github.com/elliottwu/DeepHDR,30,2019-01-02
-Who Let the Dogs Out? Modeling Dog Behavior From Visual Data,http://openaccess.thecvf.com/content_cvpr_2018/papers/Ehsani_Who_Let_the_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ehsanik/dogTorch,27,2019-01-02
-GraphBit: Bitwise Interaction Mining via Deep Reinforcement Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Duan_GraphBit_Bitwise_Interaction_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/duanyq14/GraphBit,20,2019-01-02
-Stochastic Generative Hashing,http://proceedings.mlr.press/v70/dai17a.html,ICML,2017,https://github.com/doubling/Stochastic_Generative_Hashing,18,2019-01-02
-Minimal Scene Descriptions from Structure from Motion Models,http://openaccess.thecvf.com/content_cvpr_2014/html/Cao_Minimal_Scene_Descriptions_2014_CVPR_paper.html,CVPR,2014,https://github.com/caosong/minimal_scene,22,2019-01-02
-Context Selection for Embedding Models,http://papers.nips.cc/paper/7067-context-selection-for-embedding-models.pdf,NIPS,2017,https://github.com/blei-lab/context-selection-embedding,20,2019-01-02
-HICO: A Benchmark for Recognizing Human-Object Interactions in Images,http://openaccess.thecvf.com/content_iccv_2015/html/Chao_HICO_A_Benchmark_ICCV_2015_paper.html,ICCV,2015,https://github.com/ywchao/hico_benchmark,18,2019-01-02
-Fully Motion-Aware Network for Video Object Detection,http://openaccess.thecvf.com/content_ECCV_2018/html/Shiyao_Wang_Fully_Motion-Aware_Network_ECCV_2018_paper.html,ECCV,2018,https://github.com/wangshy31/MANet_for_Video_Object_Detection,41,2019-01-02
-DualNet: Learn Complementary Features for Image Recognition,http://openaccess.thecvf.com/content_iccv_2017/html/Hou_DualNet_Learn_Complementary_ICCV_2017_paper.html,ICCV,2017,https://github.com/ustc-vim/dualnet,17,2019-01-02
-PiCANet: Learning Pixel-Wise Contextual Attention for Saliency Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_PiCANet_Learning_Pixel-Wise_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Ugness/PiCANet-Implementation,28,2019-01-02
-A Bayesian Data Augmentation Approach for Learning Deep Models,http://papers.nips.cc/paper/6872-a-bayesian-data-augmentation-approach-for-learning-deep-models.pdf,NIPS,2017,https://github.com/toantm/keras-bda,18,2019-01-02
-Attentive Semantic Video Generation Using Captions,http://openaccess.thecvf.com/content_iccv_2017/html/Marwah_Attentive_Semantic_Video_ICCV_2017_paper.html,ICCV,2017,https://github.com/Singularity42/cap2vid,18,2019-01-02
-Diversity Regularized Spatiotemporal Attention for Video-Based Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Diversity_Regularized_Spatiotemporal_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ShuangLI59/Diversity-Regularized-Spatiotemporal-Attention,25,2019-01-02
-Accumulated Stability Voting: A Robust Descriptor From Descriptors of Multiple Scales,http://openaccess.thecvf.com/content_cvpr_2016/html/Yang_Accumulated_Stability_Voting_CVPR_2016_paper.html,CVPR,2016,https://github.com/shamangary/ASV,19,2019-01-02
-PieAPP: Perceptual Image-Error Assessment Through Pairwise Preference,http://openaccess.thecvf.com/content_cvpr_2018/papers/Prashnani_PieAPP_Perceptual_Image-Error_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/prashnani/PerceptualImageError,36,2019-01-02
-Link Prediction Based on Graph Neural Networks,http://arxiv.org/abs/1802.09691v2,NIPS,2018,https://github.com/muhanzhang/SEAL,41,2019-01-02
-Multi-scale Residual Network for Image Super-Resolution,http://openaccess.thecvf.com/content_ECCV_2018/html/Juncheng_Li_Multi-scale_Residual_Network_ECCV_2018_paper.html,ECCV,2018,https://github.com/MIVRC/MSRN-PyTorch,41,2019-01-02
-Learning Compact Geometric Features,http://openaccess.thecvf.com/content_iccv_2017/html/Khoury_Learning_Compact_Geometric_ICCV_2017_paper.html,ICCV,2017,https://github.com/marckhoury/CGF,19,2019-01-02
-GeoDesc: Learning Local Descriptors by Integrating Geometry Constraints,http://openaccess.thecvf.com/content_ECCV_2018/html/Zixin_Luo_Learning_Local_Descriptors_ECCV_2018_paper.html,ECCV,2018,https://github.com/lzx551402/geodesc,32,2019-01-02
-Fast Edge-Preserving PatchMatch for Large Displacement Optical Flow,http://openaccess.thecvf.com/content_cvpr_2014/html/Bao_Fast_Edge-Preserving_PatchMatch_2014_CVPR_paper.html,CVPR,2014,https://github.com/linchaobao/EPPM,18,2019-01-02
-Scene Parsing With Global Context Embedding,http://openaccess.thecvf.com/content_iccv_2017/html/Hung_Scene_Parsing_With_ICCV_2017_paper.html,ICCV,2017,https://github.com/hfslyc/GCPNet,20,2019-01-02
-DVAE#: Discrete Variational Autoencoders with Relaxed Boltzmann Priors,http://arxiv.org/abs/1805.07445v3,NIPS,2018,https://github.com/dojoteef/dvae,18,2019-01-02
-Deep Metric Learning via Facility Location,http://openaccess.thecvf.com/content_cvpr_2017/html/Song_Deep_Metric_Learning_CVPR_2017_paper.html,CVPR,2017,https://github.com/CongWeilin/cluster-loss-tensorflow,20,2019-01-02
-Proposal Flow,http://openaccess.thecvf.com/content_cvpr_2016/html/Ham_Proposal_Flow_CVPR_2016_paper.html,CVPR,2016,https://github.com/bsham/ProposalFlow,20,2019-01-02
-Semantic Component Analysis,http://openaccess.thecvf.com/content_iccv_2015/html/Murdock_Semantic_Component_Analysis_ICCV_2015_paper.html,ICCV,2015,https://github.com/aubry74/visual-word2vec,17,2019-01-02
-Learning Large-Scale Automatic Image Colorization,http://openaccess.thecvf.com/content_iccv_2015/html/Deshpande_Learning_Large-Scale_Automatic_ICCV_2015_paper.html,ICCV,2015,https://github.com/aditya12agd5/iccv15_lscolorization,17,2019-01-02
-Predictive-Corrective Networks for Action Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Dave_Predictive-Corrective_Networks_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/achalddave/predictive-corrective,18,2019-01-02
-MDNet: A Semantically and Visually Interpretable Medical Image Diagnosis Network,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_MDNet_A_Semantically_CVPR_2017_paper.html,CVPR,2017,https://github.com/zizhaozhang/mdnet-cvpr2017,18,2019-01-02
-Scale-Aware Alignment of Hierarchical Image Segmentation,http://openaccess.thecvf.com/content_cvpr_2016/html/Chen_Scale-Aware_Alignment_of_CVPR_2016_paper.html,CVPR,2016,https://github.com/yuhuayc/align-hier,20,2019-01-02
-Dimensionality-Driven Learning with Noisy Labels,http://proceedings.mlr.press/v80/ma18d.html,ICML,2018,https://github.com/xingjunm/dimensionality-driven-learning,20,2019-01-02
-Estimating Mutual Information for Discrete-Continuous Mixtures,http://papers.nips.cc/paper/7180-estimating-mutual-information-for-discrete-continuous-mixtures.pdf,NIPS,2017,https://github.com/wgao9/mixed_KSG,16,2019-01-02
-Learning to Push the Limits of Efficient FFT-Based Image Deconvolution,http://openaccess.thecvf.com/content_iccv_2017/html/Kruse_Learning_to_Push_ICCV_2017_paper.html,ICCV,2017,https://github.com/uschmidt83/fourier-deconvolution-network,16,2019-01-02
-Accuracy First: Selecting a Differential Privacy Level for Accuracy Constrained ERM,http://papers.nips.cc/paper/6850-accuracy-first-selecting-a-differential-privacy-level-for-accuracy-constrained-erm.pdf,NIPS,2017,https://github.com/steven7woo/Accuracy-First-Differential-Privacy,21,2019-01-02
-Crowd Counting With Deep Negative Correlation Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Shi_Crowd_Counting_With_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/shizenglin/Deep-NCL,20,2019-01-02
-Triplet Loss in Siamese Network for Object Tracking,http://openaccess.thecvf.com/content_ECCV_2018/html/Xingping_Dong_Triplet_Loss_with_ECCV_2018_paper.html,ECCV,2018,https://github.com/shenjianbing/TripletTracking,17,2019-01-02
-Learning Generative ConvNets via Multi-Grid Modeling and Sampling,http://openaccess.thecvf.com/content_cvpr_2018/papers/Gao_Learning_Generative_ConvNets_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ruiqigao/Multigrid_learning,17,2019-01-02
-Explainable Neural Computation via Stack Neural Module Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Ronghang_Hu_Explainable_Neural_Computation_ECCV_2018_paper.html,ECCV,2018,https://github.com/ronghanghu/snmn,29,2019-01-02
-FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis,http://openaccess.thecvf.com/content_cvpr_2018/papers/Verma_FeaStNet_Feature-Steered_Graph_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/nitika-verma/FeaStNet,18,2019-01-02
-Deep Future Gaze: Gaze Anticipation on Egocentric Videos Using Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Deep_Future_Gaze_CVPR_2017_paper.html,CVPR,2017,https://github.com/Mengmi/deepfuturegaze_gan,17,2019-01-02
-3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data,https://arxiv.org/abs/1807.02547,NIPS,2018,https://github.com/mariogeiger/se3cnn,33,2019-01-02
-FALKON: An Optimal Large Scale Kernel Method,http://papers.nips.cc/paper/6978-falkon-an-optimal-large-scale-kernel-method.pdf,NIPS,2017,https://github.com/LCSL/FALKON_paper,17,2019-01-02
-Towards Faster Training of Global Covariance Pooling Networks by Iterative Matrix Square Root Normalization,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Towards_Faster_Training_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jiangtaoxie/fast-MPN-COV,40,2019-01-02
-Simultaneous Feature Learning and Hash Coding With Deep Neural Networks,http://openaccess.thecvf.com/content_cvpr_2015/html/Lai_Simultaneous_Feature_Learning_2015_CVPR_paper.html,CVPR,2015,https://github.com/HYPJUDY/caffe-dnnh,16,2019-01-02
-POSEidon: Face-From-Depth for Driver Pose Estimation,http://openaccess.thecvf.com/content_cvpr_2017/html/Borghi_POSEidon_Face-From-Depth_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/gdubrg/POSEidon-Biwi,20,2019-01-02
-Semantic Segmentation With Boundary Neural Fields,http://openaccess.thecvf.com/content_cvpr_2016/html/Bertasius_Semantic_Segmentation_With_CVPR_2016_paper.html,CVPR,2016,https://github.com/gberta/BNF_globalization,19,2019-01-02
-InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations,http://papers.nips.cc/paper/6971-infogail-interpretable-imitation-learning-from-visual-demonstrations.pdf,NIPS,2017,https://github.com/ermongroup/infogail,20,2019-01-02
-Neural system identification for large populations separating “what” and “where”,http://papers.nips.cc/paper/6942-neural-system-identification-for-large-populations-separating-what-and-where.pdf,NIPS,2017,https://github.com/david-klindt/NIPS2017,17,2019-01-02
-Zero-Inflated Exponential Family Embeddings,http://proceedings.mlr.press/v70/liu17a.html,ICML,2017,https://github.com/blei-lab/zero-inflated-embedding,20,2019-01-02
-Visual Question Reasoning on General Dependency Tree,http://openaccess.thecvf.com/content_cvpr_2018/papers/Cao_Visual_Question_Reasoning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/bezorro/ACMN-Pytorch,17,2019-01-02
-Deep Unsupervised Similarity Learning Using Partially Ordered Sets,http://openaccess.thecvf.com/content_cvpr_2017/html/Bautista_Deep_Unsupervised_Similarity_CVPR_2017_paper.html,CVPR,2017,https://github.com/asanakoy/deep_unsupervised_posets,17,2019-01-02
-Disentangling Factors of Variation with Cycle-Consistent Variational Auto-Encoders,http://openaccess.thecvf.com/content_ECCV_2018/html/Ananya_Harsh_Jha_Disentangling_Factors_of_ECCV_2018_paper.html,ECCV,2018,https://github.com/ananyahjha93/cycle-consistent-vae,19,2019-01-02
-Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html,ICCV,2017,https://github.com/adepierre/Caffe_CycleGAN,20,2019-01-02
-Zero-Shot Visual Recognition Using Semantics-Preserving Adversarial Embedding Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Zero-Shot_Visual_Recognition_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zjuchenlong/sp-aen.cvpr18,20,2019-01-02
-Weakly-Supervised Action Segmentation With Iterative Soft Boundary Assignment,http://openaccess.thecvf.com/content_cvpr_2018/papers/Ding_Weakly-Supervised_Action_Segmentation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Zephyr-D/TCFPN-ISBA,16,2019-01-02
-Label Distribution Learning Forests,http://papers.nips.cc/paper/6685-label-distribution-learning-forests.pdf,NIPS,2017,https://github.com/shenwei1231/caffe-LDLForests,16,2019-01-02
-Shallow Updates for Deep Reinforcement Learning,http://papers.nips.cc/paper/6906-shallow-updates-for-deep-reinforcement-learning.pdf,NIPS,2017,https://github.com/Shallow-Updates-for-Deep-RL/Shallow_Updates_for_Deep_RL,15,2019-01-02
-Learning Spherical Convolution for Fast Features from 360° Imagery,http://papers.nips.cc/paper/6656-learning-spherical-convolution-for-fast-features-from-360-imagery.pdf,NIPS,2017,https://github.com/sammy-su/Spherical-Convolution,22,2019-01-02
-Bottom-Up and Top-Down Reasoning With Hierarchical Rectified Gaussians,http://openaccess.thecvf.com/content_cvpr_2016/html/Hu_Bottom-Up_and_Top-Down_CVPR_2016_paper.html,CVPR,2016,https://github.com/peiyunh/rg-mpii,16,2019-01-02
-"Chained Multi-Stream Networks Exploiting Pose, Motion, and Appearance for Action Classification and Detection",http://openaccess.thecvf.com/content_iccv_2017/html/Zolfaghari_Chained_Multi-Stream_Networks_ICCV_2017_paper.html,ICCV,2017,https://github.com/mzolfaghari/chained-multistream-networks,19,2019-01-02
-BIER - Boosting Independent Embeddings Robustly,http://openaccess.thecvf.com/content_iccv_2017/html/Opitz_BIER_-_Boosting_ICCV_2017_paper.html,ICCV,2017,https://github.com/mop/bier,18,2019-01-02
-Seeing 3D Chairs: Exemplar Part-based 2D-3D Alignment using a Large Dataset of CAD Models,http://openaccess.thecvf.com/content_cvpr_2014/html/Aubry_Seeing_3D_Chairs_2014_CVPR_paper.html,CVPR,2014,https://github.com/mathieuaubry/seeing3Dchairs,15,2019-01-02
-Deep One-Class Classification,http://proceedings.mlr.press/v80/ruff18a.html,ICML,2018,https://github.com/lukasruff/Deep-SVDD,34,2019-01-02
-Coded Sparse Matrix Multiplication,http://proceedings.mlr.press/v80/wang18e.html,ICML,2018,https://github.com/ksopyla/CudaDotProd,16,2019-01-02
-Product Sparse Coding,http://openaccess.thecvf.com/content_cvpr_2014/html/Ge_Product_Sparse_Coding_2014_CVPR_paper.html,CVPR,2014,https://github.com/ksopyla/CudaDotProd,16,2019-01-02
-Learning Descriptor Networks for 3D Shape Synthesis and Analysis,http://openaccess.thecvf.com/content_cvpr_2018/papers/Xie_Learning_Descriptor_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jianwen-xie/3DDescriptorNet,19,2019-01-02
-Automatic Discovery of the Statistical Types of Variables in a Dataset,http://proceedings.mlr.press/v70/valera17a.html,ICML,2017,https://github.com/ivaleraM/DataTypes,15,2019-01-02
-3D Object Reconstruction From Hand-Object Interactions,http://openaccess.thecvf.com/content_iccv_2015/html/Tzionas_3D_Object_Reconstruction_ICCV_2015_paper.html,ICCV,2015,https://github.com/dimtziwnas/InHandScanningICCV15_Reconstruction,15,2019-01-02
-Structure From Motion With Objects,http://openaccess.thecvf.com/content_cvpr_2016/html/Crocco_Structure_From_Motion_CVPR_2016_paper.html,CVPR,2016,https://github.com/danylaksono/Android-SfM-client,17,2019-01-02
-EPINET: A Fully-Convolutional Neural Network Using Epipolar Geometry for Depth From Light Field Images,http://openaccess.thecvf.com/content_cvpr_2018/papers/Shin_EPINET_A_Fully-Convolutional_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/chshin10/epinet,18,2019-01-02
-Deep Learning with Topological Signatures,http://papers.nips.cc/paper/6761-deep-learning-with-topological-signatures.pdf,NIPS,2017,https://github.com/c-hofer/nips2017,17,2019-01-02
-Conditional Image-Text Embedding Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Bryan_Plummer_Conditional_Image-Text_Embedding_ECCV_2018_paper.html,ECCV,2018,https://github.com/BryanPlummer/cite,18,2019-01-02
-Functional Gradient Boosting based on Residual Network Perception,http://proceedings.mlr.press/v80/nitanda18a.html,ICML,2018,https://github.com/anitan0925/ResFGB,16,2019-01-02
-Deep Multitask Architecture for Integrated 2D and 3D Human Sensing,http://openaccess.thecvf.com/content_cvpr_2017/html/Popa_Deep_Multitask_Architecture_CVPR_2017_paper.html,CVPR,2017,https://github.com/alinionutpopa/dmhs,16,2019-01-02
-Action Sets: Weakly Supervised Action Segmentation Without Ordering Constraints,http://openaccess.thecvf.com/content_cvpr_2018/papers/Richard_Action_Sets_Weakly_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/alexanderrichard/action-sets,14,2019-01-02
-Grounding Referring Expressions in Images by Variational Context,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Grounding_Referring_Expressions_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yuleiniu/vc,15,2019-01-02
-Automatic Spatially-Aware Fashion Concept Discovery,http://openaccess.thecvf.com/content_iccv_2017/html/Han_Automatic_Spatially-Aware_Fashion_ICCV_2017_paper.html,ICCV,2017,https://github.com/xthan/fashion-200k,20,2019-01-02
-Single-Image Crowd Counting via Multi-Column Convolutional Neural Network,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhang_Single-Image_Crowd_Counting_CVPR_2016_paper.html,CVPR,2016,https://github.com/uestcchicken/crowd-counting-MCNN,19,2019-01-02
-Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems,http://openaccess.thecvf.com/content_iccv_2017/html/Meinhardt_Learning_Proximal_Operators_ICCV_2017_paper.html,ICCV,2017,https://github.com/tum-vision/learn_prox_ops,15,2019-01-02
-A Spectral Approach to Gradient Estimation for Implicit Distributions,http://proceedings.mlr.press/v80/shi18a.html,ICML,2018,https://github.com/thjashin/spectral-stein-grad,17,2019-01-02
-Toward Characteristic-Preserving Image-based Virtual Try-On Network,http://openaccess.thecvf.com/content_ECCV_2018/html/Bochao_Wang_Toward_Characteristic-Preserving_Image-based_ECCV_2018_paper.html,ECCV,2018,https://github.com/sergeywong/cp-vton,29,2019-01-02
-Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Cui_Large_Scale_Fine-Grained_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/richardaecn/cvpr18-inaturalist-transfer,31,2019-01-02
-Weakly- and Semi-Supervised Panoptic Segmentation,http://openaccess.thecvf.com/content_ECCV_2018/html/Anurag_Arnab_Weakly-_and_Semi-Supervised_ECCV_2018_paper.html,ECCV,2018,https://github.com/qizhuli/Weakly-Supervised-Panoptic-Segmentation,46,2019-01-02
-Quantized Convolutional Neural Networks for Mobile Devices,http://openaccess.thecvf.com/content_cvpr_2016/html/Wu_Quantized_Convolutional_Neural_CVPR_2016_paper.html,CVPR,2016,https://github.com/OluwoleOyetoke/Computer_Vision_Using_TensorFlowLite,20,2019-01-02
-Fully-Adaptive Feature Sharing in Multi-Task Networks With Applications in Person Attribute Classification,http://openaccess.thecvf.com/content_cvpr_2017/html/Lu_Fully-Adaptive_Feature_Sharing_CVPR_2017_paper.html,CVPR,2017,https://github.com/luyongxi/deep_share,19,2019-01-02
-StyleBank: An Explicit Representation for Neural Image Style Transfer,http://openaccess.thecvf.com/content_cvpr_2017/html/Chen_StyleBank_An_Explicit_CVPR_2017_paper.html,CVPR,2017,https://github.com/jxcodetw/Stylebank,16,2019-01-02
-ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_ISTA-Net_Interpretable_Optimization-Inspired_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jianzhangcs/ISTA-Net,22,2019-01-02
-Spatially-Varying Blur Detection Based on Multiscale Fused and Sorted Transform Coefficients of Gradient Magnitudes,http://openaccess.thecvf.com/content_cvpr_2017/html/Golestaneh_Spatially-Varying_Blur_Detection_CVPR_2017_paper.html,CVPR,2017,https://github.com/isalirezag/HiFST,16,2019-01-02
-Predicting Gaze in Egocentric Video by Learning Task-dependent Attention Transition,http://openaccess.thecvf.com/content_ECCV_2018/html/Huang_Predicting_Gaze_in_ECCV_2018_paper.html,ECCV,2018,https://github.com/hyf015/egocentric-gaze-prediction,16,2019-01-02
-Unsupervised Geometry-Aware Representation for 3D Human Pose Estimation,http://openaccess.thecvf.com/content_ECCV_2018/html/Helge_Rhodin_Unsupervised_Geometry-Aware_Representation_ECCV_2018_paper.html,ECCV,2018,https://github.com/hrhodin/UnsupervisedGeometryAwareRepresentationLearning,37,2019-01-02
-RoomNet: End-To-End Room Layout Estimation,http://openaccess.thecvf.com/content_iccv_2017/html/Lee_RoomNet_End-To-End_Room_ICCV_2017_paper.html,ICCV,2017,https://github.com/GitBoSun/roomnet,17,2019-01-02
-Federated Multi-Task Learning,http://papers.nips.cc/paper/7029-federated-multi-task-learning.pdf,NIPS,2017,https://github.com/gingsmith/fmtl,16,2019-01-02
-Revisiting Deep Intrinsic Image Decompositions,http://openaccess.thecvf.com/content_cvpr_2018/papers/Fan_Revisiting_Deep_Intrinsic_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/fqnchina/IntrinsicImage,17,2019-01-02
-Few-Shot Learning Through an Information Retrieval Lens,http://papers.nips.cc/paper/6820-few-shot-learning-through-an-information-retrieval-lens.pdf,NIPS,2017,https://github.com/eleniTriantafillou/few_shot_mAP_public,16,2019-01-02
-Learning Temporal Embeddings for Complex Video Analysis,http://openaccess.thecvf.com/content_iccv_2015/html/Ramanathan_Learning_Temporal_Embeddings_ICCV_2015_paper.html,ICCV,2015,https://github.com/eevignesh/videovector,14,2019-01-02
-Streaming Weak Submodularity: Interpreting Neural Networks on the Fly,http://papers.nips.cc/paper/6993-streaming-weak-submodularity-interpreting-neural-networks-on-the-fly.pdf,NIPS,2017,https://github.com/eelenberg/streak,14,2019-01-02
-Structure-Measure: A New Way to Evaluate Foreground Maps,http://openaccess.thecvf.com/content_iccv_2017/html/Fan_Structure-Measure_A_New_ICCV_2017_paper.html,ICCV,2017,https://github.com/DengPingFan/S-measure,15,2019-01-02
-Stacked Conditional Generative Adversarial Networks for Jointly Learning Shadow Detection and Shadow Removal,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Stacked_Conditional_Generative_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/DeepInsight-PCALab/ST-CGAN,20,2019-01-02
-Structured Feature Selection,http://openaccess.thecvf.com/content_iccv_2015/html/Gao_Structured_Feature_Selection_ICCV_2015_paper.html,ICCV,2015,https://github.com/csliangdu/FSASL,17,2019-01-02
-Convolutional Sequence to Sequence Model for Human Dynamics,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Convolutional_Sequence_to_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/chaneyddtt/Convolutional-Sequence-to-Sequence-Model-for-Human-Dynamics,15,2019-01-02
-Bayesian Optimization of Combinatorial Structures,http://proceedings.mlr.press/v80/baptista18a.html,ICML,2018,https://github.com/baptistar/BOCS,18,2019-01-02
-Off-policy evaluation for slate recommendation,http://papers.nips.cc/paper/6954-off-policy-evaluation-for-slate-recommendation.pdf,NIPS,2017,https://github.com/adith387/slates_semisynth_expts,15,2019-01-02
-Interactive Segmentation on RGBD Images via Cue Selection,http://openaccess.thecvf.com/content_cvpr_2016/html/Feng_Interactive_Segmentation_on_CVPR_2016_paper.html,CVPR,2016,https://github.com/ZVsion/rgbd_image_segmentation,14,2019-01-02
-Weakly Supervised Affordance Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Sawatzky_Weakly_Supervised_Affordance_CVPR_2017_paper.html,CVPR,2017,https://github.com/ykztawas/Weakly-Supervised-Affordance-Detection,13,2019-01-02
-3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration,http://openaccess.thecvf.com/content_ECCV_2018/html/Zi_Jian_Yew_3DFeat-Net_Weakly_Supervised_ECCV_2018_paper.html,ECCV,2018,https://github.com/yewzijian/3DFeatNet,27,2019-01-02
-Towards Human-Machine Cooperation: Self-Supervised Sample Mining for Object Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Towards_Human-Machine_Cooperation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yanxp/SSM,13,2019-01-02
-Captioning Images With Diverse Objects,http://openaccess.thecvf.com/content_cvpr_2017/html/Venugopalan_Captioning_Images_With_CVPR_2017_paper.html,CVPR,2017,https://github.com/vsubhashini/noc,15,2019-01-02
-NAG: Network for Adversary Generation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Mopuri_NAG_Network_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/val-iisc/nag,16,2019-01-02
-Variational Dropout Sparsifies Deep Neural Networks,http://proceedings.mlr.press/v70/molchanov17a.html,ICML,2017,https://github.com/soskek/variational_dropout_sparsifies_dnn,15,2019-01-02
-Fast Video Object Segmentation by Reference-Guided Mask Propagation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Oh_Fast_Video_Object_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/seoungwugoh/RGMP,27,2019-01-02
-Oriented Edge Forests for Boundary Detection,http://openaccess.thecvf.com/content_cvpr_2015/html/Hallman_Oriented_Edge_Forests_2015_CVPR_paper.html,CVPR,2015,https://github.com/samhallman/oef,13,2019-01-02
-Learning to See by Moving,http://openaccess.thecvf.com/content_iccv_2015/html/Agrawal_Learning_to_See_ICCV_2015_paper.html,ICCV,2015,https://github.com/pulkitag/learning-to-see-by-moving,14,2019-01-02
-Multi-Scale Weighted Nuclear Norm Image Restoration,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yair_Multi-Scale_Weighted_Nuclear_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/noamyairTC/MSWNNM,14,2019-01-02
-"Total Capture: A 3D Deformation Model for Tracking Faces, Hands, and Bodies",http://openaccess.thecvf.com/content_cvpr_2018/papers/Joo_Total_Capture_A_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Myzhencai/Total-Capture,17,2019-01-02
-Recurrent 3D Pose Sequence Machines,http://openaccess.thecvf.com/content_cvpr_2017/html/Lin_Recurrent_3D_Pose_CVPR_2017_paper.html,CVPR,2017,https://github.com/MudeLin/RPSM,15,2019-01-02
-Hierarchical Relational Networks for Group Activity Recognition and Retrieval,http://openaccess.thecvf.com/content_ECCV_2018/html/Mostafa_Ibrahim_Hierarchical_Relational_Networks_ECCV_2018_paper.html,ECCV,2018,https://github.com/mostafa-saad/hierarchical-relational-network,22,2019-01-02
-Collaborative and Adversarial Network for Unsupervised Domain Adaptation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Collaborative_and_Adversarial_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/mahfuj9346449/iCAN,22,2019-01-02
-Wasserstein Generative Adversarial Networks,http://proceedings.mlr.press/v70/arjovsky17a.html,ICML,2017,https://github.com/luslab/scRNAseq-WGAN-GP,15,2019-01-02
-ReconNet: Non-Iterative Reconstruction of Images From Compressively Sensed Measurements,http://openaccess.thecvf.com/content_cvpr_2016/html/Kulkarni_ReconNet_Non-Iterative_Reconstruction_CVPR_2016_paper.html,CVPR,2016,https://github.com/KuldeepKulkarni/ReconNet,15,2019-01-02
-Adversarial Attack on Graph Structured Data,http://proceedings.mlr.press/v80/dai18b.html,ICML,2018,https://github.com/Hanjun-Dai/graph_adversarial_attack,17,2019-01-02
-To Trust Or Not To Trust A Classifier,http://arxiv.org/abs/1805.11783v1,NIPS,2018,https://github.com/google/TrustScore,23,2019-01-02
-Efficient Neural Audio Synthesis,http://proceedings.mlr.press/v80/kalchbrenner18a.html,ICML,2018,https://github.com/fedden/TensorFlow-Efficient-Neural-Audio-Synthesis,15,2019-01-02
-Visual Coreference Resolution in Visual Dialog using Neural Module Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Satwik_Kottur_Visual_Coreference_Resolution_ECCV_2018_paper.html,ECCV,2018,https://github.com/facebookresearch/corefnmn,25,2019-01-02
-"ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events",http://papers.nips.cc/paper/6932-extremeweather-a-large-scale-climate-dataset-for-semi-supervised-detection-localization-and-understanding-of-extreme-weather-events.pdf,NIPS,2017,https://github.com/eracah/hur-detect,13,2019-01-02
-Estimating Accuracy from Unlabeled Data: A Probabilistic Logic Approach,http://papers.nips.cc/paper/7023-estimating-accuracy-from-unlabeled-data-a-probabilistic-logic-approach.pdf,NIPS,2017,https://github.com/eaplatanios/makina,16,2019-01-02
-Spherical convolutions and their application in molecular modelling,http://papers.nips.cc/paper/6935-spherical-convolutions-and-their-application-in-molecular-modelling.pdf,NIPS,2017,https://github.com/deepfold/NIPS2017,14,2019-01-02
-Multi-Information Source Optimization,http://papers.nips.cc/paper/7016-multi-information-source-optimization.pdf,NIPS,2017,https://github.com/deepfold/NIPS2017,14,2019-01-02
-Learning 3D Shape Completion From Laser Scan Data With Weak Supervision,http://openaccess.thecvf.com/content_cvpr_2018/papers/Stutz_Learning_3D_Shape_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/davidstutz/cvpr2018-shape-completion,17,2019-01-02
-VQS: Linking Segmentations to Questions and Answers for Supervised Attention in VQA and Question-Focused Semantic Segmentation,http://openaccess.thecvf.com/content_iccv_2017/html/Gan_VQS_Linking_Segmentations_ICCV_2017_paper.html,ICCV,2017,https://github.com/Cold-Winter/vqs,14,2019-01-02
-Neural Face Editing With Intrinsic Image Disentangling,http://openaccess.thecvf.com/content_cvpr_2017/html/Shu_Neural_Face_Editing_CVPR_2017_paper.html,CVPR,2017,https://github.com/zhixinshu/NeuralFaceEditing,14,2019-01-02
-Convexified Convolutional Neural Networks,http://proceedings.mlr.press/v70/zhang17f.html,ICML,2017,https://github.com/zhangyuc/CCNN,12,2019-01-02
-Adversarial Complementary Learning for Weakly Supervised Object Localization,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Adversarial_Complementary_Learning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/xiaomengyc/ACoL,39,2019-01-02
-Awesome Typography: Statistics-Based Text Effects Transfer,http://openaccess.thecvf.com/content_cvpr_2017/html/Yang_Awesome_Typography_Statistics-Based_CVPR_2017_paper.html,CVPR,2017,https://github.com/williamyang1991/Text-Effects-Transfer,17,2019-01-02
-"Hunt For The Unique, Stable, Sparse And Fast Feature Learning On Graphs",http://papers.nips.cc/paper/6614-hunt-for-the-unique-stable-sparse-and-fast-feature-learning-on-graphs.pdf,NIPS,2017,https://github.com/vermaMachineLearning/FGSD,13,2019-01-02
-Consensus Convolutional Sparse Coding,http://openaccess.thecvf.com/content_iccv_2017/html/Choudhury_Consensus_Convolutional_Sparse_ICCV_2017_paper.html,ICCV,2017,https://github.com/vccimaging/CCSC_code_ICCV2017,13,2019-01-02
-Reflection Removal Using Ghosting Cues,http://openaccess.thecvf.com/content_cvpr_2015/html/Shih_Reflection_Removal_Using_2015_CVPR_paper.html,CVPR,2015,https://github.com/thongnguyendev/single_image,14,2019-01-02
-Streaming Sparse Gaussian Process Approximations,http://papers.nips.cc/paper/6922-streaming-sparse-gaussian-process-approximations.pdf,NIPS,2017,https://github.com/thangbui/streaming_sparse_gp,17,2019-01-02
-Image Transformer,http://proceedings.mlr.press/v80/parmar18a.html,ICML,2018,https://github.com/ssingal05/ImageTransformer,14,2019-01-02
-Semantic Filtering,http://openaccess.thecvf.com/content_cvpr_2016/html/Yang_Semantic_Filtering_CVPR_2016_paper.html,CVPR,2016,https://github.com/shenshen-hungry/Semantic-CNN,16,2019-01-02
-Objects that Sound,http://openaccess.thecvf.com/content_ECCV_2018/html/Relja_Arandjelovic_Objects_that_Sound_ECCV_2018_paper.html,ECCV,2018,https://github.com/rohitrango/objects-that-sound,20,2019-01-02
-Arbitrary Style Transfer With Deep Feature Reshuffle,http://openaccess.thecvf.com/content_cvpr_2018/papers/Gu_Arbitrary_Style_Transfer_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/msracver/Style-Feature-Reshuffle,17,2019-01-02
-StoryGraphs: Visualizing Character Interactions as a Timeline,http://openaccess.thecvf.com/content_cvpr_2014/html/Tapaswi_StoryGraphs_Visualizing_Character_2014_CVPR_paper.html,CVPR,2014,https://github.com/makarandtapaswi/StoryGraphs_CVPR2014,14,2019-01-02
-Deep Supervised Discrete Hashing,http://papers.nips.cc/paper/6842-deep-supervised-discrete-hashing.pdf,NIPS,2017,https://github.com/liqi-casia/DSDH-HashingCode,16,2019-01-02
-Convolutional Neural Networks for No-Reference Image Quality Assessment,http://openaccess.thecvf.com/content_cvpr_2014/html/Kang_Convolutional_Neural_Networks_2014_CVPR_paper.html,CVPR,2014,https://github.com/lidq92/CNNIQA,16,2019-01-02
-Realistic Dynamic Facial Textures From a Single Image Using GANs,http://openaccess.thecvf.com/content_iccv_2017/html/Olszewski_Realistic_Dynamic_Facial_ICCV_2017_paper.html,ICCV,2017,https://github.com/leehomyc/ICCV-2017-Paper,14,2019-01-02
-Unrolled Memory Inner-Products: An Abstract GPU Operator for Efficient Vision-Related Computations,http://openaccess.thecvf.com/content_iccv_2017/html/Lin_Unrolled_Memory_Inner-Products_ICCV_2017_paper.html,ICCV,2017,https://github.com/johnjohnlin/UMI,12,2019-01-02
-CTAP: Complementary Temporal Action Proposal Generation,http://openaccess.thecvf.com/content_ECCV_2018/html/Jiyang_Gao_CTAP_Complementary_Temporal_ECCV_2018_paper.html,ECCV,2018,https://github.com/jiyanggao/CTAP,18,2019-01-02
-Deep Cross-Modal Hashing,http://openaccess.thecvf.com/content_cvpr_2017/html/Jiang_Deep_Cross-Modal_Hashing_CVPR_2017_paper.html,CVPR,2017,https://github.com/jiangqy/DCMH-CVPR2017,22,2019-01-02
-Coordinated Multi-Agent Imitation Learning,http://proceedings.mlr.press/v70/le17a.html,ICML,2017,https://github.com/hoangminhle/MultiAgent-ImitationLearning,12,2019-01-02
-Convolutional Neural Network Architecture for Geometric Matching,http://openaccess.thecvf.com/content_cvpr_2017/html/Rocco_Convolutional_Neural_Network_CVPR_2017_paper.html,CVPR,2017,https://github.com/hjweide/convnet-for-geometric-matching,14,2019-01-02
-Parallax-tolerant Image Stitching,http://openaccess.thecvf.com/content_cvpr_2014/html/Zhang_Parallax-tolerant_Image_Stitching_2014_CVPR_paper.html,CVPR,2014,https://github.com/gain2217/Robust_Elastic_Warping,20,2019-01-02
-Decouple Learning for Parameterized Image Operators,http://openaccess.thecvf.com/content_ECCV_2018/html/Qingnan_Fan_Learning_to_Learn_ECCV_2018_paper.html,ECCV,2018,https://github.com/fqnchina/DecoupleLearning,12,2019-01-02
-Local Spectral Graph Convolution for Point Set Feature Learning,http://openaccess.thecvf.com/content_ECCV_2018/html/Chu_Wang_Local_Spectral_Graph_ECCV_2018_paper.html,ECCV,2018,https://github.com/fate3439/LocalSpecGCN,21,2019-01-02
-Low-Shot Learning With Large-Scale Diffusion,http://openaccess.thecvf.com/content_cvpr_2018/papers/Douze_Low-Shot_Learning_With_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/facebookresearch/low-shot-with-diffusion,19,2019-01-02
-Glimpse Clouds: Human Activity Recognition From Unstructured Feature Points,http://openaccess.thecvf.com/content_cvpr_2018/papers/Baradel_Glimpse_Clouds_Human_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/fabienbaradel/glimpse_clouds,18,2019-01-02
-Learning and Using the Arrow of Time,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wei_Learning_and_Using_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/donglaiw/AoT_TCAM,14,2019-01-02
-Nonparametric Part Transfer for Fine-grained Recognition,http://openaccess.thecvf.com/content_cvpr_2014/html/Goring_Nonparametric_Part_Transfer_2014_CVPR_paper.html,CVPR,2014,https://github.com/cvjena/finegrained-cvpr2014,13,2019-01-02
-Multigrid Neural Architectures,http://openaccess.thecvf.com/content_cvpr_2017/html/Ke_Multigrid_Neural_Architectures_CVPR_2017_paper.html,CVPR,2017,https://github.com/buttomnutstoast/Multigrid-Neural-Architectures,12,2019-01-02
-Attributes2Classname: A Discriminative Model for Attribute-Based Unsupervised Zero-Shot Learning,http://openaccess.thecvf.com/content_iccv_2017/html/Demirel_Attributes2Classname_A_Discriminative_ICCV_2017_paper.html,ICCV,2017,https://github.com/berkandemirel/attributes2classname,14,2019-01-02
-Gesture Recognition: Focus on the Hands,http://openaccess.thecvf.com/content_cvpr_2018/papers/Narayana_Gesture_Recognition_Focus_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/beckabec/HandDetection,12,2019-01-02
-IM2CAD,http://openaccess.thecvf.com/content_cvpr_2017/html/Izadinia_IM2CAD_CVPR_2017_paper.html,CVPR,2017,https://github.com/yyong119/IM2CAD,11,2019-01-02
-Deep Spatial-Semantic Attention for Fine-Grained Sketch-Based Image Retrieval,http://openaccess.thecvf.com/content_iccv_2017/html/Song_Deep_Spatial-Semantic_Attention_ICCV_2017_paper.html,ICCV,2017,https://github.com/yuchuochuo1023/Deep_SBIR_tf,16,2019-01-02
-Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace,http://proceedings.mlr.press/v80/lee18a.html,ICML,2018,https://github.com/yoonholee/MT-net,13,2019-01-02
-Min-Entropy Latent Model for Weakly Supervised Object Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wan_Min-Entropy_Latent_Model_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Winfrand/MELM,13,2019-01-02
-Joint Learning of Object and Action Detectors,http://openaccess.thecvf.com/content_iccv_2017/html/Kalogeiton_Joint_Learning_of_ICCV_2017_paper.html,ICCV,2017,https://github.com/vkalogeiton/joint-object-action-learning,13,2019-01-02
-Generalized Deep Image to Image Regression,http://openaccess.thecvf.com/content_cvpr_2017/html/Santhanam_Generalized_Deep_Image_CVPR_2017_paper.html,CVPR,2017,https://github.com/venkai/RBDN,11,2019-01-02
-HashGAN: Deep Learning to Hash With Pair Conditional Wasserstein GAN,http://openaccess.thecvf.com/content_cvpr_2018/papers/Cao_HashGAN_Deep_Learning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/thuml/HashGAN,22,2019-01-02
-Future Person Localization in First-Person Videos,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yagi_Future_Person_Localization_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/takumayagi/fpl,12,2019-01-02
-Sliced Wasserstein Distance for Learning Gaussian Mixture Models,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kolouri_Sliced_Wasserstein_Distance_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/skolouri/swgmm,17,2019-01-02
-Light Field Blind Motion Deblurring,http://openaccess.thecvf.com/content_cvpr_2017/html/Srinivasan_Light_Field_Blind_CVPR_2017_paper.html,CVPR,2017,https://github.com/pratulsrinivasan/Light_Field_Blind_Motion_Deblurring,13,2019-01-02
-Hierarchical Multi-Label Classification Networks,http://proceedings.mlr.press/v80/wehrmann18a.html,ICML,2018,https://github.com/omoju/receiptdID,11,2019-01-02
-Neural Sign Language Translation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Camgoz_Neural_Sign_Language_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/neccam/nslt,15,2019-01-02
-Scalable Multitask Representation Learning for Scene Classification,http://openaccess.thecvf.com/content_cvpr_2014/html/Lapin_Scalable_Multitask_Representation_2014_CVPR_paper.html,CVPR,2014,https://github.com/mlapin/cvpr14mtl,11,2019-01-02
-Asynchronous Stochastic Gradient Descent with Delay Compensation,http://proceedings.mlr.press/v70/zheng17b.html,ICML,2017,https://github.com/Microsoft/Delayed-Compensation-Asynchronous-Stochastic-Gradient-Descent-for-Multiverso,13,2019-01-02
-Learning Rich Features for Image Manipulation Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhou_Learning_Rich_Features_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/LarryJiang134/Image_manipulation_detection,27,2019-01-02
-Hierarchical Novelty Detection for Visual Object Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lee_Hierarchical_Novelty_Detection_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kibok90/cvpr2018-hnd,17,2019-01-02
-Maximizing Subset Accuracy with Recurrent Neural Networks in Multi-label Classification,http://papers.nips.cc/paper/7125-maximizing-subset-accuracy-with-recurrent-neural-networks-in-multi-label-classification.pdf,NIPS,2017,https://github.com/JinseokNam/mlc2seq,12,2019-01-02
-Differential Angular Imaging for Material Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Xue_Differential_Angular_Imaging_CVPR_2017_paper.html,CVPR,2017,https://github.com/jiaxue1993/DAIN,12,2019-01-02
-Where to Buy It: Matching Street Clothing Photos in Online Shops,http://openaccess.thecvf.com/content_iccv_2015/html/Kiapour_Where_to_Buy_ICCV_2015_paper.html,ICCV,2015,https://github.com/jfuentescpp/where_to_buy_it,14,2019-01-02
-On Fairness and Calibration,http://papers.nips.cc/paper/7151-on-fairness-and-calibration.pdf,NIPS,2017,https://github.com/gpleiss/equalized_odds_and_calibration,11,2019-01-02
-Learning to Forecast and Refine Residual Motion for Image-to-Video Generation,http://openaccess.thecvf.com/content_ECCV_2018/html/Long_Zhao_Learning_to_Forecast_ECCV_2018_paper.html,ECCV,2018,https://github.com/garyzhao/FRGAN,14,2019-01-02
-Convolutional Image Captioning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Aneja_Convolutional_Image_Captioning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/eladhoffer/captionGeneration.torch,11,2019-01-02
-Deep Expander Networks: Efficient Deep Networks from Graph Theory,http://openaccess.thecvf.com/content_ECCV_2018/html/Ameya_Prabhu_Deep_Expander_Networks_ECCV_2018_paper.html,ECCV,2018,https://github.com/DrImpossible/Deep-Expander-Networks,19,2019-01-02
-From Motion Blur to Motion Flow: A Deep Learning Solution for Removing Heterogeneous Motion Blur,http://openaccess.thecvf.com/content_cvpr_2017/html/Gong_From_Motion_Blur_CVPR_2017_paper.html,CVPR,2017,https://github.com/donggong1/motion-flow-syn,20,2019-01-02
-Face Aging With Identity-Preserved Conditional Generative Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Face_Aging_With_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/dawei6875797/Face-Aging-with-Identity-Preserved-Conditional-Generative-Adversarial-Networks,23,2019-01-02
-Similarity Learning With Spatial Constraints for Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2016/html/Chen_Similarity_Learning_With_CVPR_2016_paper.html,CVPR,2016,https://github.com/dapengchen123/SCSP,11,2019-01-02
-Joint Optimization Framework for Learning With Noisy Labels,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tanaka_Joint_Optimization_Framework_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/DaikiTanaka-UT/JointOptimization,12,2019-01-02
-Predictive State Recurrent Neural Networks,http://papers.nips.cc/paper/7186-predictive-state-recurrent-neural-networks.pdf,NIPS,2017,https://github.com/cmdowney/psrnn,13,2019-01-02
-A Large-Scale Car Dataset for Fine-Grained Categorization and Verification,http://openaccess.thecvf.com/content_cvpr_2015/html/Yang_A_Large-Scale_Car_2015_CVPR_paper.html,CVPR,2015,https://github.com/bogger/caffe-multigpu,11,2019-01-02
-Dynamic Multimodal Instance Segmentation Guided by Natural Language Queries,http://openaccess.thecvf.com/content_ECCV_2018/html/Edgar_Margffoy-Tuay_Dynamic_Multimodal_Instance_ECCV_2018_paper.html,ECCV,2018,https://github.com/BCV-Uniandes/query-objseg,25,2019-01-02
-Learning Transferable Architectures for Scalable Image Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/aussetg/nasnet.pytorch,12,2019-01-02
-Learning Conditioned Graph Structures for Interpretable Visual Question Answering,,NIPS,2018,https://github.com/aimbrain/vqa-project,57,2019-01-02
-Learning Diverse Image Colorization,http://openaccess.thecvf.com/content_cvpr_2017/html/Deshpande_Learning_Diverse_Image_CVPR_2017_paper.html,CVPR,2017,https://github.com/aditya12agd5/divcolor,15,2019-01-02
-Open Set Domain Adaptation by Backpropagation,http://openaccess.thecvf.com/content_ECCV_2018/html/Kuniaki_Saito_Adversarial_Open_Set_ECCV_2018_paper.html,ECCV,2018,https://github.com/YU1ut/openset-DA,15,2019-01-02
-Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks,https://arxiv.org/abs/1802.04034,NIPS,2018,https://github.com/ytsmiling/lmt,16,2019-01-02
-Mix and Match Networks: Encoder-Decoder Alignment for Zero-Pair Image Translation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Mix_and_Match_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yaxingwang/Mix-and-match-networks,12,2019-01-02
-Learning by Asking Questions,http://openaccess.thecvf.com/content_cvpr_2018/papers/Misra_Learning_by_Asking_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yanghoonkim/question_generation,13,2019-01-02
-DESIRE: Distant Future Prediction in Dynamic Scenes With Interacting Agents,http://openaccess.thecvf.com/content_cvpr_2017/html/Lee_DESIRE_Distant_Future_CVPR_2017_paper.html,CVPR,2017,https://github.com/yadrimz/DESIRE,11,2019-01-02
-Densely Connected Attention Propagation for Reading Comprehension,https://nips.cc/Conferences/2018/Schedule?showEvent=11481,NIPS,2018,https://github.com/vanzytay/NIPS2018_DECAPROP,30,2019-01-02
-VegFru: A Domain-Specific Dataset for Fine-Grained Visual Categorization,http://openaccess.thecvf.com/content_iccv_2017/html/Hou_VegFru_A_Domain-Specific_ICCV_2017_paper.html,ICCV,2017,https://github.com/ustc-vim/vegfru,12,2019-01-02
-Generalized Earley Parser: Bridging Symbolic Grammars and Sequence Data for Future Prediction,http://proceedings.mlr.press/v80/qi18a.html,ICML,2018,https://github.com/SiyuanQi/generalized-earley-parser,12,2019-01-02
-Multimodal Explanations: Justifying Decisions and Pointing to the Evidence,http://openaccess.thecvf.com/content_cvpr_2018/papers/Park_Multimodal_Explanations_Justifying_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Seth-Park/MultimodalExplanations,11,2019-01-02
-Pose Proposal Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Sekii_Pose_Proposal_Networks_ECCV_2018_paper.html,ECCV,2018,https://github.com/salihkaragoz/MultiPerson-pose-estimation,15,2019-01-02
-Meta-Learning by Adjusting Priors Based on Extended PAC-Bayes Theory,http://proceedings.mlr.press/v80/amit18a.html,ICML,2018,https://github.com/ron-amit/meta-learning-adjusting-priors,11,2019-01-02
-f-GANs in an Information Geometric Nutshell,http://papers.nips.cc/paper/6649-f-gans-in-an-information-geometric-nutshell.pdf,NIPS,2017,https://github.com/qulizhen/fgan_info_geometric,10,2019-01-02
-Attend and Predict: Understanding Gene Regulation by Selective Attention on Chromatin,http://papers.nips.cc/paper/7255-attend-and-predict-understanding-gene-regulation-by-selective-attention-on-chromatin.pdf,NIPS,2017,https://github.com/QData/AttentiveChrome,12,2019-01-02
-Adversarial Time-to-Event Modeling,http://proceedings.mlr.press/v80/chapfuwa18a.html,ICML,2018,https://github.com/paidamoyo/adversarial_time_to_event,12,2019-01-02
-Anonymous Walk Embeddings,http://proceedings.mlr.press/v80/ivanov18a.html,ICML,2018,https://github.com/nd7141/AWE,22,2019-01-02
-Learning Type-Aware Embeddings for Fashion Compatibility,http://openaccess.thecvf.com/content_ECCV_2018/html/Mariya_Vasileva_Learning_Type-Aware_Embeddings_ECCV_2018_paper.html,ECCV,2018,https://github.com/mvasil/fashion-compatibility,17,2019-01-02
-Learning to Understand Image Blur,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Learning_to_Understand_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Lotuslisa/Understand_Image_Blur,14,2019-01-02
-Scalable Log Determinants for Gaussian Process Kernel Learning,http://papers.nips.cc/paper/7212-scalable-log-determinants-for-gaussian-process-kernel-learning.pdf,NIPS,2017,https://github.com/kd383/GPML_SLD,9,2019-01-02
-Personalizing Human Video Pose Estimation,http://openaccess.thecvf.com/content_cvpr_2016/html/Charles_Personalizing_Human_Video_CVPR_2016_paper.html,CVPR,2016,https://github.com/jjcharles/personalized_pose,10,2019-01-02
-High-Order Attention Models for Visual Question Answering,http://papers.nips.cc/paper/6957-high-order-attention-models-for-visual-question-answering.pdf,NIPS,2017,https://github.com/idansc/HighOrderAtten,11,2019-01-02
-Learned Contextual Feature Reweighting for Image Geo-Localization,http://openaccess.thecvf.com/content_cvpr_2017/html/Kim_Learned_Contextual_Feature_CVPR_2017_paper.html,CVPR,2017,https://github.com/hyojinie/crn,14,2019-01-02
-AON: Towards Arbitrarily-Oriented Text Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Cheng_AON_Towards_Arbitrarily-Oriented_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/huizhang0110/AON,26,2019-01-02
-Joint Pose and Expression Modeling for Facial Expression Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Joint_Pose_and_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/FFZhang1231/Facial-expression-recognition,15,2019-01-02
-Accelerating Natural Gradient with Higher-Order Invariance,http://proceedings.mlr.press/v80/song18a.html,ICML,2018,https://github.com/ermongroup/higher_order_invariance,11,2019-01-02
-Fully-Convolutional Point Networks for Large-Scale Point Clouds,http://openaccess.thecvf.com/content_ECCV_2018/html/Dario_Rethage_Fully-Convolutional_Point_Networks_ECCV_2018_paper.html,ECCV,2018,https://github.com/drethage/fully-convolutional-point-network,20,2019-01-02
-Learning Cross-Modal Deep Representations for Robust Pedestrian Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Xu_Learning_Cross-Modal_Deep_CVPR_2017_paper.html,CVPR,2017,https://github.com/danxuhk/CMT-CNN,10,2019-01-02
-Adversarial Image Perturbation for Privacy Protection -- A Game Theory Perspective,http://openaccess.thecvf.com/content_iccv_2017/html/Oh_Adversarial_Image_Perturbation_ICCV_2017_paper.html,ICCV,2017,https://github.com/coallaoh/AIP,11,2019-01-02
-Finding Influential Training Samples for Gradient Boosted Decision Trees,http://proceedings.mlr.press/v80/sharchilev18a.html,ICML,2018,https://github.com/bsharchilev/influence_boosting,13,2019-01-02
-Non-Local Deep Features for Salient Object Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Luo_Non-Local_Deep_Features_CVPR_2017_paper.html,CVPR,2017,https://github.com/AceCoooool/NLFD-pytorch,15,2019-01-02
-Max-value Entropy Search for Efficient Bayesian Optimization,http://proceedings.mlr.press/v70/wang17e.html,ICML,2017,https://github.com/zi-w/Max-value-Entropy-Search,11,2019-01-02
-CVAE-GAN: Fine-Grained Image Generation Through Asymmetric Training,http://openaccess.thecvf.com/content_iccv_2017/html/Bao_CVAE-GAN_Fine-Grained_Image_ICCV_2017_paper.html,ICCV,2017,https://github.com/yanzhicong/VAE-GAN,14,2019-01-02
-Removing Rain From Single Images via a Deep Detail Network,http://openaccess.thecvf.com/content_cvpr_2017/html/Fu_Removing_Rain_From_CVPR_2017_paper.html,CVPR,2017,https://github.com/XMU-smartdsp/Removing_Rain,12,2019-01-02
-Learning Superpixels With Segmentation-Aware Affinity Loss,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tu_Learning_Superpixels_With_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/wctu/SEAL,20,2019-01-02
-Surface Normals in the Wild,http://openaccess.thecvf.com/content_iccv_2017/html/Chen_Surface_Normals_in_ICCV_2017_paper.html,ICCV,2017,https://github.com/umich-vl/surface_normals,15,2019-01-02
-Appearance-Based Gaze Estimation in the Wild,http://openaccess.thecvf.com/content_cvpr_2015/html/Zhang_Appearance-Based_Gaze_Estimation_2015_CVPR_paper.html,CVPR,2015,https://github.com/trakaros/MPIIGaze,10,2019-01-02
-Fisher GAN,http://papers.nips.cc/paper/6845-fisher-gan.pdf,NIPS,2017,https://github.com/tomsercu/FisherGAN,11,2019-01-02
-Practical Data-Dependent Metric Compression with Provable Guarantees,http://papers.nips.cc/paper/6855-practical-data-dependent-metric-compression-with-provable-guarantees.pdf,NIPS,2017,https://github.com/talwagner/quadsketch,9,2019-01-02
-High Quality Structure From Small Motion for Rolling Shutter Cameras,http://openaccess.thecvf.com/content_iccv_2015/html/Im_High_Quality_Structure_ICCV_2015_paper.html,ICCV,2015,https://github.com/sunghoonim/SfSM,9,2019-01-02
-Deep Diffeomorphic Transformer Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Detlefsen_Deep_Diffeomorphic_Transformer_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/SkafteNicki/ddtn,13,2019-01-02
-Predicting Human Activities Using Stochastic Grammar,http://openaccess.thecvf.com/content_iccv_2017/html/Qi_Predicting_Human_Activities_ICCV_2017_paper.html,ICCV,2017,https://github.com/SiyuanQi/grammar-activity-prediction,11,2019-01-02
-Synthesizing Robust Adversarial Examples,http://proceedings.mlr.press/v80/athalye18b.html,ICML,2018,https://github.com/prabhant/synthesizing-robust-adversarial-examples,13,2019-01-02
-Learning Motion Patterns in Videos,http://openaccess.thecvf.com/content_cvpr_2017/html/Tokmakov_Learning_Motion_Patterns_CVPR_2017_paper.html,CVPR,2017,https://github.com/pirahansiah/opencv,9,2019-01-02
-AMNet: Memorability Estimation With Attention,http://openaccess.thecvf.com/content_cvpr_2018/papers/Fajtl_AMNet_Memorability_Estimation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ok1zjf/AMNet,12,2019-01-02
-Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical Models,https://arxiv.org/abs/1808.04768,NIPS,2018,https://github.com/neitzal/adaptive-skip-intervals,12,2019-01-02
-Learning a Discriminative Feature Network for Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yu_Learning_a_Discriminative_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/lxtGH/dfn_seg,26,2019-01-02
-Gradient descent GAN optimization is locally stable,http://papers.nips.cc/paper/7142-gradient-descent-gan-optimization-is-locally-stable.pdf,NIPS,2017,https://github.com/locuslab/gradient_regularized_gan,12,2019-01-02
-Hashing as Tie-Aware Learning to Rank,http://openaccess.thecvf.com/content_cvpr_2018/papers/He_Hashing_as_Tie-Aware_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kunhe/TALR,15,2019-01-02
-Visually Indicated Sounds,http://openaccess.thecvf.com/content_cvpr_2016/html/Owens_Visually_Indicated_Sounds_CVPR_2016_paper.html,CVPR,2016,https://github.com/kanchen-usc/VIG,9,2019-01-02
-Attentional Correlation Filter Network for Adaptive Visual Tracking,http://openaccess.thecvf.com/content_cvpr_2017/html/Choi_Attentional_Correlation_Filter_CVPR_2017_paper.html,CVPR,2017,https://github.com/jongwon20000/ACFN,10,2019-01-02
-Automatic Content-Aware Color and Tone Stylization,http://openaccess.thecvf.com/content_cvpr_2016/html/Lee_Automatic_Content-Aware_Color_CVPR_2016_paper.html,CVPR,2016,https://github.com/jinyu121/ACACTS,12,2019-01-02
-Attention in Convolutional LSTM for Gesture Recognition,https://nips.cc/Conferences/2018/Schedule?showEvent=11207,NIPS,2018,https://github.com/GuangmingZhu/AttentionConvLSTM,32,2019-01-02
-Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization,http://papers.nips.cc/paper/6611-breaking-the-nonsmooth-barrier-a-scalable-parallel-method-for-composite-optimization.pdf,NIPS,2017,https://github.com/fabianp/ProxASAGA,9,2019-01-02
-Rethinking the Form of Latent States in Image Captioning,http://openaccess.thecvf.com/content_ECCV_2018/html/Bo_Dai_Rethinking_the_Form_ECCV_2018_paper.html,ECCV,2018,https://github.com/doubledaibo/2dcaption_eccv2018,15,2019-01-02
-Higher-Order Integration of Hierarchical Convolutional Activations for Fine-Grained Visual Categorization,http://openaccess.thecvf.com/content_iccv_2017/html/Cai_Higher-Order_Integration_of_ICCV_2017_paper.html,ICCV,2017,https://github.com/cssjcai/hihca,11,2019-01-02
-Confident Multiple Choice Learning,http://proceedings.mlr.press/v70/lee17b.html,ICML,2017,https://github.com/chhwang/cmcl,10,2019-01-02
-Do Deep Neural Networks Suffer from Crowding?,http://papers.nips.cc/paper/7146-do-deep-neural-networks-suffer-from-crowding.pdf,NIPS,2017,https://github.com/CBMM/eccentricity,9,2019-01-02
-Robust Image Filtering Using Joint Static and Dynamic Guidance,http://openaccess.thecvf.com/content_cvpr_2015/html/Ham_Robust_Image_Filtering_2015_CVPR_paper.html,CVPR,2015,https://github.com/bsham/SDFilter,10,2019-01-02
-Learning Dynamics of Linear Denoising Autoencoders,http://proceedings.mlr.press/v80/pretorius18a.html,ICML,2018,https://github.com/arnupretorius/lindaedynamics_icml2018,9,2019-01-02
-Variational Autoencoders for Deforming 3D Mesh Models,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tan_Variational_Autoencoders_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/aldehydecho/Mesh-VAE,13,2019-01-02
-Region Ranking SVM for Image Classification,http://openaccess.thecvf.com/content_cvpr_2016/html/Wei_Region_Ranking_SVM_CVPR_2016_paper.html,CVPR,2016,https://github.com/zijunwei/Region-Ranking-SVM,8,2019-01-02
-Disentangled Representation Learning GAN for Pose-Invariant Face Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Tran_Disentangled_Representation_Learning_CVPR_2017_paper.html,CVPR,2017,https://github.com/zhangjunh/DR-GAN-by-pytorch,21,2019-01-02
-A Non-Convex Variational Approach to Photometric Stereo Under Inaccurate Lighting,http://openaccess.thecvf.com/content_cvpr_2017/html/Queau_A_Non-Convex_Variational_CVPR_2017_paper.html,CVPR,2017,https://github.com/yqueau/robust_ps,9,2019-01-02
-Online multiclass boosting,http://papers.nips.cc/paper/6693-online-multiclass-boosting.pdf,NIPS,2017,https://github.com/yhjung88/OnlineBoostingWithVFDT,8,2019-01-02
-A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation,https://arxiv.org/abs/1809.01361,NIPS,2018,https://github.com/XenderLiu/UFDN,51,2019-01-02
-Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering,http://openaccess.thecvf.com/content_cvpr_2018/papers/Anderson_Bottom-Up_and_Top-Down_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Wentong-DST/up-down-captioner,13,2019-01-02
-Salient Object Detection Driven by Fixation Prediction,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Salient_Object_Detection_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/wenguanwang/ASNet,9,2019-01-02
-Cost efficient gradient boosting,http://papers.nips.cc/paper/6753-cost-efficient-gradient-boosting.pdf,NIPS,2017,https://github.com/svenpeter42/LightGBM-CEGB,8,2019-01-02
-Excitation Backprop for RNNs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Bargal_Excitation_Backprop_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/sbargal/Caffe-ExcitationBP-RNNs,9,2019-01-02
-DeepNav: Learning to Navigate Large Cities,http://openaccess.thecvf.com/content_cvpr_2017/html/Brahmbhatt_DeepNav_Learning_to_CVPR_2017_paper.html,CVPR,2017,https://github.com/samarth-robo/deepnav_cvpr17,8,2019-01-02
-Fast Information-theoretic Bayesian Optimisation,http://proceedings.mlr.press/v80/ru18a.html,ICML,2018,https://github.com/rubinxin/FITBO,8,2019-01-02
-DeepPermNet: Visual Permutation Learning,http://openaccess.thecvf.com/content_cvpr_2017/html/Santa_Cruz_DeepPermNet_Visual_Permutation_CVPR_2017_paper.html,CVPR,2017,https://github.com/rfsantacruz/deep-perm-net,10,2019-01-02
-Curriculum Dropout,http://openaccess.thecvf.com/content_iccv_2017/html/Morerio_Curriculum_Dropout_ICCV_2017_paper.html,ICCV,2017,https://github.com/pmorerio/curriculum-dropout,9,2019-01-02
-Input Switched Affine Networks: An RNN Architecture Designed for Interpretability,http://proceedings.mlr.press/v70/foerster17a.html,ICML,2017,https://github.com/philipperemy/tensorflow-isan-rnn,8,2019-01-02
-Deep Variational Reinforcement Learning for POMDPs,http://proceedings.mlr.press/v80/igl18a.html,ICML,2018,https://github.com/oxwhirl/Deep-Variational-Reinforcement-Learning,8,2018-09-16
-Gaze Embeddings for Zero-Shot Image Classification,http://openaccess.thecvf.com/content_cvpr_2017/html/Karessli_Gaze_Embeddings_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/Noura-kr/CVPR17,8,2019-01-02
-Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation,http://papers.nips.cc/paper/6821-formal-guarantees-on-the-robustness-of-a-classifier-against-adversarial-manipulation.pdf,NIPS,2017,https://github.com/max-andr/cross-lipschitz,11,2019-01-02
-Boosting Domain Adaptation by Discovering Latent Domains,http://openaccess.thecvf.com/content_cvpr_2018/papers/Mancini_Boosting_Domain_Adaptation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/mancinimassimiliano/latent_domains_DA,11,2019-01-02
-Affinity Clustering: Hierarchical Clustering at Scale,http://papers.nips.cc/paper/7262-affinity-clustering-hierarchical-clustering-at-scale.pdf,NIPS,2017,https://github.com/MahsaDerakhshan/AffinityClustering,8,2019-01-02
-Revisiting IM2GPS in the Deep Learning Era,http://openaccess.thecvf.com/content_iccv_2017/html/Vo_Revisiting_IM2GPS_in_ICCV_2017_paper.html,ICCV,2017,https://github.com/lugiavn/revisiting-im2gps,10,2019-01-02
-Partial Person Re-Identification,http://openaccess.thecvf.com/content_iccv_2015/html/Zheng_Partial_Person_Re-Identification_ICCV_2015_paper.html,ICCV,2015,https://github.com/lingxiao-he/Deep-Spatial-Feature-Reconstruction-for-Partial-Person-Re-identification,9,2019-01-02
-Benchmarking Denoising Algorithms With Real Photographs,http://openaccess.thecvf.com/content_cvpr_2017/html/Plotz_Benchmarking_Denoising_Algorithms_CVPR_2017_paper.html,CVPR,2017,https://github.com/lbasek/image-denoising-benchmark,14,2019-01-02
-Cross-View Image Synthesis Using Conditional GANs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Regmi_Cross-View_Image_Synthesis_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kregmi/cross-view-image-synthesis,12,2019-01-02
-Boosting Object Proposals: From Pascal to COCO,http://openaccess.thecvf.com/content_iccv_2015/html/Pont-Tuset_Boosting_Object_Proposals_ICCV_2015_paper.html,ICCV,2015,https://github.com/jponttuset/BOP,8,2019-01-02
-Neural Aggregation Network for Video Face Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Yang_Neural_Aggregation_Network_CVPR_2017_paper.html,CVPR,2017,https://github.com/jinyanxu/Neural-Aggregation-Network-for-Video-Face-Recognition,14,2019-01-02
-Unsupervised Learning From Narrated Instruction Videos,http://openaccess.thecvf.com/content_cvpr_2016/html/Alayrac_Unsupervised_Learning_From_CVPR_2016_paper.html,CVPR,2016,https://github.com/jalayrac/instructionVideos,7,2019-01-02
-Introspective Neural Networks for Generative Modeling,http://openaccess.thecvf.com/content_iccv_2017/html/Lazarow_Introspective_Neural_Networks_ICCV_2017_paper.html,ICCV,2017,https://github.com/intermilan/inng,8,2019-01-02
-A Hierarchical Approach for Generating Descriptive Image Paragraphs,http://openaccess.thecvf.com/content_cvpr_2017/html/Krause_A_Hierarchical_Approach_CVPR_2017_paper.html,CVPR,2017,https://github.com/InnerPeace-Wu/im2p-tensorflow,9,2019-01-02
-Learning a Discriminative Filter Bank Within a CNN for Fine-Grained Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Learning_a_Discriminative_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/hubeihubei/DFL-CNN-pytorch,13,2019-01-02
-Recovering 3D Planes from a Single Image via Convolutional Neural Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Fengting_Yang_Recovering_3D_Planes_ECCV_2018_paper.html,ECCV,2018,https://github.com/fuy34/planerecover,16,2019-01-02
-Analyzing Uncertainty in Neural Machine Translation,http://proceedings.mlr.press/v80/ott18a.html,ICML,2018,https://github.com/facebookresearch/analyzing-uncertainty-nmt,9,2019-01-02
-A Multilayer-Based Framework for Online Background Subtraction With Freely Moving Cameras,http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_A_Multilayer-Based_Framework_ICCV_2017_paper.html,ICCV,2017,https://github.com/EthanZhu90/MultilayerBSMC_ICCV17,11,2019-01-02
-"Plan, Attend, Generate: Planning for Sequence-to-Sequence Models",http://papers.nips.cc/paper/7131-plan-attend-generate-planning-for-sequence-to-sequence-models.pdf,NIPS,2017,https://github.com/Dutil/PAG,8,2019-01-02
-Unsupervised Learning of Visual Representations Using Videos,http://openaccess.thecvf.com/content_iccv_2015/html/Wang_Unsupervised_Learning_of_ICCV_2015_paper.html,ICCV,2015,https://github.com/coreylynch/unsupervised-triplet-embedding,8,2019-01-02
-Convolutional Channel Features,http://openaccess.thecvf.com/content_iccv_2015/html/Yang_Convolutional_Channel_Features_ICCV_2015_paper.html,ICCV,2015,https://github.com/byangderek/CCF,8,2019-01-02
-Online Detection and Classification of Dynamic Hand Gestures With Recurrent 3D Convolutional Neural Network,http://openaccess.thecvf.com/content_cvpr_2016/html/Molchanov_Online_Detection_and_CVPR_2016_paper.html,CVPR,2016,https://github.com/breadbread1984/R3DCNN,16,2019-01-02
-Pairwise Matching Through Max-Weight Bipartite Belief Propagation,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhang_Pairwise_Matching_Through_CVPR_2016_paper.html,CVPR,2016,https://github.com/zzhang1987/HungarianBP,8,2019-01-02
-Detecting and Correcting for Label Shift with Black Box Predictors,http://proceedings.mlr.press/v80/lipton18a.html,ICML,2018,https://github.com/zackchase/label-shift,7,2019-01-02
-Attention-Aware Face Hallucination via Deep Reinforcement Learning,http://openaccess.thecvf.com/content_cvpr_2017/html/Cao_Attention-Aware_Face_Hallucination_CVPR_2017_paper.html,CVPR,2017,https://github.com/ykshi/facehallucination,8,2019-01-02
-Conditional Prior Networks for Optical Flow,http://openaccess.thecvf.com/content_ECCV_2018/html/Yanchao_Yang_Conditional_Prior_Networks_ECCV_2018_paper.html,ECCV,2018,https://github.com/YanchaoYang/Conditional-Prior-Networks,7,2019-01-02
-Fine-Grained Visual Categorization using Meta-Learning Optimization with Sample Selection of Auxiliary Data,http://openaccess.thecvf.com/content_ECCV_2018/html/Yabin_Zhang_Fine-Grained_Visual_Categorization_ECCV_2018_paper.html,ECCV,2018,https://github.com/YabinZhang1994/MetaFGNet,13,2019-01-02
-Diverse Image Annotation,http://openaccess.thecvf.com/content_cvpr_2017/html/Wu_Diverse_Image_Annotation_CVPR_2017_paper.html,CVPR,2017,https://github.com/wubaoyuan/DIA,6,2019-01-02
-Towards a Visual Privacy Advisor: Understanding and Predicting Privacy Risks in Images,http://openaccess.thecvf.com/content_iccv_2017/html/Orekondy_Towards_a_Visual_ICCV_2017_paper.html,ICCV,2017,https://github.com/tribhuvanesh/vpa,8,2019-01-02
-Live Repetition Counting,http://openaccess.thecvf.com/content_iccv_2015/html/Levy_Live_Repetition_Counting_ICCV_2015_paper.html,ICCV,2015,https://github.com/tomrunia/DeepRepICCV2015,8,2019-01-02
-Reflectance Adaptive Filtering Improves Intrinsic Image Estimation,http://openaccess.thecvf.com/content_cvpr_2017/html/Nestmeyer_Reflectance_Adaptive_Filtering_CVPR_2017_paper.html,CVPR,2017,https://github.com/tnestmeyer/reflectance-filtering,8,2019-01-02
-Weakly Supervised Learning of Deep Metrics for Stereo Reconstruction,http://openaccess.thecvf.com/content_iccv_2017/html/Tulyakov_Weakly_Supervised_Learning_ICCV_2017_paper.html,ICCV,2017,https://github.com/tlkvstepan/mc-cnn-ws,7,2019-01-02
-Decoupled Parallel Backpropagation with Convergence Guarantee,http://proceedings.mlr.press/v80/huo18a.html,ICML,2018,https://github.com/slowbull/DDG,9,2019-01-02
-Generative Adversarial Learning Towards Fast Weakly Supervised Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Shen_Generative_Adversarial_Learning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/shenyunhang/GAL-fWSD,7,2019-01-02
-A Memory Network Approach for Story-Based Temporal Summarization of 360° Videos,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lee_A_Memory_Network_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/sangho-vision/PFMN,6,2019-01-02
-oi-VAE: Output Interpretable VAEs for Nonlinear Group Factor Analysis,http://proceedings.mlr.press/v80/ainsworth18a.html,ICML,2018,https://github.com/samuela/oi-vae,9,2019-01-02
-Model-Powered Conditional Independence Test,http://papers.nips.cc/paper/6888-model-powered-conditional-independence-test.pdf,NIPS,2017,https://github.com/rajatsen91/CCIT,8,2019-01-02
-Generative Probabilistic Novelty Detection with Adversarial Autoencoders,http://arxiv.org/abs/1807.02588v1,NIPS,2018,https://github.com/podgorskiy/GPND,16,2019-01-02
-Clipped Action Policy Gradient,http://proceedings.mlr.press/v80/fujita18a.html,ICML,2018,https://github.com/pfnet-research/capg,12,2019-01-02
-Learning to Explain: An Information-Theoretic Perspective on Model Interpretation,http://proceedings.mlr.press/v80/chen18j.html,ICML,2018,https://github.com/nickvosk/acl2015-dataset-learning-to-explain-entity-relationships,7,2019-01-02
-Deep Hand: How to Train a CNN on 1 Million Hand Images When Your Data Is Continuous and Weakly Labelled,http://openaccess.thecvf.com/content_cvpr_2016/html/Koller_Deep_Hand_How_CVPR_2016_paper.html,CVPR,2016,https://github.com/neccam/TF-DeepHand,8,2019-01-02
-A Two-Step Disentanglement Method,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hadad_A_Two-Step_Disentanglement_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/naamahadad/A-Two-Step-Disentanglement-Method,7,2019-01-02
-Lost Relatives of the Gumbel Trick,http://proceedings.mlr.press/v70/balog17a.html,ICML,2017,https://github.com/matejbalog/gumbel-relatives,7,2019-01-02
-Where to Look: Focus Regions for Visual Question Answering,http://openaccess.thecvf.com/content_cvpr_2016/html/Shih_Where_to_Look_CVPR_2016_paper.html,CVPR,2016,https://github.com/kevjshih/wtl_vqa,7,2019-01-02
-Detecting Migrating Birds at Night,http://openaccess.thecvf.com/content_cvpr_2016/html/Huang_Detecting_Migrating_Birds_CVPR_2016_paper.html,CVPR,2016,https://github.com/jbhuang0604/BirdDetection,7,2019-01-02
-Cross-Domain Self-Supervised Multi-Task Feature Learning Using Synthetic Imagery,http://openaccess.thecvf.com/content_cvpr_2018/papers/Ren_Cross-Domain_Self-Supervised_Multi-Task_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jason718/game-feature-learning,19,2019-01-02
-Supervised Discrete Hashing,http://openaccess.thecvf.com/content_cvpr_2015/html/Shen_Supervised_Discrete_Hashing_2015_CVPR_paper.html,CVPR,2015,https://github.com/goukoutaki/FSDH,7,2019-01-02
-PacGAN: The power of two samples in generative adversarial networks,http://arxiv.org/abs/1712.04086v2,NIPS,2018,https://github.com/fjxmlzn/PacGAN,10,2019-01-02
-Optimized Pre-Processing for Discrimination Prevention,http://papers.nips.cc/paper/6988-optimized-pre-processing-for-discrimination-prevention.pdf,NIPS,2017,https://github.com/fair-preprocessing/nips2017,9,2019-01-02
-Five-Point Fundamental Matrix Estimation for Uncalibrated Cameras,http://openaccess.thecvf.com/content_cvpr_2018/papers/Barath_Five-Point_Fundamental_Matrix_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/danini/five-point-fundamental,8,2019-01-02
-Semantic Video Segmentation by Gated Recurrent Flow Propagation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Nilsson_Semantic_Video_Segmentation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/D-Nilsson/GRFP,9,2019-01-02
-RPAN: An End-To-End Recurrent Pose-Attention Network for Action Recognition in Videos,http://openaccess.thecvf.com/content_iccv_2017/html/Du_RPAN_An_End-To-End_ICCV_2017_paper.html,ICCV,2017,https://github.com/agethen/RPAN,17,2019-01-02
-Geometry-Aware Scene Text Detection With Instance Transformation Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Geometry-Aware_Scene_Text_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zlmzju/itn,22,2019-01-02
-Investigating Haze-relevant Features in A Learning Framework for Image Dehazing,http://openaccess.thecvf.com/content_cvpr_2014/html/Tang_Investigating_Haze-relevant_Features_2014_CVPR_paper.html,CVPR,2014,https://github.com/zlinker/haze_2014,7,2019-01-02
-Progressive Attention Guided Recurrent Network for Salient Object Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Progressive_Attention_Guided_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zhangxiaoning666/PAGR,7,2019-01-02
-Recurrent Attentional Networks for Saliency Detection,http://openaccess.thecvf.com/content_cvpr_2016/html/Kuen_Recurrent_Attentional_Networks_CVPR_2016_paper.html,CVPR,2016,https://github.com/zhangxiaoning666/PAGR,7,2019-01-02
-Practical Hash Functions for Similarity Estimation and Dimensionality Reduction,http://papers.nips.cc/paper/7239-practical-hash-functions-for-similarity-estimation-and-dimensionality-reduction.pdf,NIPS,2017,https://github.com/zera/Nips_MT,6,2019-01-02
-Low-Shot Learning With Imprinted Weights,http://openaccess.thecvf.com/content_cvpr_2018/papers/Qi_Low-Shot_Learning_With_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/YU1ut/imprinted-weights,19,2019-01-02
-Reconstructing PASCAL VOC,http://openaccess.thecvf.com/content_cvpr_2014/html/Vicente_Reconstructing_PASCAL_VOC_2014_CVPR_paper.html,CVPR,2014,https://github.com/yihui-he/reconstructing-pascal-voc,6,2019-01-02
-SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters,http://openaccess.thecvf.com/content_ECCV_2018/html/Yifan_Xu_SpiderCNN_Deep_Learning_ECCV_2018_paper.html,ECCV,2018,https://github.com/xyf513/SpiderCNN,15,2019-01-02
-Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kuen_Stochastic_Downsampling_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/xternalz/SDPoint,7,2019-01-02
-Scalable Planning with Tensorflow for Hybrid Nonlinear Domains,http://papers.nips.cc/paper/7207-scalable-planning-with-tensorflow-for-hybrid-nonlinear-domains.pdf,NIPS,2017,https://github.com/wuga214/TOOLBOX-Learning-and-Planning-through-Backpropagation,6,2019-01-02
-AttnGAN: Fine-Grained Text to Image Generation With Attentional Generative Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Xu_AttnGAN_Fine-Grained_Text_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Wentong-DST/attn-gan,7,2019-01-02
-Deep Crisp Boundaries,http://openaccess.thecvf.com/content_cvpr_2017/html/Wang_Deep_Crisp_Boundaries_CVPR_2017_paper.html,CVPR,2017,https://github.com/Wangyupei/CED,9,2019-01-02
-Pooled Motion Features for First-Person Videos,http://openaccess.thecvf.com/content_cvpr_2015/html/Ryoo_Pooled_Motion_Features_2015_CVPR_paper.html,CVPR,2015,https://github.com/USCDataScience/hadoop-pot,6,2019-01-02
-Efficient and Robust Color Consistency for Community Photo Collections,http://openaccess.thecvf.com/content_cvpr_2016/html/Park_Efficient_and_Robust_CVPR_2016_paper.html,CVPR,2016,https://github.com/syncle/photo_consistency,7,2019-01-02
-Tensor Biclustering,http://papers.nips.cc/paper/6730-tensor-biclustering.pdf,NIPS,2017,https://github.com/SoheilFeizi/Tensor-Biclustering,6,2019-01-02
-Generalizing to Unseen Domains via Adversarial Data Augmentation,http://arxiv.org/abs/1805.12018v1,NIPS,2018,https://github.com/ricvolpi/generalize-unseen-domains,36,2019-01-02
-Unsupervised Pixel-Level Domain Adaptation With Generative Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Bousmalis_Unsupervised_Pixel-Level_Domain_CVPR_2017_paper.html,CVPR,2017,https://github.com/rhythm92/Unsupervised-Pixel-Level-Domain-Adaptation-with-GAN,6,2019-01-02
-Following Gaze in Video,http://openaccess.thecvf.com/content_iccv_2017/html/Recasens_Following_Gaze_in_ICCV_2017_paper.html,ICCV,2017,https://github.com/recasens/Gaze-Following,8,2019-01-02
-Object Contour Detection With a Fully Convolutional Encoder-Decoder Network,http://openaccess.thecvf.com/content_cvpr_2016/html/Yang_Object_Contour_Detection_CVPR_2016_paper.html,CVPR,2016,https://github.com/Raj-08/tensorflow-object-contour-detection,14,2019-01-02
-Simpler Non-Parametric Methods Provide as Good or Better Results to Multiple-Instance Learning,http://openaccess.thecvf.com/content_iccv_2015/html/Venkatesan_Simpler_Non-Parametric_Methods_ICCV_2015_paper.html,ICCV,2015,https://github.com/ragavvenkatesan/np-mil,7,2019-01-02
-3D Shape Attributes,http://openaccess.thecvf.com/content_cvpr_2016/html/Fouhey_3D_Shape_Attributes_CVPR_2016_paper.html,CVPR,2016,https://github.com/petermalcolm/estimate3DStep,6,2019-01-02
-Finding Distractors In Images,http://openaccess.thecvf.com/content_cvpr_2015/html/Fried_Finding_Distractors_In_2015_CVPR_paper.html,CVPR,2015,https://github.com/ohadf/distractors,7,2019-01-02
-ShapeStacks: Learning Vision-Based Physical Intuition for Generalised Object Stacking,http://openaccess.thecvf.com/content_ECCV_2018/html/Oliver_Groth_ShapeStacks_Learning_Vision-Based_ECCV_2018_paper.html,ECCV,2018,https://github.com/ogroth/shapestacks,11,2019-01-02
-Riemannian approach to batch normalization,http://papers.nips.cc/paper/7107-riemannian-approach-to-batch-normalization.pdf,NIPS,2017,https://github.com/MinhyungCho/riemannian-batch-normalization,6,2019-01-02
-End-To-End Learning of Geometry and Context for Deep Stereo Regression,http://openaccess.thecvf.com/content_iccv_2017/html/Kendall_End-To-End_Learning_of_ICCV_2017_paper.html,ICCV,2017,https://github.com/liuruijin17/RickLiuGC,9,2019-01-02
-Improving Training of Deep Neural Networks via Singular Value Bounding,http://openaccess.thecvf.com/content_cvpr_2017/html/Jia_Improving_Training_of_CVPR_2017_paper.html,CVPR,2017,https://github.com/kui-jia/svb,6,2019-01-02
-Bayesian inference on random simple graphs with power law degree distributions,http://proceedings.mlr.press/v70/lee17a.html,ICML,2017,https://github.com/juho-lee/powerlawgraph,6,2019-01-02
-Reasoning About Fine-Grained Attribute Phrases Using Reference Games,http://openaccess.thecvf.com/content_iccv_2017/html/Su_Reasoning_About_Fine-Grained_ICCV_2017_paper.html,ICCV,2017,https://github.com/jongchyisu/attribute_phrases,7,2019-01-02
-Deep Learning Under Privileged Information Using Heteroscedastic Dropout,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lambert_Deep_Learning_Under_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/johnwlambert/dlupi-heteroscedastic-dropout,14,2019-01-02
-Multi-Label Image Recognition by Recurrently Discovering Attentional Regions,http://openaccess.thecvf.com/content_iccv_2017/html/Wang_Multi-Label_Image_Recognition_ICCV_2017_paper.html,ICCV,2017,https://github.com/James-Yip/AttentionImageClass,20,2019-01-02
-Centered Weight Normalization in Accelerating Training of Deep Neural Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Huang_Centered_Weight_Normalization_ICCV_2017_paper.html,ICCV,2017,https://github.com/huangleiBuaa/CenteredWN,6,2019-01-02
-Adversarial Learning with Local Coordinate Coding,http://proceedings.mlr.press/v80/cao18a.html,ICML,2018,https://github.com/guoyongcs/LCCGAN,7,2019-01-02
-On GANs and GMMs,http://arxiv.org/abs/1805.12462v1,NIPS,2018,https://github.com/eitanrich/gans-n-gmms,10,2019-01-02
-Building a Regular Decision Boundary With Deep Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Oyallon_Building_a_Regular_CVPR_2017_paper.html,CVPR,2017,https://github.com/edouardoyallon/deep_separation_contraction,6,2019-01-02
-Learning a Descriptor-Specific 3D Keypoint Detector,http://openaccess.thecvf.com/content_iccv_2015/html/Salti_Learning_a_Descriptor-Specific_ICCV_2015_paper.html,ICCV,2015,https://github.com/CVLAB-Unibo/Keypoint-Learning,10,2019-01-02
-Towards Open-Set Identity Preserving Face Synthesis,http://openaccess.thecvf.com/content_cvpr_2018/papers/Bao_Towards_Open-Set_Identity_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/chloeguoqing/Towards-Open-Set-Identity-Preserving-Face-Synthesis,9,2019-01-02
-Patch-Based Convolutional Neural Network for Whole Slide Tissue Image Classification,http://openaccess.thecvf.com/content_cvpr_2016/html/Hou_Patch-Based_Convolutional_Neural_CVPR_2016_paper.html,CVPR,2016,https://github.com/cheersyouran/cancer-detector,9,2019-01-02
-Piecewise Flat Embedding for Image Segmentation,http://openaccess.thecvf.com/content_iccv_2015/html/Yu_Piecewise_Flat_Embedding_ICCV_2015_paper.html,ICCV,2015,https://github.com/chaoweifang/PFE,7,2019-01-02
-Analyzing Hidden Representations in End-to-End Automatic Speech Recognition Systems,http://papers.nips.cc/paper/6838-analyzing-hidden-representations-in-end-to-end-automatic-speech-recognition-systems.pdf,NIPS,2017,https://github.com/boknilev/asr-repr-analysis,6,2019-01-02
-A generic decentralized trust management framework,http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2012/MSC/MSC-2012-22.pdf,SPE,2013,https://github.com/amitport/graphpack,6,2019-01-02
-Personalized Image Aesthetics,http://openaccess.thecvf.com/content_iccv_2017/html/Ren_Personalized_Image_Aesthetics_ICCV_2017_paper.html,ICCV,2017,https://github.com/alanspike/personalizedImageAesthetics,7,2019-01-02
-Banach Wasserstein GAN,http://arxiv.org/abs/1806.06621v1,NIPS,2018,https://github.com/adler-j/bwgan,7,2019-01-02
-Towards Open World Recognition,http://openaccess.thecvf.com/content_cvpr_2015/html/Bendale_Towards_Open_World_2015_CVPR_paper.html,CVPR,2015,https://github.com/abhijitbendale/OWR,6,2019-01-02
-Collaborative Hashing,http://openaccess.thecvf.com/content_cvpr_2014/html/Liu_Collaborative_Hashing_2014_CVPR_paper.html,CVPR,2014,https://github.com/27359794/lsh-collab-filtering,6,2019-01-02
-Learning Facial Action Units From Web Images With Scalable Weakly Supervised Clustering,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhao_Learning_Facial_Action_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zkl20061823/WSC,8,2019-01-02
-AutoLoc: Weakly-supervised Temporal Action Localization in Untrimmed Videos,http://openaccess.thecvf.com/content_ECCV_2018/html/Zheng_Shou_AutoLoc_Weakly-supervised_Temporal_ECCV_2018_paper.html,ECCV,2018,https://github.com/zhengshou/AutoLoc,12,2019-01-02
-Dynamic Conditional Networks for Few-Shot Learning,http://openaccess.thecvf.com/content_ECCV_2018/html/Fang_Zhao_Dynamic_Conditional_Networks_ECCV_2018_paper.html,ECCV,2018,https://github.com/ZhaoJ9014/Dynamic-Conditional-Networks-for-Few-Shot-Learning.pytorch,8,2019-01-02
-Mining Semantic Affordances of Visual Object Categories,http://openaccess.thecvf.com/content_cvpr_2015/html/Chao_Mining_Semantic_Affordances_2015_CVPR_paper.html,CVPR,2015,https://github.com/ywchao/semantic_affordance,5,2019-01-02
-Unsupervised Monocular Depth Estimation With Left-Right Consistency,http://openaccess.thecvf.com/content_cvpr_2017/html/Godard_Unsupervised_Monocular_Depth_CVPR_2017_paper.html,CVPR,2017,https://github.com/yukitsuji/monodepth_chainer,7,2019-01-02
-Viraliency: Pooling Local Virality,http://openaccess.thecvf.com/content_cvpr_2017/html/Alameda-Pineda_Viraliency_Pooling_Local_CVPR_2017_paper.html,CVPR,2017,https://github.com/xavirema/lena_pooling,5,2019-01-02
-Specular-to-Diffuse Translation for Multi-View Reconstruction,http://openaccess.thecvf.com/content_ECCV_2018/html/Shihao_Wu_Specular-to-Diffuse_Translation_for_ECCV_2018_paper.html,ECCV,2018,https://github.com/wsh312/S2Dnet,8,2019-01-02
-Learning Algorithms for Active Learning,http://proceedings.mlr.press/v70/bachman17a.html,ICML,2017,https://github.com/vtphan/Code4Brownies,5,2019-01-02
-Deep TextSpotter: An End-To-End Trainable Scene Text Localization and Recognition Framework,http://openaccess.thecvf.com/content_iccv_2017/html/Busta_Deep_TextSpotter_An_ICCV_2017_paper.html,ICCV,2017,https://github.com/VeitL/OCR,13,2019-01-02
-Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition,http://papers.nips.cc/paper/6713-learning-koopman-invariant-subspaces-for-dynamic-mode-decomposition.pdf,NIPS,2017,https://github.com/thetak11/learning-kis,7,2019-01-02
-"High-Quality Prediction Intervals for Deep Learning: A Distribution-Free, Ensembled Approach",http://proceedings.mlr.press/v80/pearce18a.html,ICML,2018,https://github.com/TeaPearce/Deep_Learning_Prediction_Intervals,11,2019-01-02
-Sparse convolutional coding for neuronal assembly detection,http://papers.nips.cc/paper/6958-sparse-convolutional-coding-for-neuronal-assembly-detection.pdf,NIPS,2017,https://github.com/sccfnad/Sparse-convolutional-coding-for-neuronal-assembly-detection,6,2019-01-02
-Point to Set Similarity Based Deep Feature Learning for Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhou_Point_to_Set_CVPR_2017_paper.html,CVPR,2017,https://github.com/samaonline/Point-to-Set-Similarity-Based-Deep-Feature-Learning-for-Person-Re-identification,5,2019-01-02
-Self-Organized Text Detection With Minimal Post-Processing via Border Learning,http://openaccess.thecvf.com/content_iccv_2017/html/Wu_Self-Organized_Text_Detection_ICCV_2017_paper.html,ICCV,2017,https://github.com/saicoco/tf-sotd,12,2019-01-02
-Click Here: Human-Localized Keypoints as Guidance for Viewpoint Estimation,http://openaccess.thecvf.com/content_iccv_2017/html/Szeto_Click_Here_Human-Localized_ICCV_2017_paper.html,ICCV,2017,https://github.com/rszeto/click-here-cnn,5,2019-01-02
-Regret Minimization in MDPs with Options without Prior Knowledge,http://papers.nips.cc/paper/6909-regret-minimization-in-mdps-with-options-without-prior-knowledge.pdf,NIPS,2017,https://github.com/RonanFR/UCRL,8,2019-01-02
-Learning to Separate Object Sounds by Watching Unlabeled Video,http://openaccess.thecvf.com/content_ECCV_2018/html/Ruohan_Gao_Learning_to_Separate_ECCV_2018_paper.html,ECCV,2018,https://github.com/rhgao/separating-object-sounds,23,2019-01-02
-Ultra Large-Scale Feature Selection using Count-Sketches,http://proceedings.mlr.press/v80/aghazadeh18a.html,ICML,2018,https://github.com/rdspring1/MISSION,6,2019-01-02
-Transfer Learning via Learning to Transfer,http://proceedings.mlr.press/v80/wei18a.html,ICML,2018,https://github.com/QuebecAI/webcam-transfer-learning-v1,5,2019-01-02
-The World of Fast Moving Objects,http://openaccess.thecvf.com/content_cvpr_2017/html/Rozumnyi_The_World_of_CVPR_2017_paper.html,CVPR,2017,https://github.com/qixuanHou/Mapping-My-Break,5,2019-01-02
-What Makes an Object Memorable?,http://openaccess.thecvf.com/content_iccv_2015/html/Dubey_What_Makes_an_ICCV_2015_paper.html,ICCV,2015,https://github.com/qixuanHou/Mapping-My-Break,5,2019-01-02
-Bilevel Programming for Hyperparameter Optimization and Meta-Learning,http://proceedings.mlr.press/v80/franceschi18a.html,ICML,2018,https://github.com/prolearner/hyper-representation,6,2019-01-02
-Attention Clusters: Purely Attention Based Local Feature Integration for Video Classification,http://openaccess.thecvf.com/content_cvpr_2018/papers/Long_Attention_Clusters_Purely_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/pomonam/AttentionCluster,10,2019-01-02
-Inner Space Preserving Generative Pose Machine,http://openaccess.thecvf.com/content_ECCV_2018/html/Shuangjun_Liu_Inner_Space_Preserving_ECCV_2018_paper.html,ECCV,2018,https://github.com/ostadabbas/isp-gpm,6,2019-01-02
-Blind Justice: Fairness with Encrypted Sensitive Attributes,http://proceedings.mlr.press/v80/kilbertus18a.html,ICML,2018,https://github.com/nikikilbertus/blind-justice,5,2019-01-02
-Human Pose Estimation With Parsing Induced Learner,http://openaccess.thecvf.com/content_cvpr_2018/papers/Nie_Human_Pose_Estimation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/NieXC/pytorch-pil,11,2019-01-02
-SubUNets: End-To-End Hand Shape and Continuous Sign Language Recognition,http://openaccess.thecvf.com/content_iccv_2017/html/Camgoz_SubUNets_End-To-End_Hand_ICCV_2017_paper.html,ICCV,2017,https://github.com/neccam/SubUNets,7,2019-01-02
-Assessing Generative Models via Precision and Recall,http://arxiv.org/abs/1806.00035v1,NIPS,2018,https://github.com/msmsajjadi/precision-recall-distributions,13,2019-01-02
-Multimodal Generative Models for Scalable Weakly-Supervised Learning,http://arxiv.org/abs/1802.05335v2,NIPS,2018,https://github.com/mhw32/multimodal-vae-public,4,2019-01-02
-Tell Me What You See and I will Show You Where It Is,http://openaccess.thecvf.com/content_cvpr_2014/html/Xu_Tell_Me_What_2014_CVPR_paper.html,CVPR,2014,https://github.com/MarkipTheMudkip/in-class-project-2,6,2019-01-02
-Long-Term Correlation Tracking,http://openaccess.thecvf.com/content_cvpr_2015/html/Ma_Long-Term_Correlation_Tracking_2015_CVPR_paper.html,CVPR,2015,https://github.com/malreddysid/long-term-correlation-tracking,6,2019-01-02
-Learning a Discriminative Null Space for Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhang_Learning_a_Discriminative_CVPR_2016_paper.html,CVPR,2016,https://github.com/lzrobots/NullSpace_ReID,8,2019-01-02
-Cross-Modality Binary Code Learning via Fusion Similarity Hashing,http://openaccess.thecvf.com/content_cvpr_2017/html/Liu_Cross-Modality_Binary_Code_CVPR_2017_paper.html,CVPR,2017,https://github.com/LynnHongLiu/FSH,5,2019-01-02
-Dynamic-Structured Semantic Propagation Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liang_Dynamic-Structured_Semantic_Propagation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/limberc/DSSPN,5,2018-10-01
-The Description Length of Deep Learning models,https://arxiv.org/abs/1802.07044,NIPS,2018,https://github.com/leonardblier/descriptionlengthdeeplearning,5,2019-01-02
-Visual Tracking Using Attention-Modulated Disintegration and Integration,http://openaccess.thecvf.com/content_cvpr_2016/html/Choi_Visual_Tracking_Using_CVPR_2016_paper.html,CVPR,2016,https://github.com/jongwon20000/SCT,5,2019-01-02
-Gradually Updated Neural Networks for Large-Scale Image Recognition,http://proceedings.mlr.press/v80/qiao18b.html,ICML,2018,https://github.com/joe-siyuan-qiao/GUNN,7,2019-01-02
-HiDDeN: Hiding Data with Deep Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Jiren_Zhu_HiDDeN_Hiding_Data_ECCV_2018_paper.html,ECCV,2018,https://github.com/jirenz/HiDDeN,21,2019-01-02
-Robust Adversarial Reinforcement Learning,http://proceedings.mlr.press/v70/pinto17a.html,ICML,2017,https://github.com/Jekyll1021/RARL,6,2019-01-02
-K-Medoids For K-Means Seeding,http://papers.nips.cc/paper/7104-k-medoids-for-k-means-seeding.pdf,NIPS,2017,https://github.com/idiap/zentas,6,2019-01-02
-Orthogonally Decoupled Variational Gaussian Processes,http://arxiv.org/abs/1809.08820v1,NIPS,2018,https://github.com/hughsalimbeni/orth_decoupled_var_gps,6,2019-01-02
-Unsupervised holistic image generation from key local patches,http://openaccess.thecvf.com/content_ECCV_2018/html/Donghoon_Lee_Unsupervised_holistic_image_ECCV_2018_paper.html,ECCV,2018,https://github.com/hellbell/KeyPatchGan,6,2019-01-02
-Testing and Learning on Distributions with Symmetric Noise Invariance,http://papers.nips.cc/paper/6733-testing-and-learning-on-distributions-with-symmetric-noise-invariance.pdf,NIPS,2017,https://github.com/hcllaw/phase_learn,5,2019-01-02
-Dense Semantic Correspondence Where Every Pixel is a Classifier,http://openaccess.thecvf.com/content_iccv_2015/html/Bristow_Dense_Semantic_Correspondence_ICCV_2015_paper.html,ICCV,2015,https://github.com/hbristow/epic,5,2019-01-02
-Learning Steady-States of Iterative Algorithms over Graphs,http://proceedings.mlr.press/v80/dai18a.html,ICML,2018,https://github.com/Hanjun-Dai/steady_state_embedding,7,2019-01-02
-"Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference",http://papers.nips.cc/paper/7268-sticking-the-landing-simple-lower-variance-gradient-estimators-for-variational-inference.pdf,NIPS,2017,https://github.com/geoffroeder/iwae,5,2019-01-02
-Beyond Local Search: Tracking Objects Everywhere With Instance-Specific Proposals,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhu_Beyond_Local_Search_CVPR_2016_paper.html,CVPR,2016,https://github.com/GaoCode/EBT,5,2019-01-02
-NeuralFDR: Learning Discovery Thresholds from Hypothesis Features,http://papers.nips.cc/paper/6752-neuralfdr-learning-discovery-thresholds-from-hypothesis-features.pdf,NIPS,2017,https://github.com/fxia22/NeuralFDR,5,2019-01-02
-Inter and Intra Topic Structure Learning with Word Embeddings,http://proceedings.mlr.press/v80/zhao18a.html,ICML,2018,https://github.com/ethanhezhao/WEDTM,5,2019-01-02
-Modeling Sparse Deviations for Compressed Sensing using Generative Models,http://proceedings.mlr.press/v80/dhar18a.html,ICML,2018,https://github.com/ermongroup/sparse_gen,9,2019-01-02
-Diving into the shallows: a computational perspective on large-scale shallow learning,http://papers.nips.cc/paper/6968-diving-into-the-shallows-a-computational-perspective-on-large-scale-shallow-learning.pdf,NIPS,2017,https://github.com/EigenPro/EigenPro-tensorflow,5,2019-01-02
-Rotation Equivariant Vector Field Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Marcos_Rotation_Equivariant_Vector_ICCV_2017_paper.html,ICCV,2017,https://github.com/dmarcosg/RotEqNet,5,2019-01-02
-Neural Architecture Optimization,http://arxiv.org/abs/1808.07233v3,NIPS,2018,https://github.com/dicarlolab/archconvnets,5,2019-01-02
-"Pixels, Voxels, and Views: A Study of Shape Representations for Single View 3D Object Shape Prediction",http://openaccess.thecvf.com/content_cvpr_2018/papers/Shin_Pixels_Voxels_and_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/daeyun/object-shapes-cvpr18,9,2019-01-02
-Weakly-supervised Video Summarization using Variational Encoder-Decoder and Web Prior,http://openaccess.thecvf.com/content_ECCV_2018/html/Sijia_Cai_Weakly-supervised_Video_Summarization_ECCV_2018_paper.html,ECCV,2018,https://github.com/cssjcai/vesd,5,2019-01-02
-Recursive Sampling for the Nystrom Method,http://papers.nips.cc/paper/6973-recursive-sampling-for-the-nystrom-method.pdf,NIPS,2017,https://github.com/cnmusco/recursive-nystrom,5,2019-01-02
-Learning K-way D-dimensional Discrete Codes for Compact Embedding Representations,http://proceedings.mlr.press/v80/chen18g.html,ICML,2018,https://github.com/chentingpc/kdcode-lm,8,2019-01-02
-Constraint-Aware Deep Neural Network Compression,http://openaccess.thecvf.com/content_ECCV_2018/html/Changan_Chen_Constraints_Matter_in_ECCV_2018_paper.html,ECCV,2018,https://github.com/ChanganVR/ConstraintAwareCompression,9,2019-01-02
-Functional Faces: Groupwise Dense Correspondence Using Functional Maps,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhang_Functional_Faces_Groupwise_CVPR_2016_paper.html,CVPR,2016,https://github.com/cazhang/funcFaces,5,2019-01-02
-The Mirage of Action-Dependent Baselines in Reinforcement Learning,http://proceedings.mlr.press/v80/tucker18a.html,ICML,2018,https://github.com/brain-research/mirage-rl,7,2019-01-02
-Learning From Video and Text via Large-Scale Discriminative Clustering,http://openaccess.thecvf.com/content_iccv_2017/html/Miech_Learning_From_Video_ICCV_2017_paper.html,ICCV,2017,https://github.com/antoine77340/iccv17learning,5,2019-01-02
-Don’t Just Assume Look and Answer: Overcoming Priors for Visual Question Answering,http://openaccess.thecvf.com/content_cvpr_2018/papers/Agrawal_Dont_Just_Assume_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/AishwaryaAgrawal/GVQA,7,2019-01-02
-Cognitive Mapping and Planning for Visual Navigation,http://openaccess.thecvf.com/content_cvpr_2017/html/Gupta_Cognitive_Mapping_and_CVPR_2017_paper.html,CVPR,2017,https://github.com/agiantwhale/cognitive-mapping-agent,9,2019-01-02
-Forecasting Human Dynamics From Static Images,http://openaccess.thecvf.com/content_cvpr_2017/html/Chao_Forecasting_Human_Dynamics_CVPR_2017_paper.html,CVPR,2017,https://github.com/ywchao/skeleton2d3d,6,2019-01-02
-Improving Human Action Recognition by Non-Action Classification,http://openaccess.thecvf.com/content_cvpr_2016/html/Wang_Improving_Human_Action_CVPR_2016_paper.html,CVPR,2016,https://github.com/yangwangx/NonActionShot,4,2019-01-02
-Zero-Shot Recognition Using Dual Visual-Semantic Mapping Paths,http://openaccess.thecvf.com/content_cvpr_2017/html/Li_Zero-Shot_Recognition_Using_CVPR_2017_paper.html,CVPR,2017,https://github.com/YanaLee/Zero-Shot-Recognition-using-Dual-Visual-Semantic-Mapping-Paths,4,2019-01-02
-Low-Rank Matrix Factorization Under General Mixture Noise Distributions,http://openaccess.thecvf.com/content_iccv_2015/html/Cao_Low-Rank_Matrix_Factorization_ICCV_2015_paper.html,ICCV,2015,https://github.com/xiangyongcao/PMoEP,4,2019-01-02
-Efficient Minimal-Surface Regularization of Perspective Depth Maps in Variational Stereo,http://openaccess.thecvf.com/content_cvpr_2015/html/Graber_Efficient_Minimal-Surface_Regularization_2015_CVPR_paper.html,CVPR,2015,https://github.com/VLOGroup/surface-area-regularization,4,2019-01-02
-Transferable Adversarial Perturbations,http://openaccess.thecvf.com/content_ECCV_2018/html/Bruce_Hou_Transferable_Adversarial_Perturbations_ECCV_2018_paper.html,ECCV,2018,https://github.com/vinayprabhu/Gainsboro-box-attacks-,4,2019-01-02
-Pose-Aware Person Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Kumar_Pose-Aware_Person_Recognition_CVPR_2017_paper.html,CVPR,2017,https://github.com/vijaykumar01/person_recognition,4,2019-01-02
-Connecting Pixels to Privacy and Utility: Automatic Redaction of Private Information in Images,http://openaccess.thecvf.com/content_cvpr_2018/papers/Orekondy_Connecting_Pixels_to_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/tribhuvanesh/visual_redactions,4,2019-01-02
-Joint Representation and Truncated Inference Learning for Correlation Filter based Tracking,http://openaccess.thecvf.com/content_ECCV_2018/html/Yingjie_Yao_Joint_Representation_and_ECCV_2018_paper.html,ECCV,2018,https://github.com/tourmaline612/RTINet,4,2019-01-02
-Predicting Salient Face in Multiple-Face Videos,http://openaccess.thecvf.com/content_cvpr_2017/html/Liu_Predicting_Salient_Face_CVPR_2017_paper.html,CVPR,2017,https://github.com/tonysy/salient-face-in-MUVFET,4,2019-01-02
-Geolocation Estimation of Photos using a Hierarchical Model and Scene Classification,http://openaccess.thecvf.com/content_ECCV_2018/html/Eric_Muller-Budack_Geolocation_Estimation_of_ECCV_2018_paper.html,ECCV,2018,https://github.com/TIBHannover/GeoEstimation,4,2019-01-02
-Superdifferential Cuts for Binary Energies,http://openaccess.thecvf.com/content_cvpr_2015/html/Taniai_Superdifferential_Cuts_for_2015_CVPR_paper.html,CVPR,2015,https://github.com/t-taniai/SDC_CVPR2015,4,2019-01-02
-Global optimization of Lipschitz functions,http://proceedings.mlr.press/v70/malherbe17a.html,ICML,2017,https://github.com/Sycor4x/lipo,5,2019-01-02
-Pose Induction for Novel Object Categories,http://openaccess.thecvf.com/content_iccv_2015/html/Tulsiani_Pose_Induction_for_ICCV_2015_paper.html,ICCV,2015,https://github.com/shubhtuls/poseInduction,4,2019-01-02
-Multi-View Convolutional Neural Networks for 3D Shape Recognition,http://openaccess.thecvf.com/content_iccv_2015/html/Su_Multi-View_Convolutional_Neural_ICCV_2015_paper.html,ICCV,2015,https://github.com/shawnxu1318/MVCNN-Multi-View-Convolutional-Neural-Networks,7,2019-01-02
-Learning Cooperative Visual Dialog Agents With Deep Reinforcement Learning,http://openaccess.thecvf.com/content_iccv_2017/html/Das_Learning_Cooperative_Visual_ICCV_2017_paper.html,ICCV,2017,https://github.com/schopra8/Cooperative_Vis_Diag_RL,4,2019-01-02
-Estimating the Success of Unsupervised Image to Image Translation,http://openaccess.thecvf.com/content_ECCV_2018/html/Lior_Wolf_Estimating_the_Success_ECCV_2018_paper.html,ECCV,2018,https://github.com/sagiebenaim/gan_bound,5,2019-01-02
-Bottleneck Conditional Density Estimation,http://proceedings.mlr.press/v70/shu17a.html,ICML,2017,https://github.com/RuiShu/bcde,4,2019-01-02
-Quadrature-based features for kernel approximation,http://arxiv.org/abs/1802.03832v3,NIPS,2018,https://github.com/quffka/quffka,4,2019-01-02
-Towards Realistic Predictors,http://openaccess.thecvf.com/content_ECCV_2018/html/Pei_Wang_Towards_Realistic_Predictors_ECCV_2018_paper.html,ECCV,2018,https://github.com/peiwang062/towards-realistic-predictors,7,2019-01-02
-ROAM: A Rich Object Appearance Model With Application to Rotoscoping,http://openaccess.thecvf.com/content_cvpr_2017/html/Miksik_ROAM_A_Rich_CVPR_2017_paper.html,CVPR,2017,https://github.com/omiksik/roam,5,2019-01-02
-Tracking Emerges by Colorizing Videos,http://openaccess.thecvf.com/content_ECCV_2018/html/Carl_Vondrick_Self-supervised_Tracking_by_ECCV_2018_paper.html,ECCV,2018,https://github.com/Oh-Yoojin/Tracking-Emerges-by-Colorizing-Videos,4,2019-01-02
-Multi-way Interacting Regression via Factorization Machines,http://papers.nips.cc/paper/6853-multi-way-interacting-regression-via-factorization-machines.pdf,NIPS,2017,https://github.com/moonfolk/MiFM,4,2019-01-02
-Conic Scan-and-Cover algorithms for nonparametric topic modeling,http://papers.nips.cc/paper/6977-conic-scan-and-cover-algorithms-for-nonparametric-topic-modeling.pdf,NIPS,2017,https://github.com/moonfolk/Geometric-Topic-Modeling,5,2019-01-02
-Active Decision Boundary Annotation With Deep Generative Models,http://openaccess.thecvf.com/content_iccv_2017/html/Huijser_Active_Decision_Boundary_ICCV_2017_paper.html,ICCV,2017,https://github.com/MiriamHu/ActiveBoundary,5,2019-01-02
-Differentially Private Database Release via Kernel Mean Embeddings,http://proceedings.mlr.press/v80/balog18a.html,ICML,2018,https://github.com/matejbalog/RKHS-private-database,4,2019-01-02
-Mutual Information Neural Estimation,http://proceedings.mlr.press/v80/belghazi18a.html,ICML,2018,https://github.com/MasanoriYamada/Mine_pytorch,39,2019-01-02
-Simultaneous Deep Transfer Across Domains and Tasks,http://openaccess.thecvf.com/content_iccv_2015/html/Tzeng_Simultaneous_Deep_Transfer_ICCV_2015_paper.html,ICCV,2015,https://github.com/mahfujau/domain_adaptation_iccv15,6,2019-01-02
-Inference Suboptimality in Variational Autoencoders,http://proceedings.mlr.press/v80/cremer18a.html,ICML,2018,https://github.com/lxuechen/inference-suboptimality,4,2019-01-02
-Classification from Pairwise Similarity and Unlabeled Data,http://proceedings.mlr.press/v80/bao18a.html,ICML,2018,https://github.com/levelfour/SU_Classification,9,2019-01-02
-Globally Optimal Manhattan Frame Estimation in Real-Time,http://openaccess.thecvf.com/content_cvpr_2016/html/Joo_Globally_Optimal_Manhattan_CVPR_2016_paper.html,CVPR,2016,https://github.com/Kyungdon/mf_estimation,7,2019-01-02
-DVQA: Understanding Data Visualizations via Question Answering,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kafle_DVQA_Understanding_Data_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kushalkafle/DVQA_dataset,7,2019-01-02
-Prior-Less Compressible Structure From Motion,http://openaccess.thecvf.com/content_cvpr_2016/html/Kong_Prior-Less_Compressible_Structure_CVPR_2016_paper.html,CVPR,2016,https://github.com/kongchen1992/compressible-sfm,4,2019-01-02
-Statistically-motivated Second-order Pooling,http://openaccess.thecvf.com/content_ECCV_2018/html/Kaicheng_Yu_Statistically-motivated_Second-order_Pooling_ECCV_2018_paper.html,ECCV,2018,https://github.com/kcyu2014/smsop,9,2019-01-02
-Object Co-Skeletonization With Co-Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/html/Jerripothula_Object_Co-Skeletonization_With_CVPR_2017_paper.html,CVPR,2017,https://github.com/jkoteswarrao/Object-Co-skeletonization-with-Co-segmentation,5,2019-01-02
-Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lyu_Multi-Oriented_Scene_Text_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/JK-Rao/Corner_Segmentation_TextDetection,10,2019-01-02
-Salient Region Detection via High-Dimensional Color Transform,http://openaccess.thecvf.com/content_cvpr_2014/html/Kim_Salient_Region_Detection_2014_CVPR_paper.html,CVPR,2014,https://github.com/jhkim89/Saliency-HDCT,6,2019-01-02
-Joint Discovery of Object States and Manipulation Actions,http://openaccess.thecvf.com/content_iccv_2017/html/Alayrac_Joint_Discovery_of_ICCV_2017_paper.html,ICCV,2017,https://github.com/jalayrac/object-states-action,4,2019-01-02
-From Red Wine to Red Tomato: Composition With Context,http://openaccess.thecvf.com/content_cvpr_2017/html/Misra_From_Red_Wine_CVPR_2017_paper.html,CVPR,2017,https://github.com/imisra/composing_cvpr17,4,2019-01-02
-Light Structure from Pin Motion: Simple and Accurate Point Light Calibration for Physics-based Modeling,http://openaccess.thecvf.com/content_ECCV_2018/html/Hiroaki_Santo_Light_Structure_from_ECCV_2018_paper.html,ECCV,2018,https://github.com/hiroaki-santo/light-structure-from-pin-motion,7,2019-01-02
-Cross-Stitch Networks for Multi-Task Learning,http://openaccess.thecvf.com/content_cvpr_2016/html/Misra_Cross-Stitch_Networks_for_CVPR_2016_paper.html,CVPR,2016,https://github.com/helloyide/Cross-stitch-Networks-for-Multi-task-Learning,8,2019-01-02
-Discover and Learn New Objects From Documentaries,http://openaccess.thecvf.com/content_cvpr_2017/html/Chen_Discover_and_Learn_CVPR_2017_paper.html,CVPR,2017,https://github.com/hellock/documentary-learning,5,2019-01-02
-From Bayesian Sparsity to Gated Recurrent Nets,http://papers.nips.cc/paper/7139-from-bayesian-sparsity-to-gated-recurrent-nets.pdf,NIPS,2017,https://github.com/hehaodele/SBL-LSTM-Net,8,2019-01-02
-Efficient Deep Learning for Stereo Matching,http://openaccess.thecvf.com/content_cvpr_2016/html/Luo_Efficient_Deep_Learning_CVPR_2016_paper.html,CVPR,2016,https://github.com/haojeng-wang/dl_stereo_matching,7,2019-01-02
-End-to-End Incremental Learning,http://openaccess.thecvf.com/content_ECCV_2018/html/Francisco_M._Castro_End-to-End_Incremental_Learning_ECCV_2018_paper.html,ECCV,2018,https://github.com/fmcp/EndToEndIncrementalLearning,10,2019-01-02
-Breaking the Activation Function Bottleneck through Adaptive Parameterization,https://arxiv.org/abs/1805.08574,NIPS,2018,https://github.com/flennerhag/alstm,6,2019-01-02
-Robust Physical-World Attacks on Deep Learning Visual Classification,http://openaccess.thecvf.com/content_cvpr_2018/papers/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/evtimovi/robust_physical_perturbations,11,2019-01-02
-Understanding Black-box Predictions via Influence Functions,http://proceedings.mlr.press/v70/koh17a.html,ICML,2017,https://github.com/eolecvk/InfluenceFunctions,5,2019-01-02
-"Decoupling ""when to update"" from ""how to update""",http://papers.nips.cc/paper/6697-decoupling-when-to-update-from-how-to-update.pdf,NIPS,2017,https://github.com/emalach/UpdateByDisagreement,5,2019-01-02
-Deep Recurrent Neural Network-Based Identification of Precursor microRNAs,http://papers.nips.cc/paper/6882-deep-recurrent-neural-network-based-identification-of-precursor-micrornas.pdf,NIPS,2017,https://github.com/eleventh83/deepMiRGene,4,2019-01-02
-Differentially private Bayesian learning on distributed data,http://papers.nips.cc/paper/6915-differentially-private-bayesian-learning-on-distributed-data.pdf,NIPS,2017,https://github.com/DPBayes/dca-nips2017,5,2019-01-02
-Grad-CAM: Visual Explanations From Deep Networks via Gradient-Based Localization,http://openaccess.thecvf.com/content_iccv_2017/html/Selvaraju_Grad-CAM_Visual_Explanations_ICCV_2017_paper.html,ICCV,2017,https://github.com/cydonia999/Grad-CAM-in-TensorFlow,5,2019-01-02
-Guarantees for Greedy Maximization of Non-submodular Functions with Applications,http://proceedings.mlr.press/v70/bian17a.html,ICML,2017,https://github.com/bianan/non-submodular-max,4,2019-01-02
-Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains,http://openaccess.thecvf.com/content_cvpr_2018/papers/Pang_Zoom_and_Learn_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Artifineuro/zole,6,2019-01-02
-Question Asking as Program Generation,http://papers.nips.cc/paper/6705-question-asking-as-program-generation.pdf,NIPS,2017,https://github.com/anselmrothe/question_dataset,5,2019-01-02
-Logo Synthesis and Manipulation With Clustered Generative Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sage_Logo_Synthesis_and_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/alex-sage/logo-gen,10,2019-01-02
-Learning Face Age Progression: A Pyramid Architecture of GANs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_Learning_Face_Age_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ajithvallabai/Pyramid-Architecture-of-GANs,11,2019-01-02
-BourGAN: Generative Networks with Metric Embeddings,https://arxiv.org/abs/1805.07674,NIPS,2018,https://github.com/a554b554/BourGAN,8,2019-01-02
-Statistical Recurrent Models on Manifold valued Data,http://arxiv.org/abs/1805.11204v1,NIPS,2018,https://github.com/zhenxingjian/SPD-SRU,3,2019-01-02
-Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization,http://proceedings.mlr.press/v80/zhang18g.html,ICML,2018,https://github.com/zhangjiong724/spectral-RNN,3,2019-01-02
-Stereo Vision-based Semantic 3D Object and Ego-motion Tracking for Autonomous Driving,http://openaccess.thecvf.com/content_ECCV_2018/html/Peiliang_LI_Stereo_Vision-based_Semantic_ECCV_2018_paper.html,ECCV,2018,https://github.com/zhanghanduo/stereo_semantic_mapping,5,2019-01-02
-A Unified View of Multi-Label Performance Measures,http://proceedings.mlr.press/v70/wu17a.html,ICML,2017,https://github.com/YuriWu/LIMO,2,2019-01-02
-Robust Saliency Detection via Regularized Random Walks Ranking,http://openaccess.thecvf.com/content_cvpr_2015/html/Li_Robust_Saliency_Detection_2015_CVPR_paper.html,CVPR,2015,https://github.com/yuanyc06/rr,3,2019-01-02
-A Joint Sequence Fusion Model for Video Question Answering and Retrieval,http://openaccess.thecvf.com/content_ECCV_2018/html/Youngjae_Yu_A_Joint_Sequence_ECCV_2018_paper.html,ECCV,2018,https://github.com/yj-yu/lsmdc,11,2019-01-02
-SegStereo: Exploiting Semantic Information for Disparity Estimation,http://openaccess.thecvf.com/content_ECCV_2018/html/Guorun_Yang_SegStereo_Exploiting_Semantic_ECCV_2018_paper.html,ECCV,2018,https://github.com/yangguorun/SegStereo,16,2019-01-02
-Gaze Prediction in Dynamic 360° Immersive Videos,http://openaccess.thecvf.com/content_cvpr_2018/papers/Xu_Gaze_Prediction_in_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/xuyanyu-shh/VR-EyeTracking,3,2019-01-02
-Saliency Detection in 360° Videos,http://openaccess.thecvf.com/content_ECCV_2018/html/Ziheng_Zhang_Saliency_Detection_in_ECCV_2018_paper.html,ECCV,2018,https://github.com/xuyanyu-shh/Saliency-detection-in-360-video,9,2019-01-02
-Image Super-Resolution via Dual-State Recurrent Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Han_Image_Super-Resolution_via_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/WeiHan3/dsrn,1,2019-01-02
-Ring Loss: Convex Feature Normalization for Face Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zheng_Ring_Loss_Convex_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/vsatyakumar/Ring-Loss-Keras,3,2019-01-02
-Multi-Label Cross-Modal Retrieval,http://openaccess.thecvf.com/content_iccv_2015/html/Ranjan_Multi-Label_Cross-Modal_Retrieval_ICCV_2015_paper.html,ICCV,2015,https://github.com/Viresh-R/ml-CCA,4,2019-01-02
-Feedback-Prop: Convolutional Neural Network Inference Under Partial Evidence,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Feedback-Prop_Convolutional_Neural_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/uvavision/feedbackprop,4,2019-01-02
-Rolling-Shutter-Aware Differential SfM and Image Rectification,http://openaccess.thecvf.com/content_iccv_2017/html/Zhuang_Rolling-Shutter-Aware_Differential_SfM_ICCV_2017_paper.html,ICCV,2017,https://github.com/ThomasZiegler/RS-aware-differential-SfM,5,2019-01-02
-Learning to Branch,http://proceedings.mlr.press/v80/balcan18a.html,ICML,2018,https://github.com/StoneyJackson/github-workflow-activity,3,2019-01-02
-Sidekick Policy Learning for Active Visual Exploration,http://openaccess.thecvf.com/content_ECCV_2018/html/Santhosh_Kumar_Ramakrishnan_Sidekick_Policy_Learning_ECCV_2018_paper.html,ECCV,2018,https://github.com/srama2512/sidekicks,5,2019-01-02
-Spatially-Adaptive Filter Units for Deep Neural Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tabernik_Spatially-Adaptive_Filter_Units_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/skokec/DAU-ConvNet,3,2019-01-02
-Near-Optimal Edge Evaluation in Explicit Generalized Binomial Graphs,http://papers.nips.cc/paper/7049-near-optimal-edge-evaluation-in-explicit-generalized-binomial-graphs.pdf,NIPS,2017,https://github.com/sanjibac/matlab_learning_collision_checking,3,2019-01-02
-Large Margin Object Tracking With Circulant Feature Maps,http://openaccess.thecvf.com/content_cvpr_2017/html/Wang_Large_Margin_Object_CVPR_2017_paper.html,CVPR,2017,https://github.com/sallymmx/LMCF,3,2019-01-02
-Adversarial Surrogate Losses for Ordinal Regression,http://papers.nips.cc/paper/6659-adversarial-surrogate-losses-for-ordinal-regression.pdf,NIPS,2017,https://github.com/rizalzaf/adversarial-ordinal,3,2019-01-02
-DenseCap: Fully Convolutional Localization Networks for Dense Captioning,http://openaccess.thecvf.com/content_cvpr_2016/html/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.html,CVPR,2016,https://github.com/rampage644/densecap-tensorflow,4,2019-01-02
-Encoder Based Lifelong Learning,http://openaccess.thecvf.com/content_iccv_2017/html/Rannen_Encoder_Based_Lifelong_ICCV_2017_paper.html,ICCV,2017,https://github.com/rahafaljundi/Encoder-Based-Lifelong-learning,4,2019-01-02
-Counting Everyday Objects in Everyday Scenes,http://openaccess.thecvf.com/content_cvpr_2017/html/Chattopadhyay_Counting_Everyday_Objects_CVPR_2017_paper.html,CVPR,2017,https://github.com/prithv1/cvpr2017_counting,3,2019-01-02
-Toward Goal-Driven Neural Network Models for the Rodent Whisker-Trigeminal System,http://papers.nips.cc/paper/6849-toward-goal-driven-neural-network-models-for-the-rodent-whisker-trigeminal-system.pdf,NIPS,2017,https://github.com/neuroailab/whisker_model,3,2019-01-02
-Alternating Direction Graph Matching,http://openaccess.thecvf.com/content_cvpr_2017/html/Le-Huu_Alternating_Direction_Graph_CVPR_2017_paper.html,CVPR,2017,https://github.com/netw0rkf10w/adgm,4,2019-01-02
-Deep Burst Denoising,http://openaccess.thecvf.com/content_ECCV_2018/html/Clement_Godard_Deep_Burst_Denoising_ECCV_2018_paper.html,ECCV,2018,https://github.com/mrharicot/deep_burst_denoising,3,2019-01-02
-Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC,http://proceedings.mlr.press/v70/cong17a.html,ICML,2017,https://github.com/mingyuanzhou/DeepLDA_TLASGR_MCMC,3,2019-01-02
-Diverse and Coherent Paragraph Generation from Images,http://openaccess.thecvf.com/content_ECCV_2018/html/Moitreya_Chatterjee_Diverse_and_Coherent_ECCV_2018_paper.html,ECCV,2018,https://github.com/metro-smiles/CapG_RevG_Code,5,2019-01-02
-Lip Reading Sentences in the Wild,http://openaccess.thecvf.com/content_cvpr_2017/html/Chung_Lip_Reading_Sentences_CVPR_2017_paper.html,CVPR,2017,https://github.com/lsrock1/WLSNet_pytorch,5,2019-01-02
-Unsupervised Generation of a Viewpoint Annotated Car Dataset From Videos,http://openaccess.thecvf.com/content_iccv_2015/html/Sedaghat_Unsupervised_Generation_of_ICCV_2015_paper.html,ICCV,2015,https://github.com/lmb-freiburg/unsup-car-dataset,5,2019-01-02
-Expectation Propagation with Stochastic Kinetic Model in Complex Interaction Systems,http://papers.nips.cc/paper/6798-expectation-propagation-with-stochastic-kinetic-model-in-complex-interaction-systems.pdf,NIPS,2017,https://github.com/lefangcs/Expectation-Propagation-with-Stochastic-Kinetic-Model-in-Complex-Interaction-Systems,3,2019-01-02
-Simultaneous Video Defogging and Stereo Reconstruction,http://openaccess.thecvf.com/content_cvpr_2015/html/Li_Simultaneous_Video_Defogging_2015_CVPR_paper.html,CVPR,2015,https://github.com/Lashuk1729/DIP-Project-Video-Dehazing,3,2019-01-02
-Hyperspectral Super-Resolution by Coupled Spectral Unmixing,http://openaccess.thecvf.com/content_iccv_2015/html/Lanaras_Hyperspectral_Super-Resolution_by_ICCV_2015_paper.html,ICCV,2015,https://github.com/lanha/SupResPALM,3,2019-01-02
-Aesthetic Critiques Generation for Photos,http://openaccess.thecvf.com/content_iccv_2017/html/Chang_Aesthetic_Critiques_Generation_ICCV_2017_paper.html,ICCV,2017,https://github.com/kunghunglu/DeepPhotoCritic-ICCV17,3,2019-01-02
-Force From Motion: Decoding Physical Sensation in a First Person Video,http://openaccess.thecvf.com/content_cvpr_2016/html/Park_Force_From_Motion_CVPR_2016_paper.html,CVPR,2016,https://github.com/jyhjinghwang/Force_from_Motion_Gravity_Models,3,2019-01-02
-CLEAR: Cumulative LEARning for One-Shot One-Class Image Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kozerawski_CLEAR_Cumulative_LEARning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/JKozerawski/CLEAR-osoc,3,2019-01-02
-Loss Max-Pooling for Semantic Image Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/html/Bulo_Loss_Max-Pooling_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/jjkke88/LMP,3,2019-01-02
-Deepcode: Feedback Codes via Deep Learning,http://arxiv.org/abs/1807.00801v1,NIPS,2018,https://github.com/hyejikim1/Deepcode,4,2019-01-02
-Disentangling Factors of Variation by Mixing Them,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Disentangling_Factors_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/HuQyang/Disentangling-Factors-of-Variation-by-Mixing-Them,5,2019-01-02
-Fast Randomized Singular Value Thresholding for Nuclear Norm Minimization,http://openaccess.thecvf.com/content_cvpr_2015/html/Oh_Fast_Randomized_Singular_2015_CVPR_paper.html,CVPR,2015,https://github.com/HlG4399/FRSVT,5,2019-01-02
-Learning Answer Embeddings for Visual Question Answering,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Learning_Answer_Embeddings_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/hexiang-hu/answer_embedding,3,2019-01-02
-Context-Aware Gaussian Fields for Non-Rigid Point Set Registration,http://openaccess.thecvf.com/content_cvpr_2016/html/Wang_Context-Aware_Gaussian_Fields_CVPR_2016_paper.html,CVPR,2016,https://github.com/gwang-cv/CA-LapGF-Demo,3,2019-01-02
-Making Deep Neural Networks Robust to Label Noise: A Loss Correction Approach,http://openaccess.thecvf.com/content_cvpr_2017/html/Patrini_Making_Deep_Neural_CVPR_2017_paper.html,CVPR,2017,https://github.com/GarrettLee/label_noise_correction,5,2019-01-02
-Oriented Object Proposals,http://openaccess.thecvf.com/content_iccv_2015/html/He_Oriented_Object_Proposals_ICCV_2015_paper.html,ICCV,2015,https://github.com/frutuozo29/WebServiceRESTFul,3,2019-01-02
-Segment Graph Based Image Filtering: Fast Structure-Preserving Smoothing,http://openaccess.thecvf.com/content_iccv_2015/html/Zhang_Segment_Graph_Based_ICCV_2015_paper.html,ICCV,2015,https://github.com/feihuzhang/SGF,5,2019-01-02
-A framework for Multi-A(rmed)/B(andit) Testing with Online FDR Control,http://papers.nips.cc/paper/7177-a-framework-for-multi-armedbandit-testing-with-online-fdr-control.pdf,NIPS,2017,https://github.com/fanny-yang/MABFDR,3,2019-01-02
-kNN Hashing With Factorized Neighborhood Representation,http://openaccess.thecvf.com/content_iccv_2015/html/Ding_kNN_Hashing_With_ICCV_2015_paper.html,ICCV,2015,https://github.com/dooook/kNN-hashing,3,2019-01-02
-Not to Cry Wolf: Distantly Supervised Multitask Learning in Critical Care,http://proceedings.mlr.press/v80/schwab18a.html,ICML,2018,https://github.com/d909b/DSMT-Nets,3,2019-01-02
-Minimum Barrier Salient Object Detection at 80 FPS,http://openaccess.thecvf.com/content_iccv_2015/html/Zhang_Minimum_Barrier_Salient_ICCV_2015_paper.html,ICCV,2015,https://github.com/coderSkyChen/MBS_Cplus_c-,3,2019-01-02
-Unifying PAC and Regret: Uniform PAC Bounds for Episodic Reinforcement Learning,http://papers.nips.cc/paper/7154-unifying-pac-and-regret-uniform-pac-bounds-for-episodic-reinforcement-learning.pdf,NIPS,2017,https://github.com/chrodan/FiniteEpisodicRL.jl,3,2019-01-02
-High-Resolution Image Synthesis and Semantic Manipulation With Conditional GANs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_High-Resolution_Image_Synthesis_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/chenxli/High-Resolution-Image-Synthesis-and-Semantic-Manipulation-with-Conditional-GANsl-,8,2019-01-02
-Parallel Bayesian Network Structure Learning,http://proceedings.mlr.press/v80/gao18b.html,ICML,2018,https://github.com/bign8/PyStruct,3,2019-01-02
-Non-monotone Continuous DR-submodular Maximization: Structure and Algorithms,http://papers.nips.cc/paper/6652-continuous-dr-submodular-maximization-structure-and-algorithms.pdf,NIPS,2017,https://github.com/bianan,3,2018-09-16
-On Structured Prediction Theory with Calibrated Convex Surrogate Losses,http://papers.nips.cc/paper/6634-on-structured-prediction-theory-with-calibrated-convex-surrogate-losses.pdf,NIPS,2017,https://github.com/aosokin/consistentSurrogates_derivations,4,2019-01-02
-Unsupervised Learning of Object Landmarks by Factorized Spatial Embeddings,http://openaccess.thecvf.com/content_iccv_2017/html/Thewlis_Unsupervised_Learning_of_ICCV_2017_paper.html,ICCV,2017,https://github.com/alldbi/Factorized-Spatial-Embeddings,6,2019-01-02
-Compatible Reward Inverse Reinforcement Learning,http://papers.nips.cc/paper/6800-compatible-reward-inverse-reinforcement-learning.pdf,NIPS,2017,https://github.com/albertometelli/crirl,3,2019-01-02
-Tensor Belief Propagation,http://proceedings.mlr.press/v70/wrigley17a.html,ICML,2017,https://github.com/akxlr/tbp,6,2019-01-02
-Convergent Tree Backup and Retrace with Function Approximation,http://proceedings.mlr.press/v80/touati18a.html,ICML,2018,https://github.com/ahmed-touati/convergent-off-policy,3,2019-01-02
-Efficient Globally Optimal 2D-To-3D Deformable Shape Matching,http://openaccess.thecvf.com/content_cvpr_2016/html/Lahner_Efficient_Globally_Optimal_CVPR_2016_paper.html,CVPR,2016,https://github.com/zorah/Elastic2D3D,2,2019-01-02
-Batched High-dimensional Bayesian Optimization via Structural Kernel Learning,http://proceedings.mlr.press/v70/wang17h.html,ICML,2017,https://github.com/zi-w/Structural-Kernel-Learning-for-HDBBO,2,2019-01-02
-Dynamic Scene Deblurring Using Spatially Variant Recurrent Neural Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Dynamic_Scene_Deblurring_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zhjwustc/cvpr18_rnn_deblur_matcaffe,6,2019-01-02
-Learning Fully Convolutional Networks for Iterative Non-Blind Deconvolution,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Learning_Fully_Convolutional_CVPR_2017_paper.html,CVPR,2017,https://github.com/zhjwustc/cvpr17_iter_deblur_testing_matconvnet,2,2019-01-02
-End-to-End Flow Correlation Tracking With Spatial-Temporal Attention,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhu_End-to-End_Flow_Correlation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zhengzhugithub/FlowTrack,3,2019-01-02
-Discriminative Bimodal Networks for Visual Localization and Detection With Natural Language Queries,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Discriminative_Bimodal_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/YutingZhang/dbnet-caffe-matlab,3,2019-01-02
-Permutation-based Causal Inference Algorithms with Interventions,http://papers.nips.cc/paper/7164-permutation-based-causal-inference-algorithms-with-interventions.pdf,NIPS,2017,https://github.com/yuhaow/sp-intervention,2,2019-01-02
-An Egocentric Look at Video Photographer Identity,http://openaccess.thecvf.com/content_cvpr_2016/html/Hoshen_An_Egocentric_Look_CVPR_2016_paper.html,CVPR,2016,https://github.com/Yedid/ego,2,2019-01-02
-Learning to Super-Resolve Blurry Face and Text Images,http://openaccess.thecvf.com/content_iccv_2017/html/Xu_Learning_to_Super-Resolve_ICCV_2017_paper.html,ICCV,2017,https://github.com/xuxy09/joint_SR_Deblur,2,2019-01-02
-Joint Person Segmentation and Identification in Synchronized First- and Third-person Videos,http://openaccess.thecvf.com/content_ECCV_2018/html/Mingze_Xu_Joint_Person_Segmentation_ECCV_2018_paper.html,ECCV,2018,https://github.com/xumingze0308/firstthird-eccv2018,2,2019-01-02
-Learning Non-Maximum Suppression,http://openaccess.thecvf.com/content_cvpr_2017/html/Hosang_Learning_Non-Maximum_Suppression_CVPR_2017_paper.html,CVPR,2017,https://github.com/XingchenYu/pedestrian_detection_iosapp,3,2019-01-02
-Inferring Forces and Learning Human Utilities From Videos,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhu_Inferring_Forces_and_CVPR_2016_paper.html,CVPR,2016,https://github.com/xiaozhuchacha/ChairPerson,2,2019-01-02
-Weakly Supervised Object Localization With Progressive Domain Adaptation,http://openaccess.thecvf.com/content_cvpr_2016/html/Li_Weakly_Supervised_Object_CVPR_2016_paper.html,CVPR,2016,https://github.com/wupeng78/Weakly-Supervised-Object-Localization-with-Progressive-Domain-Adaptation-CVPR-2016-,2,2019-01-02
-AOD-Net: All-In-One Dehazing Network,http://openaccess.thecvf.com/content_iccv_2017/html/Li_AOD-Net_All-In-One_Dehazing_ICCV_2017_paper.html,ICCV,2017,https://github.com/weber0522bb/AODnet-by-pytorch,6,2019-01-02
-CIDEr: Consensus-Based Image Description Evaluation,http://openaccess.thecvf.com/content_cvpr_2015/html/Vedantam_CIDEr_Consensus-Based_Image_2015_CVPR_paper.html,CVPR,2015,https://github.com/vrama91/cider-matlab,2,2019-01-02
-A Weighted Sparse Sampling and Smoothing Frame Transition Approach for Semantic Fast-Forward First-Person Videos,http://openaccess.thecvf.com/content_cvpr_2018/papers/Silva_A_Weighted_Sparse_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/verlab/SemanticFastForward_CVPR_2018,2,2019-01-02
-Black Box FDR,http://proceedings.mlr.press/v80/tansey18a.html,ICML,2018,https://github.com/tansey/bb-fdr,4,2019-01-02
-Joint Recovery of Dense Correspondence and Cosegmentation in Two Images,http://openaccess.thecvf.com/content_cvpr_2016/html/Taniai_Joint_Recovery_of_CVPR_2016_paper.html,CVPR,2016,https://github.com/t-taniai/TSS_CVPR2016_Demo,2,2019-01-02
-Conditional Neural Processes,http://proceedings.mlr.press/v80/garnelo18a.html,ICML,2018,https://github.com/suyashnigam/ConditionalNeuralProcesses,2,2019-01-02
-Diverse Conditional Image Generation by Stochastic Regression with Latent Drop-Out Codes,http://openaccess.thecvf.com/content_ECCV_2018/html/Yang_He_Diverse_Conditional_Image_ECCV_2018_paper.html,ECCV,2018,https://github.com/SSAW14/Image_Generation_with_Latent_Code,4,2019-01-02
-Subspace Clustering for Sequential Data,http://openaccess.thecvf.com/content_cvpr_2014/html/Tierney_Subspace_Clustering_for_2014_CVPR_paper.html,CVPR,2014,https://github.com/sjtrny/OSC,2,2019-01-02
-Structural Sparse Tracking,http://openaccess.thecvf.com/content_cvpr_2015/html/Zhang_Structural_Sparse_Tracking_2015_CVPR_paper.html,CVPR,2015,https://github.com/shenjianbing/Visual-tracking-using-strong-classifier-and-structural-local-sparse-descriptors-,2,2019-01-02
-Extreme Clicking for Efficient Object Annotation,http://openaccess.thecvf.com/content_iccv_2017/html/Papadopoulos_Extreme_Clicking_for_ICCV_2017_paper.html,ICCV,2017,https://github.com/serycjon/extreme_clicking,2,2019-01-02
-Less Is More: Zero-Shot Learning From Online Textual Documents With Noise Suppression,http://openaccess.thecvf.com/content_cvpr_2016/html/Qiao_Less_Is_More_CVPR_2016_paper.html,CVPR,2016,https://github.com/rqiao/zsl_noise_suppression,2,2019-01-02
-Information Constraints on Auto-Encoding Variational Bayes,http://arxiv.org/abs/1805.08672v2,NIPS,2018,https://github.com/romain-lopez/HCV,3,2019-01-02
-Composite Functional Gradient Learning of Generative Adversarial Models,http://proceedings.mlr.press/v80/johnson18a.html,ICML,2018,https://github.com/riejohnson/cfg-gan,2,2019-01-02
-Learning for Active 3D Mapping,http://openaccess.thecvf.com/content_iccv_2017/html/Zimmermann_Learning_for_Active_ICCV_2017_paper.html,ICCV,2017,https://github.com/RheoDesign/AAVS-Beijing,2,2019-01-02
-Efficient Algorithms for Moral Lineage Tracing,http://openaccess.thecvf.com/content_iccv_2017/html/Rempfler_Efficient_Algorithms_for_ICCV_2017_paper.html,ICCV,2017,https://github.com/rempfler/efficient-mlt,2,2019-01-02
-AIDE: An algorithm for measuring the accuracy of probabilistic inference algorithms,http://papers.nips.cc/paper/6893-aide-an-algorithm-for-measuring-the-accuracy-of-probabilistic-inference-algorithms.pdf,NIPS,2017,https://github.com/probcomp/nips2017-aide-experiments,2,2019-01-02
-Scalable Levy Process Priors for Spectral Kernel Learning,http://papers.nips.cc/paper/6983-scalable-levy-process-priors-for-spectral-kernel-learning.pdf,NIPS,2017,https://github.com/pjang23/levy-spectral-kernel-learning,2,2019-01-02
-DeLS-3D: Deep Localization and Segmentation With a 3D Semantic Map,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_DeLS-3D_Deep_Localization_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/pengwangucla/DeLS-3D,4,2019-01-02
-Simultaneous Stereo Video Deblurring and Scene Flow Estimation,http://openaccess.thecvf.com/content_cvpr_2017/html/Pan_Simultaneous_Stereo_Video_CVPR_2017_paper.html,CVPR,2017,https://github.com/panpanfei/data-Simultaneous-Stereo-Video-Deblurring-and-Scene-Flow-Estimation,2,2019-01-02
-A Simple yet Effective Baseline for 3D Human Pose Estimation,http://openaccess.thecvf.com/content_iccv_2017/html/Martinez_A_Simple_yet_ICCV_2017_paper.html,ICCV,2017,https://github.com/nulledge/bilinear,4,2019-01-02
-Towards Effective Low-Bitwidth Convolutional Neural Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhuang_Towards_Effective_Low-Bitwidth_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/nowgood/QuantizeCNNModel,5,2019-01-02
-Recognizing Human Actions as the Evolution of Pose Estimation Maps,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Recognizing_Human_Actions_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/nkliuyifang/Skeleton-based-Human-Action-Recognition,4,2019-01-02
-Moral Lineage Tracing,http://openaccess.thecvf.com/content_cvpr_2016/html/Jug_Moral_Lineage_Tracing_CVPR_2016_paper.html,CVPR,2016,https://github.com/mpi-inf-cia/moral-lineage-tracing,2,2019-01-02
-Interpolation on the Manifold of K Component GMMs,http://openaccess.thecvf.com/content_iccv_2015/html/Kim_Interpolation_on_the_ICCV_2015_paper.html,ICCV,2015,https://github.com/MLman/kgmm_interpolation,2,2019-01-02
-Teaching Categories to Human Learners With Visual Explanations,http://openaccess.thecvf.com/content_cvpr_2018/papers/Aodha_Teaching_Categories_to_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/macaodha/explain_teach,3,2019-01-02
-A Framework for Evaluating 6-DOF Object Trackers,http://openaccess.thecvf.com/content_ECCV_2018/html/Mathieu_Garon_A_Framework_for_ECCV_2018_paper.html,ECCV,2018,https://github.com/lvsn/6DOF_tracking_evaluation,4,2019-01-02
-Contour Knowledge Transfer for Salient Object Detection,http://openaccess.thecvf.com/content_ECCV_2018/html/Xin_Li_Contour_Knowledge_Transfer_ECCV_2018_paper.html,ECCV,2018,https://github.com/lixin666/C2SNet,5,2019-01-02
-Multi-Layered Gradient Boosting Decision Trees,,NIPS,2018,https://github.com/limberc/ML-GBDT,2,2019-01-02
-Learning Background-Aware Correlation Filters for Visual Tracking,http://openaccess.thecvf.com/content_iccv_2017/html/Galoogahi_Learning_Background-Aware_Correlation_ICCV_2017_paper.html,ICCV,2017,https://github.com/LCAR979/BACF,2,2019-01-02
-Count-Based Exploration with Neural Density Models,http://proceedings.mlr.press/v70/ostrovski17a.html,ICML,2017,https://github.com/kristychoi/pixel_exploration,2,2019-01-02
-Using Locally Corresponding CAD Models for Dense 3D Reconstructions From a Single Image,http://openaccess.thecvf.com/content_cvpr_2017/html/Kong_Using_Locally_Corresponding_CVPR_2017_paper.html,CVPR,2017,https://github.com/kongchen1992/LDCgraph,2,2019-01-02
-Compositional Learning for Human Object Interaction,http://openaccess.thecvf.com/content_ECCV_2018/html/Keizo_Kato_Compositional_Learning_of_ECCV_2018_paper.html,ECCV,2018,https://github.com/kkatocmu/Compositional_Learning,2,2019-01-02
-CoVeR: Learning Covariate-Specific Vector Representations with Tensor Decompositions,http://proceedings.mlr.press/v80/tian18a.html,ICML,2018,https://github.com/kjtian/CoVeR,2,2019-01-02
-Optical Flow Guided Feature: A Fast and Robust Motion Representation for Video Action Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sun_Optical_Flow_Guided_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kitsune999/Optical-Flow-Guided-Feature,6,2019-01-02
-Adaptive As-Natural-As-Possible Image Stitching,http://openaccess.thecvf.com/content_cvpr_2015/html/Lin_Adaptive_As-Natural-As-Possible_Image_2015_CVPR_paper.html,CVPR,2015,https://github.com/KANU51/ANAP,2,2019-01-02
-"Look, Listen and Learn",http://openaccess.thecvf.com/content_iccv_2017/html/Arandjelovic_Look_Listen_and_ICCV_2017_paper.html,ICCV,2017,https://github.com/Kajiyu/LLLNet,8,2019-01-02
-Learning and Memorization,http://proceedings.mlr.press/v80/chatterjee18a.html,ICML,2018,https://github.com/jre2/AnkiRPG,2,2019-01-02
-Convex Global 3D Registration With Lagrangian Duality,http://openaccess.thecvf.com/content_cvpr_2017/html/Briales_Convex_Global_3D_CVPR_2017_paper.html,CVPR,2017,https://github.com/jbriales/CVPR17,6,2019-01-02
-Device Placement Optimization with Reinforcement Learning,http://proceedings.mlr.press/v70/mirhoseini17a.html,ICML,2017,https://github.com/indrajeet95/Device-Placement-Optimization-with-Reinforcement-Learning,4,2019-01-02
-Lifelong Learning via Progressive Distillation and Retrospection,http://openaccess.thecvf.com/content_ECCV_2018/html/Saihui_Hou_Progressive_Lifelong_Learning_ECCV_2018_paper.html,ECCV,2018,https://github.com/hshustc/ECCV18_Lifelong_Learning,3,2019-01-02
-Fitting Low-Rank Tensors in Constant Time,http://papers.nips.cc/paper/6841-fitting-low-rank-tensors-in-constant-time.pdf,NIPS,2017,https://github.com/hayasick/CTFT,2,2019-01-02
-Asynchronous Distributed Variational Gaussian Processes for Regression,,ICML,2017,https://github.com/hao-peng/ADVGP,3,2019-01-02
-Hide-And-Seek: Forcing a Network to Be Meticulous for Weakly-Supervised Object and Action Localization,http://openaccess.thecvf.com/content_iccv_2017/html/Singh_Hide-And-Seek_Forcing_a_ICCV_2017_paper.html,ICCV,2017,https://github.com/goddoe/hide-and-seek,2,2019-01-02
-"Fast, Sample-Efficient Algorithms for Structured Phase Retrieval",http://papers.nips.cc/paper/7077-fast-sample-efficient-algorithms-for-structured-phase-retrieval.pdf,NIPS,2017,https://github.com/GauriJagatap/model-copram,2,2019-01-02
-Reversible Recurrent Neural Networks,,NIPS,2018,https://github.com/gan3sh500/revrnn,12,2019-01-02
-Deep View Morphing,http://openaccess.thecvf.com/content_cvpr_2017/html/Ji_Deep_View_Morphing_CVPR_2017_paper.html,CVPR,2017,https://github.com/Gamrix/cs231n_proj,2,2019-01-02
-Learning Dual Convolutional Neural Networks for Low-Level Vision,http://openaccess.thecvf.com/content_cvpr_2018/papers/Pan_Learning_Dual_Convolutional_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/galad-loth/DualCNN-TF,7,2019-01-02
-Leveraging Node Attributes for Incomplete Relational Data,http://proceedings.mlr.press/v70/zhao17a.html,ICML,2017,https://github.com/ethanhezhao/NARM,2,2019-01-02
-Learning Spatial Regularization With Image-Level Supervisions for Multi-Label Image Classification,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhu_Learning_Spatial_Regularization_CVPR_2017_paper.html,CVPR,2017,https://github.com/Enjia/Spatial-Regularization-Network-in-Tensorflow,6,2019-01-02
-Generative Hierarchical Learning of Sparse FRAME Models,http://openaccess.thecvf.com/content_cvpr_2017/html/Xie_Generative_Hierarchical_Learning_CVPR_2017_paper.html,CVPR,2017,https://github.com/enijkamp/HS-FRAME,2,2019-01-02
-Low-Dimensionality Calibration Through Local Anisotropic Scaling for Robust Hand Model Personalization,http://openaccess.thecvf.com/content_iccv_2017/html/Remelli_Low-Dimensionality_Calibration_Through_ICCV_2017_paper.html,ICCV,2017,https://github.com/edoRemelli/hadjust,2,2019-01-02
-Image Retrieval Using Scene Graphs,http://openaccess.thecvf.com/content_cvpr_2015/html/Johnson_Image_Retrieval_Using_2015_CVPR_paper.html,CVPR,2015,https://github.com/econser/py_irsg_orig,2,2019-01-02
-Stochastic Gradient Monomial Gamma Sampler,http://proceedings.mlr.press/v70/zhang17a.html,ICML,2017,https://github.com/dreasysnail/SGMGT,2,2019-01-02
-Generalized Semantic Preserving Hashing for N-Label Cross-Modal Retrieval,http://openaccess.thecvf.com/content_cvpr_2017/html/Mandal_Generalized_Semantic_Preserving_CVPR_2017_paper.html,CVPR,2017,https://github.com/devraj89/Generalized-Semantic-Preserving-Hashing-for-N-Label-Cross-Modal-Retrieval,4,2019-01-02
-AdaNet: Adaptive Structural Learning of Artificial Neural Networks,http://proceedings.mlr.press/v70/cortes17a.html,ICML,2017,https://github.com/davidabek1/adanet,3,2019-01-02
-Sub-sampled Cubic Regularization for Non-convex Optimization,http://proceedings.mlr.press/v70/kohler17a.html,ICML,2017,https://github.com/dalab/subsampled_cubic_regularization,4,2019-01-02
-HybridNet: Classification and Reconstruction Cooperation for Semi-Supervised Learning,http://openaccess.thecvf.com/content_ECCV_2018/html/Thomas_Robert_HybridNet_Classification_and_ECCV_2018_paper.html,ECCV,2018,https://github.com/dakshitagrawal97/HybridNet,5,2019-01-02
-Online Sketching Hashing,http://openaccess.thecvf.com/content_cvpr_2015/html/Leng_Online_Sketching_Hashing_2015_CVPR_paper.html,CVPR,2015,https://github.com/cvpr2015-submission/online-sketching-hashing,2,2019-01-02
-Patch Group Based Nonlocal Self-Similarity Prior Learning for Image Denoising,http://openaccess.thecvf.com/content_iccv_2015/html/Xu_Patch_Group_Based_ICCV_2015_paper.html,ICCV,2015,https://github.com/csjunxu/PGPD-ICCV2015,2,2019-01-02
-Single Image Water Hazard Detection using FCN with Reflection Attention Units,http://openaccess.thecvf.com/content_ECCV_2018/html/Xiaofeng_Han_Single_Image_Water_ECCV_2018_paper.html,ECCV,2018,https://github.com/Cow911/SingleImageWaterHazardDetectionWithRAU,4,2019-01-02
-Dropout Inference in Bayesian Neural Networks with Alpha-divergences,http://proceedings.mlr.press/v70/li17a.html,ICML,2017,https://github.com/cosmozhang/BBalpha_pytorch,2,2019-01-02
-LaVAN: Localized and Visible Adversarial Noise,http://proceedings.mlr.press/v80/karmon18a.html,ICML,2018,https://github.com/ChesterAiGo/LaVAN_python-tf-,2,2019-01-02
-Generalized Max Pooling,http://openaccess.thecvf.com/content_cvpr_2014/html/Murray_Generalized_Max_Pooling_2014_CVPR_paper.html,CVPR,2014,https://github.com/celisun/Generalized-pooling-functions-CNN,2,2019-01-02
-Tensor Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Tensors via Convex Optimization,http://openaccess.thecvf.com/content_cvpr_2016/html/Lu_Tensor_Robust_Principal_CVPR_2016_paper.html,CVPR,2016,https://github.com/canyilu/Tensor-Robust-Principal-Component-Analysis-TRPCA,4,2019-01-02
-A Wavefront Marching Method for Solving the Eikonal Equation on Cartesian Grids,http://openaccess.thecvf.com/content_iccv_2015/html/Cancela_A_Wavefront_Marching_ICCV_2015_paper.html,ICCV,2015,https://github.com/braisCB/WMM,2,2019-01-02
-From Patches to Images: A Nonparametric Generative Model,http://proceedings.mlr.press/v70/ji17a.html,ICML,2017,https://github.com/bnpy/hdp-grid-image-restoration,2,2019-01-02
-Learning Longer-term Dependencies in RNNs with Auxiliary Losses,http://proceedings.mlr.press/v80/trinh18a.html,ICML,2018,https://github.com/belepi93/rnn-auxiliary-loss,5,2019-01-02
-Learning to Localize Sound Source in Visual Scenes,http://openaccess.thecvf.com/content_cvpr_2018/papers/Senocak_Learning_to_Localize_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ardasnck/learning_to_localize_sound,5,2019-01-02
-Multi-Task Learning for Contextual Bandits,http://papers.nips.cc/paper/7070-multi-task-learning-for-contextual-bandits.pdf,NIPS,2017,https://github.com/aniketde/MultiTaskLearningContextualBandits,2,2019-01-02
-Importance Weighted Transfer of Samples in Reinforcement Learning,http://proceedings.mlr.press/v80/tirinzoni18a.html,ICML,2018,https://github.com/AndreaTirinzoni/iw-transfer-rl,3,2019-01-02
-Configurable Markov Decision Processes,http://proceedings.mlr.press/v80/metelli18a.html,ICML,2018,https://github.com/albertometelli/Configurable-Markov-Decision-Processes-ICML-2018,4,2019-01-02
-Batch Bayesian Optimization via Multi-objective Acquisition Ensemble for Automated Analog Circuit Design,http://proceedings.mlr.press/v80/lyu18a.html,ICML,2018,https://github.com/Alaya-in-Matrix/MACE,6,2019-01-02
-High Order Tensor Formulation for Convolutional Sparse Coding,http://openaccess.thecvf.com/content_iccv_2017/html/Bibi_High_Order_Tensor_ICCV_2017_paper.html,ICCV,2017,https://github.com/adelbibi/Tensor_CSC,2,2019-01-02
-Beyond Filters: Compact Feature Map for Portable Deep Model,http://proceedings.mlr.press/v70/wang17m.html,ICML,2017,https://github.com/a4338324/ICML-2017,2,2019-01-02
-Minimum Delay Moving Object Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Lao_Minimum_Delay_Moving_CVPR_2017_paper.html,CVPR,2017,https://github.com/zsameem/realtime-mdmod,1,2019-01-02
-Saliency Pattern Detection by Ranking Structured Trees,http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Saliency_Pattern_Detection_ICCV_2017_paper.html,ICCV,2017,https://github.com/zhulei2016/RST-saliency,3,2019-01-02
-A Modulation Module for Multi-task Learning with Applications in Image Retrieval,http://openaccess.thecvf.com/content_ECCV_2018/html/Xiangyun_Zhao_A_Modulation_Module_ECCV_2018_paper.html,ECCV,2018,https://github.com/Zhaoxiangyun/Multi-Task-Modulation-Module,6,2019-01-02
-Unrolling the Shutter: CNN to Correct Motion Distortions,http://openaccess.thecvf.com/content_cvpr_2017/html/Rengarajan_Unrolling_the_Shutter_CVPR_2017_paper.html,CVPR,2017,https://github.com/yogeshbalaji/CVPR17_Unrolling_the_shutter,2,2019-01-02
-Self-Occlusions and Disocclusions in Causal Video Object Segmentation,http://openaccess.thecvf.com/content_iccv_2015/html/Yang_Self-Occlusions_and_Disocclusions_ICCV_2015_paper.html,ICCV,2015,https://github.com/ycyang12/SODVS,1,2019-01-02
-Stochastic Video Generation with a Learned Prior,http://proceedings.mlr.press/v80/denton18a.html,ICML,2018,https://github.com/yamata2/stochastic-video-generation,2,2019-01-02
-DSLR-Quality Photos on Mobile Devices With Deep Convolutional Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Ignatov_DSLR-Quality_Photos_on_ICCV_2017_paper.html,ICCV,2017,https://github.com/wuyx/CNN---DSLR-Quality-Photos-on-Mobile-Devices-with-Deep-Convolutional-Networks,1,2019-01-02
-Discovering Potential Correlations via Hypercontractivity,http://papers.nips.cc/paper/7044-discovering-potential-correlations-via-hypercontractivity.pdf,NIPS,2017,https://github.com/wgao9/hypercontractivity,1,2019-01-02
-Primary Object Segmentation in Videos via Alternate Convex Optimization of Foreground and Background Distributions,http://openaccess.thecvf.com/content_cvpr_2016/html/Jang_Primary_Object_Segmentation_CVPR_2016_paper.html,CVPR,2016,https://github.com/wdjang/ACO,1,2019-01-02
-Contour Box: Rejecting Object Proposals Without Explicit Closed Contours,http://openaccess.thecvf.com/content_iccv_2015/html/Lu_Contour_Box_Rejecting_ICCV_2015_paper.html,ICCV,2015,https://github.com/WangHong-yang/contour-box,1,2019-01-02
-Learning Object Interactions and Descriptions for Semantic Image Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/html/Wang_Learning_Object_Interactions_CVPR_2017_paper.html,CVPR,2017,https://github.com/wanggrun/IDW-CNN-V2,2,2019-01-02
-Gradient Descent for Spiking Neural Networks,http://arxiv.org/abs/1706.04698v2,NIPS,2018,https://github.com/vikram-mm/Spiking-Neural-Network---Theano-Framework,2,2019-01-02
-DICOD: Distributed Convolutional Coordinate Descent for Convolutional Sparse Coding,http://proceedings.mlr.press/v80/moreau18a.html,ICML,2018,https://github.com/tomMoral/Dicod,3,2019-01-02
-Adaptive Batch Size for Safe Policy Gradients,http://papers.nips.cc/paper/6950-adaptive-batch-size-for-safe-policy-gradients.pdf,NIPS,2017,https://github.com/T3p/adaptive-batch-size,1,2019-01-02
-Deep Affordance-Grounded Sensorimotor Object Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Thermos_Deep_Affordance-Grounded_Sensorimotor_CVPR_2017_paper.html,CVPR,2017,https://github.com/spthermo/Sensorimotor,1,2019-01-02
-On clustering network-valued data,http://papers.nips.cc/paper/7282-on-clustering-network-valued-data.pdf,NIPS,2017,https://github.com/soumendu041/clustering-network-valued-data,1,2019-01-02
-Computing the Stereo Matching Cost With a Convolutional Neural Network,http://openaccess.thecvf.com/content_cvpr_2015/html/Zbontar_Computing_the_Stereo_2015_CVPR_paper.html,CVPR,2015,https://github.com/soonyk/mc-cnn,1,2019-01-02
-A Projection Free Method for Generalized Eigenvalue Problem With a Nonsmooth Regularizer,http://openaccess.thecvf.com/content_iccv_2015/html/Hwang_A_Projection_Free_ICCV_2015_paper.html,ICCV,2015,https://github.com/shwang54/iccv2015_sjh,1,2019-01-02
-Stochastic Wasserstein Barycenters,http://proceedings.mlr.press/v80/claici18a.html,ICML,2018,https://github.com/sebastian-claici/StochasticWassersteinBarycenters,1,2019-01-02
-Collaborative Deep Learning in Fixed Topology Networks,http://papers.nips.cc/paper/7172-collaborative-deep-learning-in-fixed-topology-networks.pdf,NIPS,2017,https://github.com/SCSLabISU/CDSGD,1,2019-01-02
-Weakly Supervised Dense Video Captioning,http://openaccess.thecvf.com/content_cvpr_2017/html/Shen_Weakly_Supervised_Dense_CVPR_2017_paper.html,CVPR,2017,https://github.com/SCLinDennis/Weakly-Supervised-Dense-Video-Captioning,2,2019-01-02
-Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation,,NIPS,2018,https://github.com/rwenqi/NBD-GLRA,7,2019-01-02
-Deep Visual-Semantic Alignments for Generating Image Descriptions,http://openaccess.thecvf.com/content_cvpr_2015/html/Karpathy_Deep_Visual-Semantic_Alignments_2015_CVPR_paper.html,CVPR,2015,https://github.com/rszeto/eecs-692-replication-project,1,2019-01-02
-Efficient and Consistent Adversarial Bipartite Matching,http://proceedings.mlr.press/v80/fathony18a.html,ICML,2018,https://github.com/rizalzaf/bipartite-mat,1,2019-01-02
-Gated Feedback Refinement Network for Dense Image Labeling,http://openaccess.thecvf.com/content_cvpr_2017/html/Islam_Gated_Feedback_Refinement_CVPR_2017_paper.html,CVPR,2017,https://github.com/rezaulnkarim/RefinementTest,1,2019-01-02
-Coupled End-to-End Transfer Learning With Generalized Fisher Information,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Coupled_End-to-End_Transfer_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/RankingCNN/Coupled-End-to-End-Transfer-Learning-With-Generalized-Fisher-Information,1,2019-01-02
-Expert Gate: Lifelong Learning With a Network of Experts,http://openaccess.thecvf.com/content_cvpr_2017/html/Aljundi_Expert_Gate_Lifelong_CVPR_2017_paper.html,CVPR,2017,https://github.com/rahafaljundi/Expert-Gate,4,2019-01-02
-Task-driven Webpage Saliency,http://openaccess.thecvf.com/content_ECCV_2018/html/Quanlong_Zheng_Task-driven_Webpage_Saliency_ECCV_2018_paper.html,ECCV,2018,https://github.com/quanlzheng/Task-driven-Webpage-Saliency,2,2019-01-02
-A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks,,NIPS,2018,https://github.com/pokaxpoka/deep_Mahalanobis_detector,32,2019-01-02
-Follow the Moving Leader in Deep Learning,http://proceedings.mlr.press/v70/zheng17a.html,ICML,2017,https://github.com/patniharshit/Follow-the-Moving-Leader-in-Deep-Learning,1,2019-01-02
-Unsupervised Semantic Parsing of Video Collections,http://openaccess.thecvf.com/content_iccv_2015/html/Sener_Unsupervised_Semantic_Parsing_ICCV_2015_paper.html,ICCV,2015,https://github.com/ozansener/ICCV2015,1,2019-01-02
-Feature Selective Networks for Object Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhai_Feature_Selective_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/noido/feature_selective_networks,1,2019-01-02
-Generative Local Metric Learning for Kernel Regression,http://papers.nips.cc/paper/6839-generative-local-metric-learning-for-kernel-regression.pdf,NIPS,2017,https://github.com/nohyung/Nadaraya-Watson-Regression-Metric,1,2019-01-02
-Functional Map of the World,http://openaccess.thecvf.com/content_cvpr_2018/papers/Christie_Functional_Map_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/nichochar/zapmap,1,2019-01-02
-Distributionally Robust Graphical Models,,NIPS,2018,https://github.com/Narendhar123/Linear-Regression-Algoritham-,1,2018-10-14
-Robust Budget Allocation via Continuous Submodular Functions,http://proceedings.mlr.press/v70/staib17a.html,ICML,2017,https://github.com/mstaib/robust-budget-allocation-code,1,2019-01-02
-Differentially Private Clustering in High-Dimensional Euclidean Spaces,http://proceedings.mlr.press/v70/balcan17a.html,ICML,2017,https://github.com/mouwenlong/dp-clustering-icml17,1,2019-01-02
-Unsupervised Image-to-Image Translation with Stacked Cycle-Consistent Adversarial Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Minjun_Li_Unsupervised_Image-to-Image_Translation_ECCV_2018_paper.html,ECCV,2018,https://github.com/minjunli/SCAN,1,2018-10-14
-CartoonGAN: Generative Adversarial Networks for Photo Cartoonization,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_CartoonGAN_Generative_Adversarial_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/MingtaoGuo/CartoonGAN-tensorflow,2,2019-01-02
-Model evidence from nonequilibrium simulations,http://papers.nips.cc/paper/6772-model-evidence-from-nonequilibrium-simulations.pdf,NIPS,2017,https://github.com/michaelhabeck/paths,1,2019-01-02
-On Calibration of Modern Neural Networks,http://proceedings.mlr.press/v70/guo17a.html,ICML,2017,https://github.com/markdtw/temperature-scaling-tensorflow,1,2019-01-02
-CapProNet: Deep Feature Learning via Orthogonal Projections onto Capsule Subspaces,,NIPS,2018,https://github.com/maple-research-lab/CapProNet,3,2019-01-02
-Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees,http://papers.nips.cc/paper/6679-greedy-algorithms-for-cone-constrained-optimization-with-convergence-guarantees.pdf,NIPS,2017,https://github.com/locatelf/cone-greedy,1,2019-01-02
-Defense Against Universal Adversarial Perturbations,http://openaccess.thecvf.com/content_cvpr_2018/papers/Akhtar_Defense_Against_Universal_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/liujianee/Pertrubation_Rectifying_Network,1,2019-01-02
-Inhomogeneous Hypergraph Clustering with Applications,http://papers.nips.cc/paper/6825-inhomogeneous-hypergraph-clustering-with-applications.pdf,NIPS,2017,https://github.com/lipan00123/InHclustering,2,2019-01-02
-SPFTN: A Self-Paced Fine-Tuning Network for Segmenting Objects in Weakly Labelled Videos,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_SPFTN_A_Self-Paced_CVPR_2017_paper.html,CVPR,2017,https://github.com/LeYangNwpu/SPFTN,1,2019-01-02
-Maximum Causal Tsallis Entropy Imitation Learning,http://arxiv.org/abs/1805.08336v2,NIPS,2018,https://github.com/kyungjaelee/MCTEIL,1,2018-10-14
-Matrix Norm Estimation from a Few Entries,http://papers.nips.cc/paper/7221-matrix-norm-estimation-from-a-few-entries.pdf,NIPS,2017,https://github.com/khetan2/Schatten_norm_estimation,1,2019-01-02
-Learning to Group Objects,http://openaccess.thecvf.com/content_cvpr_2014/html/Yanulevskaya_Learning_to_Group_2014_CVPR_paper.html,CVPR,2014,https://github.com/KamilWo/PHP_OOP,1,2019-01-02
-Latent Trees for Estimating Intensity of Facial Action Units,http://openaccess.thecvf.com/content_cvpr_2015/html/Kaltwang_Latent_Trees_for_2015_CVPR_paper.html,CVPR,2015,https://github.com/kaltwang/2015latent,1,2019-01-02
-Laplacian Patch-Based Image Synthesis,http://openaccess.thecvf.com/content_cvpr_2016/html/Lee_Laplacian_Patch-Based_Image_CVPR_2016_paper.html,CVPR,2016,https://github.com/KAIST-VCLAB/laplacianinpainting,1,2019-01-02
-Bidirectional Retrieval Made Simple,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wehrmann_Bidirectional_Retrieval_Made_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jwehrmann/chain-vse,3,2019-01-02
-"Online Detection of Action Start in Untrimmed, Streaming Videos",http://openaccess.thecvf.com/content_ECCV_2018/html/Zheng_Shou_Online_Detection_of_ECCV_2018_paper.html,ECCV,2018,https://github.com/junting/odas,2,2019-01-02
-MarioQA: Answering Questions by Watching Gameplay Videos,http://openaccess.thecvf.com/content_iccv_2017/html/Mun_MarioQA_Answering_Questions_ICCV_2017_paper.html,ICCV,2017,https://github.com/JonghwanMun/MarioQA,5,2019-01-02
-ScaleNet: Guiding Object Proposal Generation in Supermarkets and Beyond,http://openaccess.thecvf.com/content_iccv_2017/html/Qiao_ScaleNet_Guiding_Object_ICCV_2017_paper.html,ICCV,2017,https://github.com/joe-siyuan-qiao/ScaleNet,1,2019-01-02
-Video-Story Composition via Plot Analysis,http://openaccess.thecvf.com/content_cvpr_2016/html/Choi_Video-Story_Composition_via_CVPR_2016_paper.html,CVPR,2016,https://github.com/jinsc37/Video-Story-CVPR16,1,2019-01-02
-Objects2action: Classifying and Localizing Actions Without Any Video Example,http://openaccess.thecvf.com/content_iccv_2015/html/Jain_Objects2action_Classifying_and_ICCV_2015_paper.html,ICCV,2015,https://github.com/JingPG2014/objects2action,1,2019-01-02
-Goodness-of-fit Testing for Discrete Distributions via Stein Discrepancy,http://proceedings.mlr.press/v80/yang18c.html,ICML,2018,https://github.com/jiaseny/kdsd,1,2018-09-16
-Video Paragraph Captioning Using Hierarchical Recurrent Neural Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Yu_Video_Paragraph_Captioning_CVPR_2016_paper.html,CVPR,2016,https://github.com/JaywongWang/Video-Paragraph-Captioning,1,2019-01-02
-Fast Algorithms for Convolutional Neural Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Lavin_Fast_Algorithms_for_CVPR_2016_paper.html,CVPR,2016,https://github.com/istoony/winograd-convolutional-nn,3,2019-01-02
-Is Robustness the Cost of Accuracy? -- A Comprehensive Study on the Robustness of 18 Deep Image Classification Models,http://openaccess.thecvf.com/content_ECCV_2018/html/Dong_Su_Is_Robustness_the_ECCV_2018_paper.html,ECCV,2018,https://github.com/IBM/ImageNet-Robustness,1,2019-01-02
-Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives,,NIPS,2018,https://github.com/IBM/Contrastive-Explanation-Method,3,2019-01-02
-DRACO: Byzantine-resilient Distributed Training via Redundant Gradients,http://proceedings.mlr.press/v80/chen18l.html,ICML,2018,https://github.com/hwang595/Draco,5,2019-01-02
-Learning Spatiotemporal Features With 3D Convolutional Networks,http://openaccess.thecvf.com/content_iccv_2015/html/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.html,ICCV,2015,https://github.com/hunter-87/read-c3d-features-numpy,1,2019-01-02
-Priv’IT: Private and Sample Efficient Identity Testing,http://proceedings.mlr.press/v70/cai17a.html,ICML,2017,https://github.com/hoonose/privit,1,2019-01-02
-Deep Adaptive Image Clustering,http://openaccess.thecvf.com/content_iccv_2017/html/Chang_Deep_Adaptive_Image_ICCV_2017_paper.html,ICCV,2017,https://github.com/HongtaoYang/DAC-tensorflow,6,2019-01-02
-Directionally Convolutional Networks for 3D Shape Segmentation,http://openaccess.thecvf.com/content_iccv_2017/html/Xu_Directionally_Convolutional_Networks_ICCV_2017_paper.html,ICCV,2017,https://github.com/HaotianMXu/3D-Shape-Segmentation-with-Deep-Neural-Networks,1,2019-01-02
-Fast and Effective L0 Gradient Minimization by Region Fusion,http://openaccess.thecvf.com/content_iccv_2015/html/Nguyen_Fast_and_Effective_ICCV_2015_paper.html,ICCV,2015,https://github.com/guqifeng/L0_norm,2,2019-01-02
-Context-Aware Synthesis for Video Frame Interpolation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Niklaus_Context-Aware_Synthesis_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/GeorgeBohw/interpolation,1,2019-01-02
-Geodesic Distance Descriptors,http://openaccess.thecvf.com/content_cvpr_2017/html/Shamai_Geodesic_Distance_Descriptors_CVPR_2017_paper.html,CVPR,2017,https://github.com/fuyangliu/3D-Model-Descriptor,1,2019-01-02
-Generative Modeling of Audible Shapes for Object Perception,http://openaccess.thecvf.com/content_iccv_2017/html/Zhang_Generative_Modeling_of_ICCV_2017_paper.html,ICCV,2017,https://github.com/FredHuangBia/Sound_ICCV,1,2019-01-02
-Multilingual Anchoring: Interactive Topic Modeling and Alignment Across Languages,,NIPS,2018,https://github.com/forest-snow/mtanchor_demo,3,2019-01-02
-Online control of the false discovery rate with decaying memory,http://papers.nips.cc/paper/7148-online-control-of-the-false-discovery-rate-with-decaying-memory.pdf,NIPS,2017,https://github.com/fanny-yang/OnlineFDRCode,1,2019-01-02
-COLA: Decentralized Linear Learning,,NIPS,2018,https://github.com/epfml/cola,5,2019-01-02
-Structured Uncertainty Prediction Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Dorta_Structured_Uncertainty_Prediction_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/EhtashamBillah/Acute-Lymphoblastic-Leukemia-cell-classification-using-Bayesian-Convolutional-Neural-Networks,1,2019-01-02
-S3Pool: Pooling With Stochastic Spatial Sampling,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhai_S3Pool_Pooling_With_CVPR_2017_paper.html,CVPR,2017,https://github.com/edgarmedina1801/S3Pool,1,2019-01-02
-Playing hard exploration games by watching YouTube,http://arxiv.org/abs/1805.11592v1,NIPS,2018,https://github.com/dnddnjs/learning-from-youtube,1,2018-10-14
-Highly-Economized Multi-View Binary Compression for Scalable Image Clustering,http://openaccess.thecvf.com/content_ECCV_2018/html/Zheng_Zhang_Highly-Economized_Multi-View_Binary_ECCV_2018_paper.html,ECCV,2018,https://github.com/DarrenZhangZ/HSIC,1,2018-10-01
-Adversarial PoseNet: A Structure-Aware Convolutional Network for Human Pose Estimation,http://openaccess.thecvf.com/content_iccv_2017/html/Chen_Adversarial_PoseNet_A_ICCV_2017_paper.html,ICCV,2017,https://github.com/danache/Adversarial-PoseNet,1,2019-01-02
-Fast Zero-Shot Image Tagging,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhang_Fast_Zero-Shot_Image_CVPR_2016_paper.html,CVPR,2016,https://github.com/csueb-research/fast-zero-shot-image-tagging,1,2019-01-02
-MEC: Memory-efficient Convolution for Deep Neural Network,http://proceedings.mlr.press/v70/cho17a.html,ICML,2017,https://github.com/CSshengxy/MEC,4,2019-01-02
-A Hybrid l1-l0 Layer Decomposition Model for Tone Mapping,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liang_A_Hybrid_l1-l0_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/csjunxu/L1L0_TM-CVPR2018,3,2019-01-02
-Multispectral Image Intrinsic Decomposition via Subspace Constraint,http://openaccess.thecvf.com/content_cvpr_2018/papers/Huang_Multispectral_Image_Intrinsic_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/cianhwang/MIID,2,2019-01-02
-Chi-square Generative Adversarial Network,http://proceedings.mlr.press/v80/tao18b.html,ICML,2018,https://github.com/chenyang-tao/chi2gan,2,2019-01-02
-Co-teaching: Robust Training Deep Neural Networks with Extremely Noisy Labels,,NIPS,2018,https://github.com/char256/co-teaching_bohan_et.al,1,2019-01-02
-Linearly constrained Gaussian processes,http://papers.nips.cc/paper/6721-linearly-constrained-gaussian-processes.pdf,NIPS,2017,https://github.com/carji475/linearly-constrained-gaussian-processes,1,2019-01-02
-A Joint Intrinsic-Extrinsic Prior Model for Retinex,http://openaccess.thecvf.com/content_iccv_2017/html/Cai_A_Joint_Intrinsic-Extrinsic_ICCV_2017_paper.html,ICCV,2017,https://github.com/caibolun/JieP,2,2019-01-02
-Learning unknown ODE models with Gaussian processes,http://proceedings.mlr.press/v80/heinonen18a.html,ICML,2018,https://github.com/cagatayyildiz/npode,1,2019-01-02
-The committee machine: Computational to statistical gaps in learning a two-layers neural network,,NIPS,2018,https://github.com/benjaminaubin/TheCommitteeMachine,1,2019-01-02
-The Expxorcist: Nonparametric Graphical Models Via Conditional Exponential Densities,http://papers.nips.cc/paper/7031-the-expxorcist-nonparametric-graphical-models-via-conditional-exponential-densities.pdf,NIPS,2017,https://github.com/arunsais/Expxorcist,1,2019-01-02
-Found Graph Data and Planted Vertex Covers,http://arxiv.org/abs/1805.01209v1,NIPS,2018,https://github.com/arbenson/FGDnPVC,1,2019-01-02
-Closed-form Marginal Likelihood in Gamma-Poisson Matrix Factorization,http://proceedings.mlr.press/v80/filstroff18a.html,ICML,2018,https://github.com/alumbreras/MMLE-GaP,1,2019-01-02
-Robust Optimization for Deep Regression,http://openaccess.thecvf.com/content_iccv_2015/html/Belagiannis_Robust_Optimization_for_ICCV_2015_paper.html,ICCV,2015,https://github.com/AIHGF/matconvnet-deepReg,1,2019-01-02
-Unsupervised Hard Example Mining from Videos for Improved Object Detection,http://openaccess.thecvf.com/content_ECCV_2018/html/SouYoung_Jin_Unsupervised_Hard-Negative_Mining_ECCV_2018_paper.html,ECCV,2018,https://github.com/adiprasad/unsup-hard-negative-mining-mscoco,1,2019-01-02
-3D Part-Based Sparse Tracker With Automatic Synchronization and Registration,http://openaccess.thecvf.com/content_cvpr_2016/html/Bibi_3D_Part-Based_Sparse_CVPR_2016_paper.html,CVPR,2016,https://github.com/adelbibi/3D-Part-Based-Sparse-Tracker-with-Automatic-Synchronization-and-Registration,1,2019-01-02
-Video Acceleration Magnification,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Video_Acceleration_Magnification_CVPR_2017_paper.html,CVPR,2017,https://github.com/acceleration-magnification/acceleration-magnification.github.io,1,2019-01-02
-Video Representation Learning Using Discriminative Pooling,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Video_Representation_Learning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/3xWangDot/SVMP,2,2019-01-02
-Learning Discriminative Video Representations Using Adversarial Perturbations,http://openaccess.thecvf.com/content_ECCV_2018/html/Jue_Wang_Learning_Discriminative_Video_ECCV_2018_paper.html,ECCV,2018,https://github.com/3xWangDot/DSP,2,2019-01-02
-"Multi-Evidence Filtering and Fusion for Multi-Label Classification, Object Detection and Semantic Segmentation Based on Weakly Supervised Learning",http://openaccess.thecvf.com/content_cvpr_2018/papers/Ge_Multi-Evidence_Filtering_and_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ZYYSzj/Multi-Evidence-Filtering-and-Fusion-WSL,0,2019-01-02
-Stein Points,http://proceedings.mlr.press/v80/chen18f.html,ICML,2018,https://github.com/ZloyChert/Romash.ISO.SteinerPoints,0,2019-01-02
-Deep Defense: Training DNNs with Improved Adversarial Robustness,http://arxiv.org/abs/1803.00404v2,NIPS,2018,https://github.com/ZiangYan/deepdefense.pytorch,8,2019-01-02
-Supervision by Fusion: Towards Unsupervised Learning of Deep Salient Object Detector,http://openaccess.thecvf.com/content_iccv_2017/html/Zhang_Supervision_by_Fusion_ICCV_2017_paper.html,ICCV,2017,https://github.com/zhangyuygss/caffe-modified,0,2019-01-02
-Active Learning with Logged Data,http://proceedings.mlr.press/v80/yan18a.html,ICML,2018,https://github.com/yyysbysb/al_log_icml18,0,2019-01-02
-Long-Term Recurrent Convolutional Networks for Visual Recognition and Description,http://openaccess.thecvf.com/content_cvpr_2015/html/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.html,CVPR,2015,https://github.com/yurisan/Long-term-Recurrent-Convolutional-Networks-for-Visual-Recognition-and-Description,0,2019-01-02
-The Weighted Kendall and High-order Kernels for Permutations,http://proceedings.mlr.press/v80/jiao18a.html,ICML,2018,https://github.com/YunlongJiao/weightedkendall,0,2019-01-02
-On Word Embedding Dimensionality,,NIPS,2018,https://github.com/yukubo/sample_word2vec_skipgram,0,2019-01-02
-DeepPINK: reproducible feature selection in deep neural networks,http://arxiv.org/abs/1809.01185v2,NIPS,2018,https://github.com/younglululu/DeepPINK,0,2019-01-02
-Ego-Surfing First-Person Videos,http://openaccess.thecvf.com/content_cvpr_2015/html/Yonetani_Ego-Surfing_First-Person_Videos_2015_CVPR_paper.html,CVPR,2015,https://github.com/yonetaniryo/corrsearch,0,2019-01-02
-Multiresolution Kernel Approximation for Gaussian Process Regression,http://papers.nips.cc/paper/6964-multiresolution-kernel-approximation-for-gaussian-process-regression.pdf,NIPS,2017,https://github.com/yiding2012/MKA,0,2019-01-02
-Accurate Inference for Adaptive Linear Models,http://proceedings.mlr.press/v80/deshpande18a.html,ICML,2018,https://github.com/yash-deshpande/decorrelating-linear-models,1,2019-01-02
-Modular Generative Adversarial Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Bo_Zhao_Modular_Generative_Adversarial_ECCV_2018_paper.html,ECCV,2018,https://github.com/xjdeng/EasyGAN,0,2019-01-02
-Weighted-Entropy-Based Quantization for Deep Neural Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Park_Weighted-Entropy-Based_Quantization_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/xiaoweiChen/Weighted-Entropy-based-Quantization-for-Deep-Neural-Networks,0,2019-01-02
-End-To-End People Detection in Crowded Scenes,http://openaccess.thecvf.com/content_cvpr_2016/html/Stewart_End-To-End_People_Detection_CVPR_2016_paper.html,CVPR,2016,https://github.com/wuyx/End-to-end-people-detection-in-crowded-scenes,0,2019-01-02
-Towards End-To-End Text Spotting With Convolutional Recurrent Neural Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Li_Towards_End-To-End_Text_ICCV_2017_paper.html,ICCV,2017,https://github.com/wuyenan/-Towards-End-to-end-Text-Spotting-with-Convolutional-Recurrent-Neural-Networks,0,2019-01-02
-A Theoretical Explanation for Perplexing Behaviors of Backpropagation-based Visualizations,http://proceedings.mlr.press/v80/nie18a.html,ICML,2018,https://github.com/weilinie/BackpropVis,1,2019-01-02
-What If We Do Not Have Multiple Videos of the Same Action? -- Video Action Localization Using Web Images,http://openaccess.thecvf.com/content_cvpr_2016/html/Sultani_What_If_We_CVPR_2016_paper.html,CVPR,2016,https://github.com/WaqasSultani/ActionLocalization_CVPR16,0,2019-01-02
-"Cross-view Action Modeling, Learning and Recognition",http://openaccess.thecvf.com/content_cvpr_2014/html/Wang_Cross-view_Action_Modeling_2014_CVPR_paper.html,CVPR,2014,https://github.com/wangjiangb/crossviewActionRecognition,0,2019-01-02
-Deep Neural Networks with Box Convolutions,,NIPS,2018,https://github.com/vvoluom/Neural-Networks,0,2018-10-01
-ResNet with one-neuron hidden layers is a Universal Approximator,http://arxiv.org/abs/1806.10909v2,NIPS,2018,https://github.com/vinsis/points-in-2d,0,2019-01-02
-Guided Proofreading of Automatic Segmentations for Connectomics,http://openaccess.thecvf.com/content_cvpr_2018/papers/Haehn_Guided_Proofreading_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/VCG/guidedproofreading,0,2019-01-02
-Reducing Network Agnostophobia,,NIPS,2018,https://github.com/Vastlab/Reducing-Network-Agnostophobia,2,2019-01-02
-Gray-box Adversarial Training,http://openaccess.thecvf.com/content_ECCV_2018/html/Vivek_B_S_Gray_box_adversarial_ECCV_2018_paper.html,ECCV,2018,https://github.com/val-iisc/gat,0,2019-01-02
-What Value Do Explicit High Level Concepts Have in Vision to Language Problems?,http://openaccess.thecvf.com/content_cvpr_2016/html/Wu_What_Value_Do_CVPR_2016_paper.html,CVPR,2016,https://github.com/upccpu/-,0,2019-01-02
-Motion-Depth: RGB-D Depth Map Enhancement with Motion and Depth in Complement,http://openaccess.thecvf.com/content_cvpr_2014/html/Hui_Motion-Depth_RGB-D_Depth_2014_CVPR_paper.html,CVPR,2014,https://github.com/twhui/Motion-Depth,0,2019-01-02
-Efficient Point Process Inference for Large-Scale Object Detection,http://openaccess.thecvf.com/content_cvpr_2016/html/Pham_Efficient_Point_Process_CVPR_2016_paper.html,CVPR,2016,https://github.com/trungtpham/point_process_optimisation,0,2019-01-02
-"Real-World Repetition Estimation by Div, Grad and Curl",http://openaccess.thecvf.com/content_cvpr_2018/papers/Runia_Real-World_Repetition_Estimation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/tomrunia/RepetitionEstimation,1,2019-01-02
-Efficient Intersection of Three Quadrics and Applications in Computer Vision,http://openaccess.thecvf.com/content_cvpr_2016/html/Kukelova_Efficient_Intersection_of_CVPR_2016_paper.html,CVPR,2016,https://github.com/tolgabirdal/e3q3,0,2019-01-02
-Adaptive Neural Networks for Efficient Inference,http://proceedings.mlr.press/v70/bolukbasi17a.html,ICML,2017,https://github.com/tolga-b/ann,0,2019-01-02
-A Laplacian Framework for Option Discovery in Reinforcement Learning,http://proceedings.mlr.press/v70/machado17a.html,ICML,2017,https://github.com/timguoqk/option_discovery,0,2019-01-02
-SAFFRON: an Adaptive Algorithm for Online Control of the False Discovery Rate,http://proceedings.mlr.press/v80/ramdas18a.html,ICML,2018,https://github.com/tijana-zrnic/SAFFRONcode,0,2019-01-02
-Product Split Trees,http://openaccess.thecvf.com/content_cvpr_2017/html/Babenko_Product_Split_Trees_CVPR_2017_paper.html,CVPR,2017,https://github.com/theherobrinehunter/Mod,1,2019-01-02
-Emotion Recognition in Context,http://openaccess.thecvf.com/content_cvpr_2017/html/Kosti_Emotion_Recognition_in_CVPR_2017_paper.html,CVPR,2017,https://github.com/Thanuja2812/Deep-Neural-Network,0,2019-01-02
-Hybrid Camera Pose Estimation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Camposeco_Hybrid_Camera_Pose_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/TeaganLi/A-Hybrid-3DoF-Pose-Estimation-Method-based-on-Camera-and-Lidar-Data,0,2019-01-02
-Multi-View Subspace Clustering,http://openaccess.thecvf.com/content_iccv_2015/html/Gao_Multi-View_Subspace_Clustering_ICCV_2015_paper.html,ICCV,2015,https://github.com/TaoZhou19/Dual-Shared-Specific-Multi-view-Subspace-Clustering,0,2019-01-02
-Comparison-Based Random Forests,http://proceedings.mlr.press/v80/haghiri18a.html,ICML,2018,https://github.com/SylwiaOliwia2/Decision-tree-random-forest-xgboost-comparison,0,2019-01-02
-Guided Perturbations: Self-Corrective Behavior in Convolutional Neural Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Sankaranarayanan_Guided_Perturbations_Self-Corrective_ICCV_2017_paper.html,ICCV,2017,https://github.com/swamiviv/guided_perturbations,1,2019-01-02
-Non-Blind Deblurring: Handling Kernel Uncertainty With CNNs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Vasu_Non-Blind_Deblurring_Handling_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/subeeshvasu/2018_subeesh_nbd_cvpr,0,2019-01-02
-Object-centered image stitching,http://openaccess.thecvf.com/content_ECCV_2018/html/Charles_Herrmann_Object-centered_image_stitching_ECCV_2018_paper.html,ECCV,2018,https://github.com/StewartNash/img_proc_7,0,2019-01-02
-Topological mixture estimation,http://proceedings.mlr.press/v80/huntsman18a.html,ICML,2018,https://github.com/SteveHuntsmanBAESystems/TopologicalMixtureEstimation,0,2019-01-02
-Non-metric Similarity Graphs for Maximum Inner Product Search,,NIPS,2018,https://github.com/stanis-morozov/ip-nsw,7,2019-01-02
-Gradient Boosted Decision Trees for High Dimensional Sparse Output,http://proceedings.mlr.press/v70/si17a.html,ICML,2017,https://github.com/springdaisy/GBDT,0,2019-01-02
-What Do Deep Networks Like to See?,http://openaccess.thecvf.com/content_cvpr_2018/papers/Palacio_What_Do_Deep_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/spalaciob/normnets,0,2019-01-02
-Analysis by Synthesis: 3D Object Recognition by Object Reconstruction,http://openaccess.thecvf.com/content_cvpr_2014/html/Hejrati_Analysis_by_Synthesis_2014_CVPR_paper.html,CVPR,2014,https://github.com/siqihao95/Musical-Analysis-by-Synthesis,0,2019-01-02
-Neural Network Encapsulation,http://openaccess.thecvf.com/content_ECCV_2018/html/Hongyang_Li_Neural_Network_Encapsulation_ECCV_2018_paper.html,ECCV,2018,https://github.com/sio2boss/k5-spec,0,2019-01-02
-From Source to Target and Back: Symmetric Bi-Directional Adaptive GAN,http://openaccess.thecvf.com/content_cvpr_2018/papers/Russo_From_Source_to_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/shubhampachori12110095/GAN,0,2019-01-02
-Algorithmic Assurance: An Active Approach to Algorithmic Testing using Bayesian Optimisation,,NIPS,2018,https://github.com/shivapratap/AlgorithmicAssurance_NIPS2018,0,2019-01-02
-Estimating Sparse Signals With Smooth Support via Convex Programming and Block Sparsity,http://openaccess.thecvf.com/content_cvpr_2016/html/Shah_Estimating_Sparse_Signals_CVPR_2016_paper.html,CVPR,2016,https://github.com/shahsohil/CoLaMP,0,2019-01-02
-Learning with Abandonment,http://proceedings.mlr.press/v80/schmit18a.html,ICML,2018,https://github.com/schmit/learning-abandonment,0,2019-01-02
-Infinite Feature Selection,http://openaccess.thecvf.com/content_iccv_2015/html/Roffo_Infinite_Feature_Selection_ICCV_2015_paper.html,ICCV,2015,https://github.com/Sadegh28/SINF,0,2019-01-02
-Gaussian Process Conditional Density Estimation,,NIPS,2018,https://github.com/richardbayes/bayes-treed-cde,0,2019-01-02
-Learning SMaLL Predictors,http://arxiv.org/abs/1803.02388v1,NIPS,2018,https://github.com/retropean/mspa-apps,0,2019-01-02
-Diversity-Enhanced Condensation Algorithm and Its Application for Robust and Accurate Endoscope Three-Dimensional Motion Tracking,http://openaccess.thecvf.com/content_cvpr_2014/html/Luo_Diversity-Enhanced_Condensation_Algorithm_2014_CVPR_paper.html,CVPR,2014,https://github.com/renzhe0009/Diversity-Enhanced-Condensation-Algorithm,0,2019-01-02
-Learning to Predict Saliency on Face Images,http://openaccess.thecvf.com/content_iccv_2015/html/Xu_Learning_to_Predict_ICCV_2015_paper.html,ICCV,2015,https://github.com/RenYun2016/Face,0,2019-01-02
-Clustering of Static-Adaptive Correspondences for Deformable Object Tracking,http://openaccess.thecvf.com/content_cvpr_2015/html/Nebehay_Clustering_of_Static-Adaptive_2015_CVPR_paper.html,CVPR,2015,https://github.com/rafaelvareto/CMT-Tracker,0,2019-01-02
-Streaming Principal Component Analysis in Noisy Setting,http://proceedings.mlr.press/v80/marinov18a.html,ICML,2018,https://github.com/r3831/NPCA,0,2019-01-02
-Local and Global Optimization Techniques in Graph-Based Clustering,http://openaccess.thecvf.com/content_cvpr_2018/papers/Ikami_Local_and_Global_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/qiao-/thesis_GPU_parallel_EuclideanMST_Multiple_2or3-opt_moves_for_graph_minimization-,0,2019-01-02
-Lyapunov Functions for First-Order Methods: Tight Automated Convergence Guarantees,http://proceedings.mlr.press/v80/taylor18a.html,ICML,2018,https://github.com/QCGroup/quad-lyap-first-order,0,2019-01-02
-Consistent Robust Regression,http://papers.nips.cc/paper/6806-consistent-robust-regression.pdf,NIPS,2017,https://github.com/purushottamkar/rreg,0,2019-01-02
-What Will Happen Next? Forecasting Player Moves in Sports Videos,http://openaccess.thecvf.com/content_iccv_2017/html/Felsen_What_Will_Happen_ICCV_2017_paper.html,ICCV,2017,https://github.com/pulkitag/sports-forecasting,0,2019-01-02
-Nearly Optimal Robust Subspace Tracking,http://proceedings.mlr.press/v80/narayanamurthy18a.html,ICML,2018,https://github.com/praneethmurthy/NORST,0,2019-01-02
-Laplacian Coordinates for Seeded Image Segmentation,http://openaccess.thecvf.com/content_cvpr_2014/html/Casaca_Laplacian_Coordinates_for_2014_CVPR_paper.html,CVPR,2014,https://github.com/pianoza/seproject,0,2019-01-02
-Unsupervised Correlation Analysis,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hoshen_Unsupervised_Correlation_Analysis_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/pgyrya/customer_segments,0,2019-01-02
-Learning Abstract Options,,NIPS,2018,https://github.com/petterasla/IECCS,0,2019-01-02
-Smooth Representation Clustering,http://openaccess.thecvf.com/content_cvpr_2014/html/Hu_Smooth_Representation_Clustering_2014_CVPR_paper.html,CVPR,2014,https://github.com/PennStateStatGen/WaveletBasedFunctionalCluster,0,2019-01-02
-Complexity-Adaptive Distance Metric for Object Proposals Generation,http://openaccess.thecvf.com/content_cvpr_2015/html/Xiao_Complexity-Adaptive_Distance_Metric_2015_CVPR_paper.html,CVPR,2015,https://github.com/peacefulxy/CADM,0,2019-01-02
-Policy Optimization as Wasserstein Gradient Flows,http://proceedings.mlr.press/v80/zhang18a.html,ICML,2018,https://github.com/paper-review/ICML2018,0,2019-01-02
-Structured Set Matching Networks for One-Shot Part Labeling,http://openaccess.thecvf.com/content_cvpr_2018/papers/Choi_Structured_Set_Matching_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Oushesh/Structured-Set-Matching-Networks-for-One-Shot-Part-Labeling-readme,0,2019-01-02
-Efficient First-Order Algorithms for Adaptive Signal Denoising,http://proceedings.mlr.press/v80/ostrovskii18a.html,ICML,2018,https://github.com/ostrodmit/AlgoRec,0,2019-01-02
-Best of Both Worlds: Human-Machine Collaboration for Object Annotation,http://openaccess.thecvf.com/content_cvpr_2015/html/Russakovsky_Best_of_Both_2015_CVPR_paper.html,CVPR,2015,https://github.com/orussakovsky/best-of-both-worlds,0,2019-01-02
-Best Response Regression,http://papers.nips.cc/paper/6748-best-response-regression.pdf,NIPS,2017,https://github.com/omerbp/Best-Response-Regression,0,2019-01-02
-Truncating Wide Networks Using Binary Tree Architectures,http://openaccess.thecvf.com/content_iccv_2017/html/Zhang_Truncating_Wide_Networks_ICCV_2017_paper.html,ICCV,2017,https://github.com/nutszebra/wide_networks_using_binary_tree,0,2019-01-02
-Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,http://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html,ICCV,2015,https://github.com/nutszebra/prelu_net,2,2019-01-02
-Unified Embedding and Metric Learning for Zero-Exemplar Event Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Hussein_Unified_Embedding_and_CVPR_2017_paper.html,CVPR,2017,https://github.com/noureldien/unified_embedding,0,2019-01-02
-Mapping Images to Scene Graphs with Permutation-Invariant Structured Prediction,,NIPS,2018,https://github.com/nips2018axiomatic/Mapping-Images-to-Scene-Graphs-master,2,2019-01-02
-Unsupervised Learning of Depth and Ego-Motion From Monocular Video Using 3D Geometric Constraints,http://openaccess.thecvf.com/content_cvpr_2018/papers/Mahjourian_Unsupervised_Learning_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Nick36/unsupervised-learning-depth-ego-motion,0,2019-01-02
-Unsupervised Learning of Depth and Ego-Motion From Video,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhou_Unsupervised_Learning_of_CVPR_2017_paper.html,CVPR,2017,https://github.com/Nick36/unsupervised-learning-depth-ego-motion,0,2019-01-02
-Dynamic Time-Of-Flight,http://openaccess.thecvf.com/content_cvpr_2017/html/Schober_Dynamic_Time-Of-Flight_CVPR_2017_paper.html,CVPR,2017,https://github.com/neiljones12/Whackathon2016,0,2019-01-02
-Predict and Constrain: Modeling Cardinality in Deep Structured Prediction,http://proceedings.mlr.press/v80/brukhim18a.html,ICML,2018,https://github.com/Natalybr/predict_and_constrain,1,2019-01-02
-Propagated Image Filtering,http://openaccess.thecvf.com/content_cvpr_2015/html/Chang_Propagated_Image_Filtering_2015_CVPR_paper.html,CVPR,2015,https://github.com/NASA-Planetary-Science/SALTAD,0,2019-01-02
-Processing of missing data by neural networks,http://arxiv.org/abs/1805.07405v2,NIPS,2018,https://github.com/mzkhan2000/TypeNeuralModel,0,2019-01-02
-Comparator Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Weidi_Xie_Comparator_Networks_ECCV_2018_paper.html,ECCV,2018,https://github.com/Morwenn/comparator-networks,0,2019-01-02
-Linear Ranking Analysis,http://openaccess.thecvf.com/content_cvpr_2014/html/Deng_Linear_Ranking_Analysis_2014_CVPR_paper.html,CVPR,2014,https://github.com/MickyDowns/mine_ncaa_rankings,0,2019-01-02
-Relationship Proposal Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Relationship_Proposal_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/mdxedia/Awsome-Cash,1,2019-01-02
-Semi-supervised Spectral Clustering for Image Set Classification,http://openaccess.thecvf.com/content_cvpr_2014/html/Mahmood_Semi-supervised_Spectral_Clustering_2014_CVPR_paper.html,CVPR,2014,https://github.com/Masoud-Fatemi/Pattern-Recognition,0,2019-01-02
-A Generative Model of People in Clothing,http://openaccess.thecvf.com/content_iccv_2017/html/Lassner_A_Generative_Model_ICCV_2017_paper.html,ICCV,2017,https://github.com/Masaokb/ClothesNet_PyTorch,0,2019-01-02
-SWIFT: Sparse Withdrawal of Inliers in a First Trial,http://openaccess.thecvf.com/content_cvpr_2015/html/Jaberi_SWIFT_Sparse_Withdrawal_2015_CVPR_paper.html,CVPR,2015,https://github.com/mary-jab/SWIFT,0,2019-01-02
-Adaptive Clustering through Semidefinite Programming,http://papers.nips.cc/paper/6776-adaptive-clustering-through-semidefinite-programming.pdf,NIPS,2017,https://github.com/martinroyer/pecok,0,2019-01-02
-Scalable Bayesian Rule Lists,http://proceedings.mlr.press/v70/yang17h.html,ICML,2017,https://github.com/margoseltzer/homebrew-sbrlmod,0,2019-01-02
-Efficient Multiple Instance Metric Learning Using Weakly Supervised Data,http://openaccess.thecvf.com/content_cvpr_2017/html/Law_Efficient_Multiple_Instance_CVPR_2017_paper.html,CVPR,2017,https://github.com/MarcTLaw/MIMLCA,0,2019-01-02
-Variational Bayesian Multiple Instance Learning With Gaussian Processes,http://openaccess.thecvf.com/content_cvpr_2017/html/Haussmann_Variational_Bayesian_Multiple_CVPR_2017_paper.html,CVPR,2017,https://github.com/manuelhaussmann/vgpmil,0,2019-01-02
-Learning Deep Representation for Imbalanced Classification,http://openaccess.thecvf.com/content_cvpr_2016/html/Huang_Learning_Deep_Representation_CVPR_2016_paper.html,CVPR,2016,https://github.com/Makundi/Machine-Learning-IPT-ParrotAI,1,2019-01-02
-Distributed Clustering via LSH Based Data Partitioning,http://proceedings.mlr.press/v80/bhaskara18a.html,ICML,2018,https://github.com/maheshakya/DistClust_via_LSH_L2,0,2019-01-02
-Delayed Impact of Fair Machine Learning,http://proceedings.mlr.press/v80/liu18c.html,ICML,2018,https://github.com/lydiatliu/delayedimpact,2,2019-01-02
-A High-Quality Denoising Dataset for Smartphone Cameras,http://openaccess.thecvf.com/content_cvpr_2018/papers/Abdelhamed_A_High-Quality_Denoising_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/luhannan/mean-fusion-to-denoise-image,0,2019-01-02
-Structured Regression Gradient Boosting,http://openaccess.thecvf.com/content_cvpr_2016/html/Diego_Structured_Regression_Gradient_CVPR_2016_paper.html,CVPR,2016,https://github.com/LJohanna/Project_Python_SpeedDatingData,0,2019-01-02
-Data-Efficient Hierarchical Reinforcement Learning,,NIPS,2018,https://github.com/lizhuoru/aaai17,0,2019-01-02
-Open Category Detection with PAC Guarantees,http://proceedings.mlr.press/v80/liu18e.html,ICML,2018,https://github.com/liusi2019/ocd,1,2019-01-02
-Using Spatial Order to Boost the Elimination of Incorrect Feature Matches,http://openaccess.thecvf.com/content_cvpr_2016/html/Talker_Using_Spatial_Order_CVPR_2016_paper.html,CVPR,2016,https://github.com/liortalker/SpatialOrder,3,2019-01-02
-Efficient Sliding Window Computation for NN-Based Template Matching,http://openaccess.thecvf.com/content_ECCV_2018/html/Lior_Talker_Efficient_Sliding_Window_ECCV_2018_paper.html,ECCV,2018,https://github.com/liortalker/DIWU,2,2019-01-02
-"A Sharp Error Analysis for the Fused Lasso, with Application to Approximate Changepoint Screening",http://papers.nips.cc/paper/7264-a-sharp-error-analysis-for-the-fused-lasso-with-application-to-approximate-changepoint-screening.pdf,NIPS,2017,https://github.com/linnylin92/fused_lasso,0,2019-01-02
-Deep Learning Strong Parts for Pedestrian Detection,http://openaccess.thecvf.com/content_iccv_2015/html/Tian_Deep_Learning_Strong_ICCV_2015_paper.html,ICCV,2015,https://github.com/lijinxi1314/Deep_learning_strong_parts,0,2019-01-02
-Boosted Sparse and Low-Rank Tensor Regression,,NIPS,2018,https://github.com/LifangHe/SURF,1,2019-01-02
-Dual Supervised Learning,http://proceedings.mlr.press/v70/xia17a.html,ICML,2017,https://github.com/LifangHe/SDM14_DuSK,0,2019-01-02
-Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior,,NIPS,2018,https://github.com/Learning-and-Intelligent-Systems/meta-bo,0,2019-01-02
-Understanding Classifier Errors by Examining Influential Neighbors,http://openaccess.thecvf.com/content_cvpr_2015/html/Kabra_Understanding_Classifier_Errors_2015_CVPR_paper.html,CVPR,2015,https://github.com/kristinbranson/InfluentialNeighbors,0,2019-01-02
-Co-Occurrence Filter,http://openaccess.thecvf.com/content_cvpr_2017/html/Jevnisek_Co-Occurrence_Filter_CVPR_2017_paper.html,CVPR,2017,https://github.com/kobybibas/CoOccurrenceFilter,0,2019-01-02
-Learning to Assign Orientations to Feature Points,http://openaccess.thecvf.com/content_cvpr_2016/html/Yi_Learning_to_Assign_CVPR_2016_paper.html,CVPR,2016,https://github.com/kmyid/benchmark-orientation,0,2019-01-02
-Multi-Instance Object Segmentation With Occlusion Handling,http://openaccess.thecvf.com/content_cvpr_2015/html/Chen_Multi-Instance_Object_Segmentation_2015_CVPR_paper.html,CVPR,2015,https://github.com/kasertim/ObjectSegmentationOcclusionHandling,0,2019-01-02
-Leveraging Motion Priors in Videos for Improving Human Segmentation,http://openaccess.thecvf.com/content_ECCV_2018/html/Yu-Ting_Chen_Leveraging_Motion_Priors_ECCV_2018_paper.html,ECCV,2018,https://github.com/Jwy-Leo/Leveraging-Motion-Priors-in-Videos-for-Improving-Human-Segmentation,0,2019-01-02
-What Is Around the Camera?,http://openaccess.thecvf.com/content_iccv_2017/html/Georgoulis_What_Is_Around_ICCV_2017_paper.html,ICCV,2017,https://github.com/julianchow/LocationTesting,0,2019-01-02
-Local Convergence Properties of SAGA/Prox-SVRG and Acceleration,http://proceedings.mlr.press/v80/poon18a.html,ICML,2018,https://github.com/jliang993/Local-VRSGD,0,2019-01-02
-Generation and Comprehension of Unambiguous Object Descriptions,http://openaccess.thecvf.com/content_cvpr_2016/html/Mao_Generation_and_Comprehension_CVPR_2016_paper.html,CVPR,2016,https://github.com/jeetp465/Unambiguous-Object-Description,0,2019-01-02
-Large-Scale Stochastic Sampling from the Probability Simplex,http://arxiv.org/abs/1806.07137v1,NIPS,2018,https://github.com/jbaker92/SCIR,1,2019-01-02
-On the Solvability of Viewing Graphs,http://openaccess.thecvf.com/content_ECCV_2018/html/Matthew_Trager_On_the_Solvability_ECCV_2018_paper.html,ECCV,2018,https://github.com/ismummy/Train-Tracker,0,2019-01-02
-Learning Region Features for Object Detection,http://openaccess.thecvf.com/content_ECCV_2018/html/Jiayuan_Gu_Learning_Region_Features_ECCV_2018_paper.html,ECCV,2018,https://github.com/ironmanmark23/opencv_project1,0,2019-01-02
-RGB-Infrared Cross-Modality Person Re-Identification,http://openaccess.thecvf.com/content_iccv_2017/html/Wu_RGB-Infrared_Cross-Modality_Person_ICCV_2017_paper.html,ICCV,2017,https://github.com/InnovArul/rgb_IR_personreid,2,2019-01-02
-Composable Planning with Attributes,http://proceedings.mlr.press/v80/zhang18k.html,ICML,2018,https://github.com/infocampuspvtin/-Web-Designing-training-bangalore,0,2019-01-02
-Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning,http://arxiv.org/abs/1807.03146v1,NIPS,2018,https://github.com/ihankyang/keypoint-network,0,2019-01-02
-Single Image 3D Without a Single 3D Image,http://openaccess.thecvf.com/content_iccv_2015/html/Fouhey_Single_Image_3D_ICCV_2015_paper.html,ICCV,2015,https://github.com/ihankyang/keypoint-network,0,2019-01-02
-Neural Voice Cloning with a Few Samples,http://arxiv.org/abs/1802.06006v2,NIPS,2018,https://github.com/IEEE-NITK/Neural-Voice-Cloning,0,2019-01-02
-ATOMO: Communication-efficient Learning via Atomic Sparsification,http://arxiv.org/abs/1806.04090v2,NIPS,2018,https://github.com/hwang595/ATOMO,1,2019-01-02
-Designing Illuminant Spectral Power Distributions for Surface Classification,http://openaccess.thecvf.com/content_cvpr_2017/html/Blasinski_Designing_Illuminant_Spectral_CVPR_2017_paper.html,CVPR,2017,https://github.com/hblasins/optIll,0,2019-01-02
-Enhancing the Spatial Resolution of Stereo Images Using a Parallax Prior,http://openaccess.thecvf.com/content_cvpr_2018/papers/Jeon_Enhancing_the_Spatial_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/hassanisaadi/stereoSR_tf,0,2019-01-02
-Variance Regularized Counterfactual Risk Minimization via Variational Divergence Minimization,http://proceedings.mlr.press/v80/wu18g.html,ICML,2018,https://github.com/hang-wu/VRCRM,0,2019-01-02
-Learning to Estimate 3D Hand Pose From Single RGB Images,http://openaccess.thecvf.com/content_iccv_2017/html/Zimmermann_Learning_to_Estimate_ICCV_2017_paper.html,ICCV,2017,https://github.com/hamaskhan/Hand3dRHD,0,2019-01-02
-CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images,http://openaccess.thecvf.com/content_ECCV_2018/html/Sheng_Guo_CurriculumNet_Learning_from_ECCV_2018_paper.html,ECCV,2018,https://github.com/guoshengcv/CurriculumNet,2,2019-01-02
-A Simple Multi-Class Boosting Framework with Theoretical Guarantees and Empirical Proficiency,http://proceedings.mlr.press/v70/appel17a.html,ICML,2017,https://github.com/GuillaumeCollin/A-Simple-Multi-Class-Boosting-Framework-with-Theoretical-Guarantees-and-Empirical-Proficiency,0,2019-01-02
-Algebraic Variety Models for High-Rank Matrix Completion,http://proceedings.mlr.press/v70/ongie17a.html,ICML,2017,https://github.com/gregongie/vmc,0,2019-01-02
-Dynamic Few-Shot Visual Learning Without Forgetting,http://openaccess.thecvf.com/content_cvpr_2018/papers/Gidaris_Dynamic_Few-Shot_Visual_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/greentfrapp/few-shot-without-forgetting-tensorflow,1,2019-01-02
-Supervised Local Modeling for Interpretability,http://arxiv.org/abs/1807.02910v1,NIPS,2018,https://github.com/GDPlumb/SLIM,0,2019-01-02
-Multimodal Visual Concept Learning With Weakly Supervised Techniques,http://openaccess.thecvf.com/content_cvpr_2018/papers/Bouritsas_Multimodal_Visual_Concept_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/gbouritsas/cvpr18_multimodal_weakly_supervised_learning,0,2019-01-02
-Bayesian Adversarial Learning,,NIPS,2018,https://github.com/GaganNarula/BirdsongGAN_sequencelearning,0,2019-01-02
-Structured Indoor Modeling,http://openaccess.thecvf.com/content_iccv_2015/html/Ikehata_Structured_Indoor_Modeling_ICCV_2015_paper.html,ICCV,2015,https://github.com/furukawa00000/2015_structured_indoor_modeling,0,2019-01-02
-Actions and Attributes From Wholes and Parts,http://openaccess.thecvf.com/content_iccv_2015/html/Gkioxari_Actions_and_Attributes_ICCV_2015_paper.html,ICCV,2015,https://github.com/frankmalcolmkembery/GNU-GENERAL-PUBLIC-LICENSE-Version-3-29-June-2007-Copy,0,2019-01-02
-Verisimilar Image Synthesis for Accurate Detection and Recognition of Texts in Scenes,http://openaccess.thecvf.com/content_ECCV_2018/html/Fangneng_Zhan_Verisimilar_Image_Synthesis_ECCV_2018_paper.html,ECCV,2018,https://github.com/fnzhan/Verisimilar-Image-Synthesis-for-Accurate-Detection-and-Recognition-of-Texts-in-Scenes,24,2019-01-02
-Human Pose Estimation in Videos,http://openaccess.thecvf.com/content_iccv_2015/html/Zhang_Human_Pose_Estimation_ICCV_2015_paper.html,ICCV,2015,https://github.com/FJR-Nancy/TS-LSTM,0,2019-01-02
-Maximum Persistency via Iterative Relaxed Inference With Graphical Models,http://openaccess.thecvf.com/content_cvpr_2015/html/Shekhovtsov_Maximum_Persistency_via_2015_CVPR_paper.html,CVPR,2015,https://github.com/fgrsnau/part_opt,0,2019-01-02
-Density Adaptive Point Set Registration,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lawin_Density_Adaptive_Point_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/felja633/DARE,9,2019-01-02
-Scale-Aware Face Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Hao_Scale-Aware_Face_Detection_CVPR_2017_paper.html,CVPR,2017,https://github.com/eugenelet/Scale-Aware-Face-Detection,0,2019-01-02
-Hamiltonian Variational Auto-Encoder,,NIPS,2018,https://github.com/ericZYZ/HVI-RMHVI-for-VAE,0,2019-01-02
-Adaptive Sampling Probabilities for Non-Smooth Optimization,http://proceedings.mlr.press/v70/namkoong17a.html,ICML,2017,https://github.com/duchi-lab/adaptive-sampling-descent,2,2019-01-02
-Extending Layered Models to 3D Motion,http://openaccess.thecvf.com/content_ECCV_2018/html/Dong_Lao_Extending_Layered_Models_ECCV_2018_paper.html,ECCV,2018,https://github.com/donglao/layers3Dmotion,0,2019-01-02
-Forest-type Regression with General Losses and Robust Forest,http://proceedings.mlr.press/v70/li17e.html,ICML,2017,https://github.com/dma092/Forest-type-Regression-with-General-Losses-and-Robust-Forest-an-implementation,0,2019-01-02
-Beyond the Pixel-Wise Loss for Topology-Aware Delineation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Mosinska_Beyond_the_Pixel-Wise_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/dingmyu/Pytorch-Topology-Aware-Delineation,0,2019-01-02
-The Stitched Puppet: A Graphical Model of 3D Human Shape and Pose,http://openaccess.thecvf.com/content_cvpr_2015/html/Zuffi_The_Stitched_Puppet_2015_CVPR_paper.html,CVPR,2015,https://github.com/despicableMinions/stitched-puppet,0,2019-01-02
-"Cut, Glue & Cut: A Fast, Approximate Solver for Multicut Partitioning",http://openaccess.thecvf.com/content_cvpr_2014/html/Beier_Cut_Glue__2014_CVPR_paper.html,CVPR,2014,https://github.com/danoan/GCCS,0,2019-01-02
-Effective Face Frontalization in Unconstrained Images,http://openaccess.thecvf.com/content_cvpr_2015/html/Hassner_Effective_Face_Frontalization_2015_CVPR_paper.html,CVPR,2015,https://github.com/daemonlair/face-frontalization,0,2019-01-02
-Light Field Intrinsics With a Deep Encoder-Decoder Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Alperovich_Light_Field_Intrinsics_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/cvia-kn/lf_autoencoder_cvpr2018_code,0,2019-01-02
-Reconfiguring the Imaging Pipeline for Computer Vision,http://openaccess.thecvf.com/content_iccv_2017/html/Buckler_Reconfiguring_the_Imaging_ICCV_2017_paper.html,ICCV,2017,https://github.com/cucapra/vision-plots,0,2019-01-02
-A Holistic Approach to Cross-Channel Image Noise Modeling and Its Application to Image Denoising,http://openaccess.thecvf.com/content_cvpr_2016/html/Nam_A_Holistic_Approach_CVPR_2016_paper.html,CVPR,2016,https://github.com/csjunxu/ccnoise_code_CVPR2016,0,2019-01-02
-A Fast and Scalable Joint Estimator for Integrating Additional Knowledge in Learning Multiple Related Sparse Gaussian Graphical Models,http://proceedings.mlr.press/v80/wang18f.html,ICML,2018,https://github.com/cran/jeek,0,2019-01-02
-Latent Feature Lasso,http://proceedings.mlr.press/v70/yen17a.html,ICML,2017,https://github.com/cran/FLLat,0,2019-01-02
-Bayesian Nonparametric Spectral Estimation,,NIPS,2018,https://github.com/cran/bsplinePsd,0,2019-01-02
-A Linear Generalized Camera Calibration From Three Intersecting Reference Planes,http://openaccess.thecvf.com/content_iccv_2015/html/Nishimura_A_Linear_Generalized_ICCV_2015_paper.html,ICCV,2015,https://github.com/computer-vision/iccv2015,0,2019-01-02
-A Linear Extrinsic Calibration of Kaleidoscopic Imaging System From Single 3D Point,http://openaccess.thecvf.com/content_cvpr_2017/html/Takahashi_A_Linear_Extrinsic_CVPR_2017_paper.html,CVPR,2017,https://github.com/computer-vision/cvpr2017,0,2019-01-02
-ML-MG: Multi-Label Learning With Missing Labels Using a Mixed Graph,http://openaccess.thecvf.com/content_iccv_2015/html/Wu_ML-MG_Multi-Label_Learning_ICCV_2015_paper.html,ICCV,2015,https://github.com/CoderZWei/Multi-label,0,2019-01-02
-Extreme Learning to Rank via Low Rank Assumption,http://proceedings.mlr.press/v80/cheng18a.html,ICML,2018,https://github.com/cmhcbb/Extreme-learning-to-rank-via-low-rank-assumption,0,2019-01-02
-Hierarchical Recurrent Neural Network for Skeleton Based Action Recognition,http://openaccess.thecvf.com/content_cvpr_2015/html/Du_Hierarchical_Recurrent_Neural_2015_CVPR_paper.html,CVPR,2015,https://github.com/chrisjkim/hierarchical-recurrent-neural-network-for-skeleton-based-action-recognition,0,2019-01-02
-A Stable Multi-Scale Kernel for Topological Machine Learning,http://openaccess.thecvf.com/content_cvpr_2015/html/Reininghaus_A_Stable_Multi-Scale_2015_CVPR_paper.html,CVPR,2015,https://github.com/chocojoX/Kernel_for_TDAML,0,2019-01-02
-Fine-Grained Recognition Without Part Annotations,http://openaccess.thecvf.com/content_cvpr_2015/html/Krause_Fine-Grained_Recognition_Without_2015_CVPR_paper.html,CVPR,2015,https://github.com/chenlongcv/OVSNet,0,2019-01-02
-What are You Talking About? Text-to-Image Coreference,http://openaccess.thecvf.com/content_cvpr_2014/html/Kong_What_are_You_2014_CVPR_paper.html,CVPR,2014,https://github.com/chagge/sentences3D,0,2019-01-02
-Cross-View Image Matching for Geo-Localization in Urban Environments,http://openaccess.thecvf.com/content_cvpr_2017/html/Tian_Cross-View_Image_Matching_CVPR_2017_paper.html,CVPR,2017,https://github.com/cc1164/Cross-View-Image-Matching-for-Geo-localization-in-Urban-Environments,0,2019-01-02
-Deep Shape Matching,http://openaccess.thecvf.com/content_ECCV_2018/html/Filip_Radenovic_Deep_Shape_Matching_ECCV_2018_paper.html,ECCV,2018,https://github.com/CaramelYo/shape_matching_with_deep_learning,0,2019-01-02
-Seeing the Arrow of Time,http://openaccess.thecvf.com/content_cvpr_2014/html/Pickup_Seeing_the_Arrow_2014_CVPR_paper.html,CVPR,2014,https://github.com/BoeingX/seeing-the-arrow-of-time,0,2019-01-02
-Aggressive Sampling for Multi-class to Binary Reduction with Applications to Text Classification,http://papers.nips.cc/paper/7004-aggressive-sampling-for-multi-class-to-binary-reduction-with-applications-to-text-classification.pdf,NIPS,2017,https://github.com/bikash617/Aggressive-Sampling-for-Multi-class-to-BinaryReduction,0,2019-01-02
-An Analysis of Visual Question Answering Algorithms,http://openaccess.thecvf.com/content_iccv_2017/html/Kafle_An_Analysis_of_ICCV_2017_paper.html,ICCV,2017,https://github.com/bigman911/Project,0,2019-01-02
-A Boo(n) for Evaluating Architecture Performance,http://proceedings.mlr.press/v80/bajgar18a.html,ICML,2018,https://github.com/bajgar/Boon,0,2019-01-02
-Deep Reinforcement Learning-Based Image Captioning With Embedding Reward,http://openaccess.thecvf.com/content_cvpr_2017/html/Ren_Deep_Reinforcement_Learning-Based_CVPR_2017_paper.html,CVPR,2017,https://github.com/B3-348/DRL-based-Image-Captioning-with-Embedding-Reward,0,2019-01-02
-Interval Tracker: Tracking by Interval Analysis,http://openaccess.thecvf.com/content_cvpr_2014/html/Kwon_Interval_Tracker_Tracking_2014_CVPR_paper.html,CVPR,2014,https://github.com/atanu1982/Major-HIPAA-Survival-Guide,0,2019-01-02
-Webly Supervised Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/html/Jin_Webly_Supervised_Semantic_CVPR_2017_paper.html,CVPR,2017,https://github.com/ascust/WSS,0,2019-01-02
-Image to Image Translation for Domain Adaptation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Murez_Image_to_Image_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/artix41/ai-week-talk,0,2019-01-02
-Using Object Information for Spotting Text,http://openaccess.thecvf.com/content_ECCV_2018/html/Shitala_Prasad_Using_Object_Information_ECCV_2018_paper.html,ECCV,2018,https://github.com/arjun1237/Inheritance---Java,0,2019-01-02
-A Universal Analysis of Large-Scale Regularized Least Squares Solutions,http://papers.nips.cc/paper/6930-a-universal-analysis-of-large-scale-regularized-least-squares-solutions.pdf,NIPS,2017,https://github.com/apanahi/NIPS_Paper_1937,0,2019-01-02
-Fast Light Field Reconstruction With Deep Coarse-To-Fine Modeling of Spatial-Angular Clues,http://openaccess.thecvf.com/content_ECCV_2018/html/Henry_W._F._Yeung_Fast_Light_Field_ECCV_2018_paper.html,ECCV,2018,https://github.com/angularsr/LightFieldAngularSR,2,2019-01-02
-A Dataset for Movie Description,http://openaccess.thecvf.com/content_cvpr_2015/html/Rohrbach_A_Dataset_for_2015_CVPR_paper.html,CVPR,2015,https://github.com/aminanima/MovieProject,0,2019-01-02
-Feature Generating Networks for Zero-Shot Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Xian_Feature_Generating_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/akku1506/Feature-Generating-Networks-for-ZSL,3,2019-01-02
-AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning,http://proceedings.mlr.press/v80/alaa18b.html,ICML,2018,https://github.com/ahmedmalaa/AutoPrognosis,0,2019-01-02
-Accelerated Spectral Ranking,http://proceedings.mlr.press/v80/agarwal18b.html,ICML,2018,https://github.com/agarpit/asr,0,2019-01-02
-Active Learning for Top-$K$ Rank Aggregation from Noisy Comparisons,http://proceedings.mlr.press/v70/mohajer17a.html,ICML,2017,https://github.com/a-elmahdy/Active-Learning-from-Noisy-Comparisons,0,2019-01-02
-CryptoKnight: Generating and Modelling Compiled Cryptographic Primitives,https://www.mdpi.com/2078-2489/9/9/231,NAN,2018,https://github.com/AbertayMachineLearningGroup/CryptoKnight,13,2019-01-02
-"Detection, localisation and tracking of pallets using machine learning techniques and 2D range data",https://arxiv.org/abs/1803.11254,NCAA,2018,https://github.com/EmaroLab/PDT,5,2019-01-02
+Bridging the Gap Between Value and Policy Based Reinforcement Learning,http://papers.nips.cc/paper/6870-bridging-the-gap-between-value-and-policy-based-reinforcement-learning.pdf,NIPS,2017,https://github.com/tensorflow/models,46593,1/2/2019
+"REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models",http://papers.nips.cc/paper/6856-rebar-low-variance-unbiased-gradient-estimates-for-discrete-latent-variable-models.pdf,NIPS,2017,https://github.com/tensorflow/models,46593,1/2/2019
+Focal Loss for Dense Object Detection,http://openaccess.thecvf.com/content_iccv_2017/html/Lin_Focal_Loss_for_ICCV_2017_paper.html,ICCV,2017,https://github.com/facebookresearch/Detectron,18356,1/2/2019
+Faster R-CNN: Towards Real-Time Object Detectionwith Region Proposal Networks,https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf,NIPS,2015,https://github.com/facebookresearch/Detectron,18356,1/2/2019
+R-FCN: Object Detection via Region-based Fully Convolutional Networks,https://papers.nips.cc/paper/6465-r-fcn-object-detection-via-region-based-fully-convolutional-networks.pdf,NIPS,2016,https://github.com/facebookresearch/Detectron,18356,1/2/2019
+Fast R-CNN,http://openaccess.thecvf.com/content_iccv_2015/html/Girshick_Fast_R-CNN_ICCV_2015_paper.html,ICCV,2015,https://github.com/facebookresearch/Detectron,18356,1/2/2019
+Image Style Transfer Using Convolutional Neural Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Gatys_Image_Style_Transfer_CVPR_2016_paper.html,CVPR,2016,https://github.com/jcjohnson/neural-style,16435,1/2/2019
+Deep Photo Style Transfer,http://openaccess.thecvf.com/content_cvpr_2017/html/Luan_Deep_Photo_Style_CVPR_2017_paper.html,CVPR,2017,https://github.com/luanfujun/deep-photo-styletransfer,8655,1/2/2019
+Mask R-CNN,http://openaccess.thecvf.com/content_iccv_2017/html/He_Mask_R-CNN_ICCV_2017_paper.html,ICCV,2017,https://github.com/matterport/Mask_RCNN,9493,1/2/2019
+LightGBM: A Highly Efficient Gradient Boosting Decision Tree,http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf,NIPS,2017,https://github.com/Microsoft/LightGBM,7536,1/2/2019
+Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation,http://papers.nips.cc/paper/7112-scalable-trust-region-method-for-deep-reinforcement-learning-using-kronecker-factored-approximation.pdf,NIPS,2017,https://github.com/openai/baselines,6449,1/2/2019
+Attention is All you Need,http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf,NIPS,2017,https://github.com/tensorflow/tensor2tensor,6288,1/2/2019
+Video-to-Video Synthesis,https://arxiv.org/abs/1808.06601,NIPS,2018,https://github.com/NVIDIA/vid2vid,5578,1/2/2019
+Deep Residual Learning for Image Recognition,http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html,CVPR,2016,https://github.com/KaimingHe/deep-residual-networks,4468,1/2/2019
+Deep Image Prior,http://openaccess.thecvf.com/content_cvpr_2018/papers/Ulyanov_Deep_Image_Prior_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/DmitryUlyanov/deep-image-prior,3736,1/2/2019
+Large Pose 3D Face Reconstruction From a Single Image via Direct Volumetric CNN Regression,http://openaccess.thecvf.com/content_iccv_2017/html/Jackson_Large_Pose_3D_ICCV_2017_paper.html,ICCV,2017,https://github.com/AaronJackson/vrn,3354,1/2/2019
+StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Choi_StarGAN_Unified_Generative_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yunjey/StarGAN,3405,1/2/2019
+Convolutional Pose Machines,http://openaccess.thecvf.com/content_cvpr_2016/html/Wei_Convolutional_Pose_Machines_CVPR_2016_paper.html,CVPR,2016,https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation,3260,1/2/2019
+Densely Connected Convolutional Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.html,CVPR,2017,https://github.com/liuzhuang13/DenseNet,3130,1/2/2019
+A Unified Approach to Interpreting Model Predictions,http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf,NIPS,2017,https://github.com/slundberg/shap,3122,1/2/2019
+Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network,http://openaccess.thecvf.com/content_ECCV_2018/html/Yao_Feng_Joint_3D_Face_ECCV_2018_paper.html,ECCV,2018,https://github.com/YadiraF/PRNet,2434,1/2/2019
+Learning to See in the Dark,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Learning_to_See_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/cchen156/Learning-to-See-in-the-Dark,2326,1/2/2019
+Glow: Generative Flow with Invertible 1x1 Convolutions,http://arxiv.org/abs/1807.03039v2,NIPS,2018,https://github.com/openai/glow,2088,1/2/2019
+Deformable Convolutional Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Dai_Deformable_Convolutional_Networks_ICCV_2017_paper.html,ICCV,2017,https://github.com/msracver/Deformable-ConvNets,2165,1/2/2019
+"ELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games",http://papers.nips.cc/paper/6859-elf-an-extensive-lightweight-and-flexible-research-platform-for-real-time-strategy-games.pdf,NIPS,2017,https://github.com/facebookresearch/ELF,1823,1/2/2019
+Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2014/html/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.html,CVPR,2014,https://github.com/rbgirshick/rcnn,1681,1/2/2019
+Fully Convolutional Instance-Aware Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/html/Li_Fully_Convolutional_Instance-Aware_CVPR_2017_paper.html,CVPR,2017,https://github.com/msracver/FCIS,1395,1/2/2019
+PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/html/Qi_PointNet_Deep_Learning_CVPR_2017_paper.html,CVPR,2017,https://github.com/charlesq34/pointnet,1523,1/2/2019
+Improved Training of Wasserstein GANs,http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.pdf,NIPS,2017,https://github.com/igul222/improved_wgan_training,1405,1/2/2019
+Aggregated Residual Transformations for Deep Neural Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Xie_Aggregated_Residual_Transformations_CVPR_2017_paper.html,CVPR,2017,https://github.com/facebookresearch/ResNeXt,1361,1/2/2019
+Squeeze-and-Excitation Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/hujie-frank/SENet,1477,1/2/2019
+Efficient Neural Architecture Search via Parameters Sharing,http://proceedings.mlr.press/v80/pham18a.html,ICML,2018,https://github.com/carpedm20/ENAS-pytorch,1382,1/2/2019
+Multimodal Unsupervised Image-to-image Translation,http://openaccess.thecvf.com/content_ECCV_2018/html/Xun_Huang_Multimodal_Unsupervised_Image-to-image_ECCV_2018_paper.html,ECCV,2018,https://github.com/NVlabs/MUNIT,1296,1/2/2019
+Conditional Random Fields as Recurrent Neural Networks,http://openaccess.thecvf.com/content_iccv_2015/html/Zheng_Conditional_Random_Fields_ICCV_2015_paper.html,ICCV,2015,https://github.com/torrvision/crfasrnn,1189,1/2/2019
+Photographic Image Synthesis With Cascaded Refinement Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Chen_Photographic_Image_Synthesis_ICCV_2017_paper.html,ICCV,2017,https://github.com/CQFIO/PhotographicImageSynthesis,1142,1/2/2019
+Unsupervised Image-to-Image Translation Networks,http://papers.nips.cc/paper/6672-unsupervised-image-to-image-translation-networks.pdf,NIPS,2017,https://github.com/mingyuliutw/unit,1205,1/2/2019
+Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network,http://openaccess.thecvf.com/content_cvpr_2017/html/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.html,CVPR,2017,https://github.com/tensorlayer/srgan,1301,1/2/2019
+High-Resolution Image Inpainting Using Multi-Scale Neural Patch Synthesis,http://openaccess.thecvf.com/content_cvpr_2017/html/Yang_High-Resolution_Image_Inpainting_CVPR_2017_paper.html,CVPR,2017,https://github.com/leehomyc/Faster-High-Res-Neural-Inpainting,1072,1/2/2019
+SphereFace: Deep Hypersphere Embedding for Face Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Liu_SphereFace_Deep_Hypersphere_CVPR_2017_paper.html,CVPR,2017,https://github.com/wy1iu/sphereface,1048,1/2/2019
+Bayesian GAN,http://papers.nips.cc/paper/6953-bayesian-gan.pdf,NIPS,2017,https://github.com/andrewgordonwilson/bayesgan,942,1/2/2019
+Deep Feature Flow for Video Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhu_Deep_Feature_Flow_CVPR_2017_paper.html,CVPR,2017,https://github.com/msracver/Deep-Feature-Flow,966,1/2/2019
+Pyramid Scene Parsing Network,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhao_Pyramid_Scene_Parsing_CVPR_2017_paper.html,CVPR,2017,https://github.com/hszhao/PSPNet,934,1/2/2019
+Non-Local Neural Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Non-Local_Neural_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/facebookresearch/video-nonlocal-net,992,1/2/2019
+Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes,http://papers.nips.cc/paper/7098-efficient-modeling-of-latent-information-in-supervised-learning-using-gaussian-processes.pdf,NIPS,2017,https://github.com/SheffieldML/GPy,906,1/2/2019
+Fully Convolutional Networks for Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html,CVPR,2015,https://github.com/shekkizh/FCN.tensorflow,911,1/2/2019
+Finding Tiny Faces,http://openaccess.thecvf.com/content_cvpr_2017/html/Hu_Finding_Tiny_Faces_CVPR_2017_paper.html,CVPR,2017,https://github.com/peiyunh/tiny,856,1/2/2019
+Image Generation From Scene Graphs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Johnson_Image_Generation_From_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/google/sg2im,851,1/2/2019
+Learning to Discover Cross-Domain Relations with Generative Adversarial Networks,http://proceedings.mlr.press/v70/kim17a.html,ICML,2017,https://github.com/carpedm20/DiscoGAN-pytorch,784,1/2/2019
+"YOLO9000: Better, Faster, Stronger",http://openaccess.thecvf.com/content_cvpr_2017/html/Redmon_YOLO9000_Better_Faster_CVPR_2017_paper.html,CVPR,2017,https://github.com/philipperemy/yolo-9000,773,1/2/2019
+Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis,http://openaccess.thecvf.com/content_cvpr_2016/html/Li_Combining_Markov_Random_CVPR_2016_paper.html,CVPR,2016,https://github.com/chuanli11/CNNMRF,731,1/2/2019
+Toward Multimodal Image-to-Image Translation,http://papers.nips.cc/paper/6650-toward-multimodal-image-to-image-translation.pdf,NIPS,2017,https://github.com/junyanz/BiCycleGAN,794,1/2/2019
+Synthetic Data for Text Localisation in Natural Images,http://openaccess.thecvf.com/content_cvpr_2016/html/Gupta_Synthetic_Data_for_CVPR_2016_paper.html,CVPR,2016,https://github.com/ankush-me/SynthText,787,1/2/2019
+Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hara_Can_Spatiotemporal_3D_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kenshohara/3D-ResNets-PyTorch,924,1/2/2019
+Single-Shot Refinement Neural Network for Object Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Single-Shot_Refinement_Neural_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/sfzhang15/RefineDet,875,1/2/2019
+FlowNet 2.0: Evolution of Optical Flow Estimation With Deep Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Ilg_FlowNet_2.0_Evolution_CVPR_2017_paper.html,CVPR,2017,https://github.com/lmb-freiburg/flownet2,720,1/2/2019
+PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space,http://papers.nips.cc/paper/7095-pointnet-deep-hierarchical-feature-learning-on-point-sets-in-a-metric-space.pdf,NIPS,2017,https://github.com/charlesq34/pointnet2,772,1/2/2019
+Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks,http://proceedings.mlr.press/v70/finn17a.html,ICML,2017,https://github.com/cbfinn/maml,729,1/2/2019
+GANimation: Anatomically-aware Facial Animation from a Single Image,http://openaccess.thecvf.com/content_ECCV_2018/html/Albert_Pumarola_Anatomically_Coherent_Facial_ECCV_2018_paper.html,ECCV,2018,https://github.com/albertpumarola/GANimation,772,1/2/2019
+Inferring and Executing Programs for Visual Reasoning,http://openaccess.thecvf.com/content_iccv_2017/html/Johnson_Inferring_and_Executing_ICCV_2017_paper.html,ICCV,2017,https://github.com/facebookresearch/clevr-iep,636,1/2/2019
+Channel Pruning for Accelerating Very Deep Neural Networks,http://openaccess.thecvf.com/content_iccv_2017/html/He_Channel_Pruning_for_ICCV_2017_paper.html,ICCV,2017,https://github.com/yihui-he/channel-pruning,649,1/2/2019
+Dilated Residual Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Yu_Dilated_Residual_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/fyu/drn,640,1/2/2019
+Accelerating Eulerian Fluid Simulation With Convolutional Networks,http://proceedings.mlr.press/v70/tompson17a.html,ICML,2017,https://github.com/google/FluidNet,570,1/2/2019
+Detect-and-Track: Efficient Pose Estimation in Videos,http://openaccess.thecvf.com/content_cvpr_2018/papers/Girdhar_Detect-and-Track_Efficient_Pose_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/facebookresearch/DetectAndTrack,650,1/2/2019
+DSOD: Learning Deeply Supervised Object Detectors From Scratch,http://openaccess.thecvf.com/content_iccv_2017/html/Shen_DSOD_Learning_Deeply_ICCV_2017_paper.html,ICCV,2017,https://github.com/szq0214/DSOD,582,1/2/2019
+Relation Networks for Object Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Relation_Networks_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/msracver/Relation-Networks-for-Object-Detection,635,1/2/2019
+Arbitrary Style Transfer in Real-Time With Adaptive Instance Normalization,http://openaccess.thecvf.com/content_iccv_2017/html/Huang_Arbitrary_Style_Transfer_ICCV_2017_paper.html,ICCV,2017,https://github.com/xunhuang1995/AdaIN-style,572,1/2/2019
+Learning Disentangled Representations with Semi-Supervised Deep Generative Models,http://papers.nips.cc/paper/7174-learning-disentangled-representations-with-semi-supervised-deep-generative-models.pdf,NIPS,2017,https://github.com/probtorch/probtorch,556,1/2/2019
+PointCNN,http://arxiv.org/abs/1801.07791v3,NIPS,2018,https://github.com/yangyanli/PointCNN,607,1/2/2019
+"How Far Are We From Solving the 2D & 3D Face Alignment Problem? (And a Dataset of 230,000 3D Facial Landmarks)",http://openaccess.thecvf.com/content_iccv_2017/html/Bulat_How_Far_Are_ICCV_2017_paper.html,ICCV,2017,https://github.com/1adrianb/2D-and-3D-face-alignment,526,1/2/2019
+Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples,http://proceedings.mlr.press/v80/athalye18a.html,ICML,2018,https://github.com/anishathalye/obfuscated-gradients,535,1/2/2019
+Simple Baselines for Human Pose Estimation and Tracking,http://openaccess.thecvf.com/content_ECCV_2018/html/Bin_Xiao_Simple_Baselines_for_ECCV_2018_paper.html,ECCV,2018,https://github.com/Microsoft/human-pose-estimation.pytorch,752,1/2/2019
+Regressing Robust and Discriminative 3D Morphable Models With a Very Deep Neural Network,http://openaccess.thecvf.com/content_cvpr_2017/html/Tran_Regressing_Robust_and_CVPR_2017_paper.html,CVPR,2017,https://github.com/anhttran/3dmm_cnn,537,1/2/2019
+Learning From Simulated and Unsupervised Images Through Adversarial Training,http://openaccess.thecvf.com/content_cvpr_2017/html/Shrivastava_Learning_From_Simulated_CVPR_2017_paper.html,CVPR,2017,https://github.com/carpedm20/simulated-unsupervised-tensorflow,492,1/2/2019
+Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space,http://openaccess.thecvf.com/content_cvpr_2017/html/Nguyen_Plug__Play_CVPR_2017_paper.html,CVPR,2017,https://github.com/Evolving-AI-Lab/ppgn,487,1/2/2019
+Taskonomy: Disentangling Task Transfer Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zamir_Taskonomy_Disentangling_Task_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/StanfordVL/taskonomy,502,1/2/2019
+Which Training Methods for GANs do actually Converge?,http://proceedings.mlr.press/v80/mescheder18a.html,ICML,2018,https://github.com/LMescheder/GAN_stability,520,1/2/2019
+Cascaded Pyramid Network for Multi-Person Pose Estimation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Cascaded_Pyramid_Network_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/chenyilun95/tf-cpn,497,1/2/2019
+Pelee: A Real-Time Object Detection System on Mobile Devices,https://arxiv.org/pdf/1804.06882.pdf,NIPS,2018,https://github.com/Robert-JunWang/Pelee,548,1/2/2019
+Generative Image Inpainting With Contextual Attention,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yu_Generative_Image_Inpainting_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/JiahuiYu/generative_inpainting,609,1/2/2019
+Neural 3D Mesh Renderer,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kato_Neural_3D_Mesh_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/hiroharu-kato/neural_renderer,489,1/2/2019
+SSH: Single Stage Headless Face Detector,http://openaccess.thecvf.com/content_iccv_2017/html/Najibi_SSH_Single_Stage_ICCV_2017_paper.html,ICCV,2017,https://github.com/mahyarnajibi/SSH,515,1/2/2019
+"GMS: Grid-based Motion Statistics for Fast, Ultra-Robust Feature Correspondence",http://openaccess.thecvf.com/content_cvpr_2017/html/Bian_GMS_Grid-based_Motion_CVPR_2017_paper.html,CVPR,2017,https://github.com/JiawangBian/GMS-Feature-Matcher,460,1/2/2019
+Dual Path Networks,http://papers.nips.cc/paper/7033-dual-path-networks.pdf,NIPS,2017,https://github.com/cypw/DPNs,451,1/2/2019
+Inductive Representation Learning on Large Graphs,http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf,NIPS,2017,https://github.com/williamleif/GraphSAGE,552,1/2/2019
+Instance-Aware Semantic Segmentation via Multi-Task Network Cascades,http://openaccess.thecvf.com/content_cvpr_2016/html/Dai_Instance-Aware_Semantic_Segmentation_CVPR_2016_paper.html,CVPR,2016,https://github.com/daijifeng001/MNC,433,1/2/2019
+Video Frame Interpolation via Adaptive Convolution,http://openaccess.thecvf.com/content_cvpr_2017/html/Niklaus_Video_Frame_Interpolation_CVPR_2017_paper.html,CVPR,2017,https://github.com/sniklaus/pytorch-sepconv,482,1/2/2019
+Video Frame Interpolation via Adaptive Separable Convolution,http://openaccess.thecvf.com/content_iccv_2017/html/Niklaus_Video_Frame_Interpolation_ICCV_2017_paper.html,ICCV,2017,https://github.com/sniklaus/pytorch-sepconv,482,1/2/2019
+Look at Boundary: A Boundary-Aware Face Alignment Algorithm,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Look_at_Boundary_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/wywu/LAB,575,1/2/2019
+Joint Detection and Identification Feature Learning for Person Search,http://openaccess.thecvf.com/content_cvpr_2017/html/Xiao_Joint_Detection_and_CVPR_2017_paper.html,CVPR,2017,https://github.com/ShuangLI59/person_search,459,1/2/2019
+Zero-Shot Recognition via Semantic Embeddings and Knowledge Graphs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Zero-Shot_Recognition_via_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/JudyYe/zero-shot-gcn,489,1/2/2019
+Locally Optimized Product Quantization for Approximate Nearest Neighbor Search,http://openaccess.thecvf.com/content_cvpr_2014/html/Kalantidis_Locally_Optimized_Product_2014_CVPR_paper.html,CVPR,2014,https://github.com/yahoo/lopq,437,1/2/2019
+Flow-Guided Feature Aggregation for Video Object Detection,http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Flow-Guided_Feature_Aggregation_ICCV_2017_paper.html,ICCV,2017,https://github.com/msracver/Flow-Guided-Feature-Aggregation,436,1/2/2019
+In-Place Activated BatchNorm for Memory-Optimized Training of DNNs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Bulo_In-Place_Activated_BatchNorm_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/mapillary/inplace_abn,485,1/2/2019
+End-to-End Recovery of Human Shape and Pose,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kanazawa_End-to-End_Recovery_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/akanazawa/hmr,502,1/2/2019
+Recurrent Highway Networks,http://proceedings.mlr.press/v70/zilly17a.html,ICML,2017,https://github.com/julian121266/RecurrentHighwayNetworks,397,1/2/2019
+ICNet for Real-Time Semantic Segmentation on High-Resolution Images,http://openaccess.thecvf.com/content_ECCV_2018/html/Hengshuang_Zhao_ICNet_for_Real-Time_ECCV_2018_paper.html,ECCV,2018,https://github.com/hszhao/ICNet,415,1/2/2019
+Deep Image Matting,http://openaccess.thecvf.com/content_cvpr_2017/html/Xu_Deep_Image_Matting_CVPR_2017_paper.html,CVPR,2017,https://github.com/Joker316701882/Deep-Image-Matting,434,1/2/2019
+The Unreasonable Effectiveness of Deep Features as a Perceptual Metric,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_The_Unreasonable_Effectiveness_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/richzhang/PerceptualSimilarity,447,1/2/2019
+Detect to Track and Track to Detect,http://openaccess.thecvf.com/content_iccv_2017/html/Feichtenhofer_Detect_to_Track_ICCV_2017_paper.html,ICCV,2017,https://github.com/feichtenhofer/Detect-Track,387,1/2/2019
+Distractor-aware Siamese Networks for Visual Object Tracking,http://openaccess.thecvf.com/content_ECCV_2018/html/Zheng_Zhu_Distractor-aware_Siamese_Networks_ECCV_2018_paper.html,ECCV,2018,https://github.com/foolwood/DaSiamRPN,545,1/2/2019
+Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results,http://papers.nips.cc/paper/6719-mean-teachers-are-better-role-models-weight-averaged-consistency-targets-improve-semi-supervised-deep-learning-results.pdf,NIPS,2017,https://github.com/CuriousAI/mean-teacher/,347,9/16/2018
+Frustum PointNets for 3D Object Detection From RGB-D Data,http://openaccess.thecvf.com/content_cvpr_2018/papers/Qi_Frustum_PointNets_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/charlesq34/frustum-pointnets,434,1/2/2019
+Efficient Interactive Annotation of Segmentation Datasets With Polygon-RNN++,http://openaccess.thecvf.com/content_cvpr_2018/papers/Acuna_Efficient_Interactive_Annotation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/fidler-lab/polyrnn-pp-pytorch,397,1/2/2019
+Annotating Object Instances With a Polygon-RNN,http://openaccess.thecvf.com/content_cvpr_2017/html/Castrejon_Annotating_Object_Instances_CVPR_2017_paper.html,CVPR,2017,https://github.com/fidler-lab/polyrnn-pp-pytorch,397,1/2/2019
+RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/html/Lin_RefineNet_Multi-Path_Refinement_CVPR_2017_paper.html,CVPR,2017,https://github.com/guosheng/refinenet,379,1/2/2019
+Learning Multi-Domain Convolutional Neural Networks for Visual Tracking,http://openaccess.thecvf.com/content_cvpr_2016/html/Nam_Learning_Multi-Domain_Convolutional_CVPR_2016_paper.html,CVPR,2016,https://github.com/HyeonseobNam/MDNet,350,1/2/2019
+Gibson Env: Real-World Perception for Embodied Agents,http://openaccess.thecvf.com/content_cvpr_2018/papers/Xia_Gibson_Env_Real-World_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/StanfordVL/GibsonEnv,385,1/2/2019
+Deep Lattice Networks and Partial Monotonic Functions,http://papers.nips.cc/paper/6891-deep-lattice-networks-and-partial-monotonic-functions.pdf,NIPS,2017,https://github.com/tensorflow/lattice,349,1/2/2019
+RON: Reverse Connection With Objectness Prior Networks for Object Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Kong_RON_Reverse_Connection_CVPR_2017_paper.html,CVPR,2017,https://github.com/taokong/RON,345,1/2/2019
+Detecting Oriented Text in Natural Images by Linking Segments,http://openaccess.thecvf.com/content_cvpr_2017/html/Shi_Detecting_Oriented_Text_CVPR_2017_paper.html,CVPR,2017,https://github.com/dengdan/seglink,364,1/2/2019
+Universal Style Transfer via Feature Transforms,http://papers.nips.cc/paper/6642-universal-style-transfer-via-feature-transforms.pdf,NIPS,2017,https://github.com/Yijunmaverick/UniversalStyleTransfer,344,1/2/2019
+Learning Deep Features for Discriminative Localization,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhou_Learning_Deep_Features_CVPR_2016_paper.html,CVPR,2016,https://github.com/jazzsaxmafia/Weakly_detector,323,1/2/2019
+Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Mascharka_Transparency_by_Design_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/davidmascharka/tbd-nets,317,1/2/2019
+Soccer on Your Tabletop,http://openaccess.thecvf.com/content_cvpr_2018/papers/Rematas_Soccer_on_Your_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/krematas/soccerontable,338,1/2/2019
+Noise2Noise: Learning Image Restoration without Clean Data,http://proceedings.mlr.press/v80/lehtinen18a.html,ICML,2018,https://github.com/yu4u/noise2noise,370,1/2/2019
+Accurate Single Stage Detector Using Recurrent Rolling Convolution,http://openaccess.thecvf.com/content_cvpr_2017/html/Ren_Accurate_Single_Stage_CVPR_2017_paper.html,CVPR,2017,https://github.com/xiaohaoChen/rrc_detection,314,1/2/2019
+Convolutional Two-Stream Network Fusion for Video Action Recognition,http://openaccess.thecvf.com/content_cvpr_2016/html/Feichtenhofer_Convolutional_Two-Stream_Network_CVPR_2016_paper.html,CVPR,2016,https://github.com/feichtenhofer/twostreamfusion,342,1/2/2019
+"GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose",http://openaccess.thecvf.com/content_cvpr_2018/papers/Yin_GeoNet_Unsupervised_Learning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yzcjtr/GeoNet,359,1/2/2019
+GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Qi_GeoNet_Geometric_Neural_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yzcjtr/GeoNet,359,1/2/2019
+One-Shot Video Object Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/html/Caelles_One-Shot_Video_Object_CVPR_2017_paper.html,CVPR,2017,https://github.com/scaelles/OSVOS-TensorFlow,316,1/2/2019
+Neural Baby Talk,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lu_Neural_Baby_Talk_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jiasenlu/NeuralBabyTalk,332,1/2/2019
+Learning Deconvolution Network for Semantic Segmentation,http://openaccess.thecvf.com/content_iccv_2015/html/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.html,ICCV,2015,https://github.com/HyeonwooNoh/DeconvNet,296,1/2/2019
+Efficient softmax approximation for GPUs,http://proceedings.mlr.press/v70/grave17a.html,ICML,2017,https://github.com/facebookresearch/adaptive-softmax,304,1/2/2019
+Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution,http://openaccess.thecvf.com/content_cvpr_2017/html/Lai_Deep_Laplacian_Pyramid_CVPR_2017_paper.html,CVPR,2017,https://github.com/phoenix104104/LapSRN,301,1/2/2019
+Learning to Track: Online Multi-Object Tracking by Decision Making,http://openaccess.thecvf.com/content_iccv_2015/html/Xiang_Learning_to_Track_ICCV_2015_paper.html,ICCV,2015,https://github.com/yuxng/MDP_Tracking,308,1/2/2019
+Learning to Compare Image Patches via Convolutional Neural Networks,http://openaccess.thecvf.com/content_cvpr_2015/html/Zagoruyko_Learning_to_Compare_2015_CVPR_paper.html,CVPR,2015,https://github.com/szagoruyko/cvpr15deepcompare,300,1/2/2019
+Acquisition of Localization Confidence for Accurate Object Detection,http://openaccess.thecvf.com/content_ECCV_2018/html/Borui_Jiang_Acquisition_of_Localization_ECCV_2018_paper.html,ECCV,2018,https://github.com/vacancy/PreciseRoIPooling,384,1/2/2019
+"PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume",http://openaccess.thecvf.com/content_cvpr_2018/papers/Sun_PWC-Net_CNNs_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/NVlabs/PWC-Net,398,1/2/2019
+Pixel Recursive Super Resolution,http://openaccess.thecvf.com/content_iccv_2017/html/Dahl_Pixel_Recursive_Super_ICCV_2017_paper.html,ICCV,2017,https://github.com/nilboy/pixel-recursive-super-resolution,301,1/2/2019
+The Lovász-Softmax Loss: A Tractable Surrogate for the Optimization of the Intersection-Over-Union Measure in Neural Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Berman_The_LovaSz-Softmax_Loss_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/bermanmaxim/LovaszSoftmax,416,1/2/2019
+Residual Attention Network for Image Classification,http://openaccess.thecvf.com/content_cvpr_2017/html/Wang_Residual_Attention_Network_CVPR_2017_paper.html,CVPR,2017,https://github.com/fwang91/residual-attention-network,329,1/2/2019
+OctNet: Learning Deep 3D Representations at High Resolutions,http://openaccess.thecvf.com/content_cvpr_2017/html/Riegler_OctNet_Learning_Deep_CVPR_2017_paper.html,CVPR,2017,https://github.com/griegler/octnet,302,1/2/2019
+Dilated Recurrent Neural Networks,http://papers.nips.cc/paper/6613-dilated-recurrent-neural-networks.pdf,NIPS,2017,https://github.com/code-terminator/DilatedRNN,285,1/2/2019
+Fast End-to-End Trainable Guided Filter,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Fast_End-to-End_Trainable_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/wuhuikai/DeepGuidedFilter,312,1/2/2019
+Feature Pyramid Networks for Object Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Lin_Feature_Pyramid_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/unsky/FPN,310,1/2/2019
+The Predictron: End-To-End Learning and Planning,http://proceedings.mlr.press/v70/silver17a.html,ICML,2017,https://github.com/zhongwen/predictron,274,1/2/2019
+Single Image Super-Resolution From Transformed Self-Exemplars,http://openaccess.thecvf.com/content_cvpr_2015/html/Huang_Single_Image_Super-Resolution_2015_CVPR_paper.html,CVPR,2015,https://github.com/jbhuang0604/SelfExSR,289,1/2/2019
+Adversarially Regularized Autoencoders,http://proceedings.mlr.press/v80/zhao18b.html,ICML,2018,https://github.com/jakezhaojb/ARAE,282,1/2/2019
+DeepBach: a Steerable Model for Bach Chorales Generation,http://proceedings.mlr.press/v70/hadjeres17a.html,ICML,2017,https://github.com/Ghadjeres/DeepBach,276,1/2/2019
+Age Progression/Regression by Conditional Adversarial Autoencoder,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Age_ProgressionRegression_by_CVPR_2017_paper.html,CVPR,2017,https://github.com/ZZUTK/Face-Aging-CAAE,297,1/2/2019
+Style Transfer from Non-Parallel Text by Cross-Alignment,http://papers.nips.cc/paper/7259-style-transfer-from-non-parallel-text-by-cross-alignment.pdf,NIPS,2017,https://github.com/shentianxiao/language-style-transfer,296,1/2/2019
+Self-Critical Sequence Training for Image Captioning,http://openaccess.thecvf.com/content_cvpr_2017/html/Rennie_Self-Critical_Sequence_Training_CVPR_2017_paper.html,CVPR,2017,https://github.com/ruotianluo/self-critical.pytorch,299,1/2/2019
+License Plate Detection and Recognition in Unconstrained Scenarios,http://openaccess.thecvf.com/content_ECCV_2018/html/Sergio_Silva_License_Plate_Detection_ECCV_2018_paper.html,ECCV,2018,https://github.com/sergiomsilva/alpr-unconstrained,326,1/2/2019
+Supervision-by-Registration: An Unsupervised Approach to Improve the Precision of Facial Landmark Detectors,http://openaccess.thecvf.com/content_cvpr_2018/papers/Dong_Supervision-by-Registration_An_Unsupervised_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/facebookresearch/supervision-by-registration,326,1/2/2019
+Supervising Unsupervised Learning,http://arxiv.org/abs/1709.05262v2,NIPS,2018,https://github.com/quinnliu/machineLearning,262,1/2/2019
+Pyramid Stereo Matching Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chang_Pyramid_Stereo_Matching_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/JiaRenChang/PSMNet,335,1/2/2019
+Convolutional Neural Networks With Alternately Updated Clique,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_Convolutional_Neural_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/iboing/CliqueNet,272,1/2/2019
+Lifting From the Deep: Convolutional 3D Pose Estimation From a Single Image,http://openaccess.thecvf.com/content_cvpr_2017/html/Tome_Lifting_From_the_CVPR_2017_paper.html,CVPR,2017,https://github.com/DenisTome/Lifting-from-the-Deep-release,280,1/2/2019
+Deep Photo Enhancer: Unpaired Learning for Image Enhancement From Photographs With GANs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Deep_Photo_Enhancer_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/nothinglo/Deep-Photo-Enhancer,294,1/2/2019
+Neural Relational Inference for Interacting Systems,http://proceedings.mlr.press/v80/kipf18a.html,ICML,2018,https://github.com/ethanfetaya/NRI,289,1/2/2019
+Learning to Adapt Structured Output Space for Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tsai_Learning_to_Adapt_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/wasidennis/AdaptSegNet,280,1/2/2019
+Richer Convolutional Features for Edge Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Liu_Richer_Convolutional_Features_CVPR_2017_paper.html,CVPR,2017,https://github.com/yun-liu/rcf,399,1/2/2019
+OptNet: Differentiable Optimization as a Layer in Neural Networks,http://proceedings.mlr.press/v70/amos17a.html,ICML,2017,https://github.com/locuslab/optnet,245,1/2/2019
+Deep Metric Learning via Lifted Structured Feature Embedding,http://openaccess.thecvf.com/content_cvpr_2016/html/Song_Deep_Metric_Learning_CVPR_2016_paper.html,CVPR,2016,https://github.com/rksltnl/Deep-Metric-Learning-CVPR16,251,1/2/2019
+Sequence to Sequence - Video to Text,http://openaccess.thecvf.com/content_iccv_2015/html/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.html,ICCV,2015,https://github.com/jazzsaxmafia/video_to_sequence,239,1/2/2019
+An intriguing failing of convolutional neural networks and the CoordConv solution,https://arxiv.org/abs/1807.03247,NIPS,2018,https://github.com/mkocabas/CoordConv-pytorch,249,1/2/2019
+Deep Voice: Real-time Neural Text-to-Speech,http://proceedings.mlr.press/v70/arik17a.html,ICML,2017,https://github.com/israelg99/deepvoice,242,1/2/2019
+Convolutional Sequence to Sequence Learning,http://proceedings.mlr.press/v70/gehring17a.html,ICML,2017,https://github.com/tobyyouup/conv_seq2seq,258,1/2/2019
+Learning to Segment Every Thing,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Learning_to_Segment_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ronghanghu/seg_every_thing,269,1/2/2019
+LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hui_LiteFlowNet_A_Lightweight_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/twhui/LiteFlowNet,261,1/2/2019
+End-to-End Learning of Motion Representation for Video Understanding,http://openaccess.thecvf.com/content_cvpr_2018/papers/Fan_End-to-End_Learning_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/LijieFan/tvnet,238,1/2/2019
+Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images,http://openaccess.thecvf.com/content_ECCV_2018/html/Nanyang_Wang_Pixel2Mesh_Generating_3D_ECCV_2018_paper.html,ECCV,2018,https://github.com/nywang16/Pixel2Mesh,323,1/2/2019
+Bilinear Attention Networks,http://arxiv.org/abs/1805.07932v1,NIPS,2018,https://github.com/jnhwkim/ban-vqa,258,1/2/2019
+Semi-Parametric Image Synthesis,http://openaccess.thecvf.com/content_cvpr_2018/papers/Qi_Semi-Parametric_Image_Synthesis_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/xjqicuhk/SIMS,226,1/2/2019
+Iterative Visual Reasoning Beyond Convolutions,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Iterative_Visual_Reasoning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/endernewton/iter-reason,228,1/2/2019
+Learning Deep Representations of Fine-Grained Visual Descriptions,http://openaccess.thecvf.com/content_cvpr_2016/html/Reed_Learning_Deep_Representations_CVPR_2016_paper.html,CVPR,2016,https://github.com/reedscot/cvpr2016,229,1/2/2019
+Reinforcement Learning with Deep Energy-Based Policies,http://proceedings.mlr.press/v70/haarnoja17a.html,ICML,2017,https://github.com/haarnoja/softqlearning,233,1/2/2019
+Stacked Generative Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Stacked_Generative_Adversarial_CVPR_2017_paper.html,CVPR,2017,https://github.com/xunhuang1995/SGAN,215,1/2/2019
+Knowing When to Look: Adaptive Attention via a Visual Sentinel for Image Captioning,http://openaccess.thecvf.com/content_cvpr_2017/html/Lu_Knowing_When_to_CVPR_2017_paper.html,CVPR,2017,https://github.com/jiasenlu/AdaptiveAttention,214,1/2/2019
+RMPE: Regional Multi-Person Pose Estimation,http://openaccess.thecvf.com/content_iccv_2017/html/Fang_RMPE_Regional_Multi-Person_ICCV_2017_paper.html,ICCV,2017,https://github.com/MVIG-SJTU/RMPE,215,1/2/2019
+BlitzNet: A Real-Time Deep Network for Scene Understanding,http://openaccess.thecvf.com/content_iccv_2017/html/Dvornik_BlitzNet_A_Real-Time_ICCV_2017_paper.html,ICCV,2017,https://github.com/dvornikita/blitznet,227,1/2/2019
+A Style-Aware Content Loss for Real-time HD Style Transfer,http://openaccess.thecvf.com/content_ECCV_2018/html/Artsiom_Sanakoyeu_A_Style-aware_Content_ECCV_2018_paper.html,ECCV,2018,https://github.com/CompVis/adaptive-style-transfer,349,1/2/2019
+Language Modeling with Gated Convolutional Networks,http://proceedings.mlr.press/v70/dauphin17a.html,ICML,2017,https://github.com/anantzoid/Language-Modeling-GatedCNN,221,1/2/2019
+A Point Set Generation Network for 3D Object Reconstruction From a Single Image,http://openaccess.thecvf.com/content_cvpr_2017/html/Fan_A_Point_Set_CVPR_2017_paper.html,CVPR,2017,https://github.com/fanhqme/PointSetGeneration,228,1/2/2019
+Spatially Adaptive Computation Time for Residual Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Figurnov_Spatially_Adaptive_Computation_CVPR_2017_paper.html,CVPR,2017,https://github.com/mfigurnov/sact,203,1/2/2019
+Prototypical Networks for Few-shot Learning,http://papers.nips.cc/paper/6996-prototypical-networks-for-few-shot-learning.pdf,NIPS,2017,https://github.com/jakesnell/prototypical-networks,244,1/2/2019
+Unlabeled Samples Generated by GAN Improve the Person Re-Identification Baseline in Vitro,http://openaccess.thecvf.com/content_iccv_2017/html/Zheng_Unlabeled_Samples_Generated_ICCV_2017_paper.html,ICCV,2017,https://github.com/layumi/Person-reID_GAN,215,1/2/2019
+The Reversible Residual Network: Backpropagation Without Storing Activations,http://papers.nips.cc/paper/6816-the-reversible-residual-network-backpropagation-without-storing-activations.pdf,NIPS,2017,https://github.com/renmengye/revnet-public,210,1/2/2019
+Style Aggregated Network for Facial Landmark Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Dong_Style_Aggregated_Network_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/D-X-Y/SAN,223,1/2/2019
+Generative Face Completion,http://openaccess.thecvf.com/content_cvpr_2017/html/Li_Generative_Face_Completion_CVPR_2017_paper.html,CVPR,2017,https://github.com/Yijunmaverick/GenerativeFaceCompletion,212,1/2/2019
+Eye Tracking for Everyone,http://openaccess.thecvf.com/content_cvpr_2016/html/Krafka_Eye_Tracking_for_CVPR_2016_paper.html,CVPR,2016,https://github.com/CSAILVision/GazeCapture,223,1/2/2019
+Deeply Supervised Salient Object Detection With Short Connections,http://openaccess.thecvf.com/content_cvpr_2017/html/Hou_Deeply_Supervised_Salient_CVPR_2017_paper.html,CVPR,2017,https://github.com/Joker316701882/Salient-Object-Detection,228,1/2/2019
+Recurrent Scale Approximation for Object Detection in CNN,http://openaccess.thecvf.com/content_iccv_2017/html/Liu_Recurrent_Scale_Approximation_ICCV_2017_paper.html,ICCV,2017,https://github.com/sciencefans/RSA-for-object-detection,209,1/2/2019
+Pose-Robust Face Recognition via Deep Residual Equivariant Mapping,http://openaccess.thecvf.com/content_cvpr_2018/papers/Cao_Pose-Robust_Face_Recognition_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/penincillin/DREAM,220,1/2/2019
+Clothing Co-Parsing by Joint Image Segmentation and Labeling,http://openaccess.thecvf.com/content_cvpr_2014/html/Yang_Clothing_Co-Parsing_by_2014_CVPR_paper.html,CVPR,2014,https://github.com/bearpaw/clothing-co-parsing,218,1/2/2019
+Visual Dialog,http://openaccess.thecvf.com/content_cvpr_2017/html/Das_Visual_Dialog_CVPR_2017_paper.html,CVPR,2017,https://github.com/batra-mlp-lab/visdial,199,1/2/2019
+GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models,http://proceedings.mlr.press/v80/you18a.html,ICML,2018,https://github.com/JiaxuanYou/graph-generation,214,1/2/2019
+Referring Relationships,http://openaccess.thecvf.com/content_cvpr_2018/papers/Krishna_Referring_Relationships_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/StanfordVL/ReferringRelationships,210,1/2/2019
+Deep Neural Decision Forests,http://openaccess.thecvf.com/content_iccv_2015/html/Kontschieder_Deep_Neural_Decision_ICCV_2015_paper.html,ICCV,2015,https://github.com/chrischoy/fully-differentiable-deep-ndf-tf,192,1/2/2019
+MoCoGAN: Decomposing Motion and Content for Video Generation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tulyakov_MoCoGAN_Decomposing_Motion_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/sergeytulyakov/mocogan,205,1/2/2019
+FastMask: Segment Multi-Scale Object Candidates in One Shot,http://openaccess.thecvf.com/content_cvpr_2017/html/Hu_FastMask_Segment_Multi-Scale_CVPR_2017_paper.html,CVPR,2017,https://github.com/voidrank/FastMask,189,1/2/2019
+Compressed Video Action Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Compressed_Video_Action_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/chaoyuaw/pytorch-coviar,225,1/2/2019
+VPGNet: Vanishing Point Guided Network for Lane and Road Marking Detection and Recognition,http://openaccess.thecvf.com/content_iccv_2017/html/Lee_VPGNet_Vanishing_Point_ICCV_2017_paper.html,ICCV,2017,https://github.com/SeokjuLee/VPGNet,210,1/2/2019
+Learning Deep CNN Denoiser Prior for Image Restoration,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Learning_Deep_CNN_CVPR_2017_paper.html,CVPR,2017,https://github.com/cszn/IRCNN,231,1/2/2019
+LayoutNet: Reconstructing the 3D Room Layout From a Single RGB Image,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zou_LayoutNet_Reconstructing_the_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zouchuhang/LayoutNet,202,1/2/2019
+Hierarchical Convolutional Features for Visual Tracking,http://openaccess.thecvf.com/content_iccv_2015/html/Ma_Hierarchical_Convolutional_Features_ICCV_2015_paper.html,ICCV,2015,https://github.com/jbhuang0604/CF2,179,1/2/2019
+ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation,http://openaccess.thecvf.com/content_ECCV_2018/html/Sachin_Mehta_ESPNet_Efficient_Spatial_ECCV_2018_paper.html,ECCV,2018,https://github.com/sacmehta/ESPNet,254,1/2/2019
+Interpretable Explanations of Black Boxes by Meaningful Perturbation,http://openaccess.thecvf.com/content_iccv_2017/html/Fong_Interpretable_Explanations_of_ICCV_2017_paper.html,ICCV,2017,https://github.com/jacobgil/pytorch-explain-black-box,192,1/2/2019
+NetVLAD: CNN Architecture for Weakly Supervised Place Recognition,http://openaccess.thecvf.com/content_cvpr_2016/html/Arandjelovic_NetVLAD_CNN_Architecture_CVPR_2016_paper.html,CVPR,2016,https://github.com/Relja/netvlad,204,1/2/2019
+Semantic Scene Completion From a Single Depth Image,http://openaccess.thecvf.com/content_cvpr_2017/html/Song_Semantic_Scene_Completion_CVPR_2017_paper.html,CVPR,2017,https://github.com/shurans/sscnet,188,1/2/2019
+Deep Colorization,http://openaccess.thecvf.com/content_iccv_2015/html/Cheng_Deep_Colorization_ICCV_2015_paper.html,ICCV,2015,https://github.com/richzhang/colorization-pytorch,198,1/2/2019
+Multiscale Combinatorial Grouping,http://openaccess.thecvf.com/content_cvpr_2014/html/Arbelaez_Multiscale_Combinatorial_Grouping_2014_CVPR_paper.html,CVPR,2014,https://github.com/jponttuset/mcg,185,1/2/2019
+Latent Alignment and Variational Attention,http://arxiv.org/abs/1807.03756v1,NIPS,2018,https://github.com/harvardnlp/var-attn,204,1/2/2019
+Inverse Compositional Spatial Transformer Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Lin_Inverse_Compositional_Spatial_CVPR_2017_paper.html,CVPR,2017,https://github.com/chenhsuanlin/inverse-compositional-STN,189,1/2/2019
+Learning From Synthetic Humans,http://openaccess.thecvf.com/content_cvpr_2017/html/Varol_Learning_From_Synthetic_CVPR_2017_paper.html,CVPR,2017,https://github.com/gulvarol/surreal,207,1/2/2019
+Joint Unsupervised Learning of Deep Representations and Image Clusters,http://openaccess.thecvf.com/content_cvpr_2016/html/Yang_Joint_Unsupervised_Learning_CVPR_2016_paper.html,CVPR,2016,https://github.com/jwyang/JULE.torch,182,1/2/2019
+Multi-Content GAN for Few-Shot Font Style Transfer,http://openaccess.thecvf.com/content_cvpr_2018/papers/Azadi_Multi-Content_GAN_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/azadis/MC-GAN,218,1/2/2019
+Staple: Complementary Learners for Real-Time Tracking,http://openaccess.thecvf.com/content_cvpr_2016/html/Bertinetto_Staple_Complementary_Learners_CVPR_2016_paper.html,CVPR,2016,https://github.com/bertinetto/staple,183,1/2/2019
+Learning Feature Pyramids for Human Pose Estimation,http://openaccess.thecvf.com/content_iccv_2017/html/Yang_Learning_Feature_Pyramids_ICCV_2017_paper.html,ICCV,2017,https://github.com/bearpaw/PyraNet,185,1/2/2019
+Be Your Own Prada: Fashion Synthesis With Structural Coherence,http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Be_Your_Own_ICCV_2017_paper.html,ICCV,2017,https://github.com/zhusz/ICCV17-fashionGAN,183,1/2/2019
+3D Bounding Box Estimation Using Deep Learning and Geometry,http://openaccess.thecvf.com/content_cvpr_2017/html/Mousavian_3D_Bounding_Box_CVPR_2017_paper.html,CVPR,2017,https://github.com/smallcorgi/3D-Deepbox,200,1/2/2019
+OnACID: Online Analysis of Calcium Imaging Data in Real Time,http://papers.nips.cc/paper/6832-onacid-online-analysis-of-calcium-imaging-data-in-real-time.pdf,NIPS,2017,https://github.com/simonsfoundation/caiman,189,1/2/2019
+Learning to Reason: End-To-End Module Networks for Visual Question Answering,http://openaccess.thecvf.com/content_iccv_2017/html/Hu_Learning_to_Reason_ICCV_2017_paper.html,ICCV,2017,https://github.com/ronghanghu/n2nmn,178,1/2/2019
+SPLATNet: Sparse Lattice Networks for Point Cloud Processing,http://openaccess.thecvf.com/content_cvpr_2018/papers/Su_SPLATNet_Sparse_Lattice_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/NVlabs/splatnet,188,1/2/2019
+Accurate Image Super-Resolution Using Very Deep Convolutional Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Kim_Accurate_Image_Super-Resolution_CVPR_2016_paper.html,CVPR,2016,https://github.com/Jongchan/tensorflow-vdsr,182,1/2/2019
+Multi-View 3D Object Detection Network for Autonomous Driving,http://openaccess.thecvf.com/content_cvpr_2017/html/Chen_Multi-View_3D_Object_CVPR_2017_paper.html,CVPR,2017,https://github.com/bostondiditeam/MV3D,199,1/2/2019
+Binarized Convolutional Landmark Localizers for Human Pose Estimation and Face Alignment With Limited Resources,http://openaccess.thecvf.com/content_iccv_2017/html/Bulat_Binarized_Convolutional_Landmark_ICCV_2017_paper.html,ICCV,2017,https://github.com/1adrianb/binary-human-pose-estimation,175,1/2/2019
+Learning Efficient Convolutional Networks Through Network Slimming,http://openaccess.thecvf.com/content_iccv_2017/html/Liu_Learning_Efficient_Convolutional_ICCV_2017_paper.html,ICCV,2017,https://github.com/liuzhuang13/slimming,186,1/2/2019
+Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis,http://openaccess.thecvf.com/content_iccv_2017/html/Huang_Beyond_Face_Rotation_ICCV_2017_paper.html,ICCV,2017,https://github.com/HRLTY/TP-GAN,202,1/2/2019
+GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium,http://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium.pdf,NIPS,2017,https://github.com/bioinf-jku/TTUR,229,1/2/2019
+Render for CNN: Viewpoint Estimation in Images Using CNNs Trained With Rendered 3D Model Views,http://openaccess.thecvf.com/content_iccv_2015/html/Su_Render_for_CNN_ICCV_2015_paper.html,ICCV,2015,https://github.com/ShapeNet/RenderForCNN,176,1/2/2019
+Realtime Edge-Based Visual Odometry for a Monocular Camera,http://openaccess.thecvf.com/content_iccv_2015/html/Tarrio_Realtime_Edge-Based_Visual_ICCV_2015_paper.html,ICCV,2015,https://github.com/JuanTarrio/rebvo,175,1/2/2019
+Fast Image Processing With Fully-Convolutional Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Chen_Fast_Image_Processing_ICCV_2017_paper.html,ICCV,2017,https://github.com/CQFIO/FastImageProcessing,180,1/2/2019
+Temporal Action Localization in Untrimmed Videos via Multi-Stage CNNs,http://openaccess.thecvf.com/content_cvpr_2016/html/Shou_Temporal_Action_Localization_CVPR_2016_paper.html,CVPR,2016,https://github.com/zhengshou/scnn,167,1/2/2019
+Scene Graph Generation by Iterative Message Passing,http://openaccess.thecvf.com/content_cvpr_2017/html/Xu_Scene_Graph_Generation_CVPR_2017_paper.html,CVPR,2017,https://github.com/danfeiX/scene-graph-TF-release,182,1/2/2019
+Attentive Generative Adversarial Network for Raindrop Removal From a Single Image,http://openaccess.thecvf.com/content_cvpr_2018/papers/Qian_Attentive_Generative_Adversarial_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/rui1996/DeRaindrop,186,1/2/2019
+Single View Stereo Matching,http://openaccess.thecvf.com/content_cvpr_2018/papers/Luo_Single_View_Stereo_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/lawy623/SVS,182,1/2/2019
+Unsupervised Feature Learning via Non-Parametric Instance Discrimination,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Unsupervised_Feature_Learning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zhirongw/lemniscate.pytorch,180,1/2/2019
+An End-to-End TextSpotter With Explicit Alignment and Attention,http://openaccess.thecvf.com/content_cvpr_2018/papers/He_An_End-to-End_TextSpotter_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/tonghe90/textspotter,195,1/2/2019
+Single Shot Text Detector With Regional Attention,http://openaccess.thecvf.com/content_iccv_2017/html/He_Single_Shot_Text_ICCV_2017_paper.html,ICCV,2017,https://github.com/BestSonny/SSTD,176,1/2/2019
+Social GAN: Socially Acceptable Trajectories With Generative Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Gupta_Social_GAN_Socially_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/agrimgupta92/sgan,178,1/2/2019
+LocNet: Improving Localization Accuracy for Object Detection,http://openaccess.thecvf.com/content_cvpr_2016/html/Gidaris_LocNet_Improving_Localization_CVPR_2016_paper.html,CVPR,2016,https://github.com/gidariss/LocNet,155,1/2/2019
+ST-GAN: Spatial Transformer Generative Adversarial Networks for Image Compositing,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lin_ST-GAN_Spatial_Transformer_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/chenhsuanlin/spatial-transformer-GAN,179,1/2/2019
+Image Super-Resolution via Deep Recursive Residual Network,http://openaccess.thecvf.com/content_cvpr_2017/html/Tai_Image_Super-Resolution_via_CVPR_2017_paper.html,CVPR,2017,https://github.com/tyshiwo/DRRN_CVPR17,163,1/2/2019
+Input Convex Neural Networks,http://proceedings.mlr.press/v70/amos17b.html,ICML,2017,https://github.com/locuslab/icnn,159,1/2/2019
+Understanding Deep Image Representations by Inverting Them,http://openaccess.thecvf.com/content_cvpr_2015/html/Mahendran_Understanding_Deep_Image_2015_CVPR_paper.html,CVPR,2015,https://github.com/aravindhm/deep-goggle,154,1/2/2019
+Evolved Policy Gradients,http://arxiv.org/abs/1802.04821v2,NIPS,2018,https://github.com/openai/EPG,160,1/2/2019
+Oriented Response Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhou_Oriented_Response_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/ZhouYanzhao/ORN,157,1/2/2019
+Large-Scale Point Cloud Semantic Segmentation With Superpoint Graphs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Landrieu_Large-Scale_Point_Cloud_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/loicland/superpoint_graph,197,1/2/2019
+Optimizing Video Object Detection via a Scale-Time Lattice,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Optimizing_Video_Object_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/hellock/scale-time-lattice,168,1/2/2019
+Learning Multiple Tasks with Multilinear Relationship Networks,http://papers.nips.cc/paper/6757-learning-multiple-tasks-with-multilinear-relationship-networks.pdf,NIPS,2017,https://github.com/thuml/Xlearn,178,1/2/2019
+Face Alignment at 3000 FPS via Regressing Local Binary Features,http://openaccess.thecvf.com/content_cvpr_2014/html/Ren_Face_Alignment_at_2014_CVPR_paper.html,CVPR,2014,https://github.com/luoyetx/face-alignment-at-3000fps,164,1/2/2019
+Learning Cross-Modal Embeddings for Cooking Recipes and Food Images,http://openaccess.thecvf.com/content_cvpr_2017/html/Salvador_Learning_Cross-Modal_Embeddings_CVPR_2017_paper.html,CVPR,2017,https://github.com/torralba-lab/im2recipe,160,1/2/2019
+Learning Category-Specific Mesh Reconstruction from Image Collections,http://openaccess.thecvf.com/content_ECCV_2018/html/Angjoo_Kanazawa_Learning_Category-Specific_Mesh_ECCV_2018_paper.html,ECCV,2018,https://github.com/akanazawa/cmr,176,1/2/2019
+Group Normalization,http://openaccess.thecvf.com/content_ECCV_2018/html/Yuxin_Wu_Group_Normalization_ECCV_2018_paper.html,ECCV,2018,https://github.com/shaohua0116/Group-Normalization-Tensorflow,175,1/2/2019
+On Human Motion Prediction Using Recurrent Neural Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Martinez_On_Human_Motion_CVPR_2017_paper.html,CVPR,2017,https://github.com/una-dinosauria/human-motion-prediction,167,1/2/2019
+Language Modeling with Recurrent Highway Hypernetworks,http://papers.nips.cc/paper/6919-language-modeling-with-recurrent-highway-hypernetworks.pdf,NIPS,2017,https://github.com/jsuarez5341/Recurrent-Highway-Hypernetworks-NIPS,141,1/2/2019
+Context-Aware CNNs for Person Head Detection,http://openaccess.thecvf.com/content_iccv_2015/html/Vu_Context-Aware_CNNs_for_ICCV_2015_paper.html,ICCV,2015,https://github.com/aosokin/cnn_head_detection,153,1/2/2019
+Soft Proposal Networks for Weakly Supervised Object Localization,http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Soft_Proposal_Networks_ICCV_2017_paper.html,ICCV,2017,https://github.com/yeezhu/SPN.pytorch,154,1/2/2019
+DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kupyn_DeblurGAN_Blind_Motion_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/RaphaelMeudec/deblur-gan,189,1/2/2019
+MegaDepth: Learning Single-View Depth Prediction From Internet Photos,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_MegaDepth_Learning_Single-View_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/lixx2938/MegaDepth,181,1/2/2019
+Shallow and Deep Convolutional Networks for Saliency Prediction,http://openaccess.thecvf.com/content_cvpr_2016/html/Pan_Shallow_and_Deep_CVPR_2016_paper.html,CVPR,2016,https://github.com/imatge-upc/saliency-2016-cvpr,153,1/2/2019
+ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/camel007/Caffe-ShuffleNet,152,1/2/2019
+Axiomatic Attribution for Deep Networks,http://proceedings.mlr.press/v70/sundararajan17a.html,ICML,2017,https://github.com/hiranumn/IntegratedGradients,146,1/2/2019
+Compact Bilinear Pooling,http://openaccess.thecvf.com/content_cvpr_2016/html/Gao_Compact_Bilinear_Pooling_CVPR_2016_paper.html,CVPR,2016,https://github.com/gy20073/compact_bilinear_pooling,148,1/2/2019
+Simple Does It: Weakly Supervised Instance and Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/html/Khoreva_Simple_Does_It_CVPR_2017_paper.html,CVPR,2017,https://github.com/philferriere/tfwss,159,1/2/2019
+Low-Shot Visual Recognition by Shrinking and Hallucinating Features,http://openaccess.thecvf.com/content_iccv_2017/html/Hariharan_Low-Shot_Visual_Recognition_ICCV_2017_paper.html,ICCV,2017,https://github.com/facebookresearch/low-shot-shrink-hallucinate,158,1/2/2019
+BSN: Boundary Sensitive Network for Temporal Action Proposal Generation,http://openaccess.thecvf.com/content_ECCV_2018/html/Tianwei_Lin_BSN_Boundary_Sensitive_ECCV_2018_paper.html,ECCV,2018,https://github.com/wzmsltw/BSN-boundary-sensitive-network,175,1/2/2019
+Deep Feature Interpolation for Image Content Changes,http://openaccess.thecvf.com/content_cvpr_2017/html/Upchurch_Deep_Feature_Interpolation_CVPR_2017_paper.html,CVPR,2017,https://github.com/paulu/deepfeatinterp,170,1/2/2019
+Deep Clustering for Unsupervised Learning of Visual Features,http://openaccess.thecvf.com/content_ECCV_2018/html/Mathilde_Caron_Deep_Clustering_for_ECCV_2018_paper.html,ECCV,2018,https://github.com/facebookresearch/deepcluster,302,1/2/2019
+Learning a Single Convolutional Super-Resolution Network for Multiple Degradations,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Learning_a_Single_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/cszn/SRMD,169,1/2/2019
+Facelet-Bank for Fast Portrait Manipulation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Facelet-Bank_for_Fast_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yingcong/Facelet_Bank,150,1/2/2019
+Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning,http://papers.nips.cc/paper/6974-interpolated-policy-gradient-merging-on-policy-and-off-policy-gradient-estimation-for-deep-reinforcement-learning.pdf,NIPS,2017,https://github.com/shaneshixiang/rllabplusplus,138,1/2/2019
+Learning Compact Binary Descriptors With Unsupervised Deep Neural Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Lin_Learning_Compact_Binary_CVPR_2016_paper.html,CVPR,2016,https://github.com/kevinlin311tw/cvpr16-deepbit,144,1/2/2019
+Image Super-Resolution Using Very Deep Residual Channel Attention Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Yulun_Zhang_Image_Super-Resolution_Using_ECCV_2018_paper.html,ECCV,2018,https://github.com/yulunzhang/RCAN,234,1/2/2019
+ECO: Efficient Convolutional Network for Online Video Understanding,http://openaccess.thecvf.com/content_ECCV_2018/html/Mohammadreza_Zolfaghari_ECO_Efficient_Convolutional_ECCV_2018_paper.html,ECCV,2018,https://github.com/mzolfaghari/ECO-efficient-video-understanding,180,1/2/2019
+PlaneNet: Piece-Wise Planar Reconstruction From a Single RGB Image,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_PlaneNet_Piece-Wise_Planar_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/art-programmer/PlaneNet,164,1/2/2019
+Self-Imitation Learning,http://proceedings.mlr.press/v80/oh18b.html,ICML,2018,https://github.com/junhyukoh/self-imitation-learning,145,1/2/2019
+Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks,http://proceedings.mlr.press/v70/mescheder17a.html,ICML,2017,https://github.com/LMescheder/AdversarialVariationalBayes,147,1/2/2019
+Residual Dense Network for Image Super-Resolution,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Residual_Dense_Network_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yulunzhang/RDN,163,1/2/2019
+Attend to You: Personalized Image Captioning With Context Sequence Memory Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Park_Attend_to_You_CVPR_2017_paper.html,CVPR,2017,https://github.com/cesc-park/attend2u,143,1/2/2019
+Face Alignment by Coarse-to-Fine Shape Searching,http://openaccess.thecvf.com/content_cvpr_2015/html/Zhu_Face_Alignment_by_2015_CVPR_paper.html,CVPR,2015,https://github.com/zhusz/CVPR15-CFSS,140,1/2/2019
+Triple Generative Adversarial Nets,http://papers.nips.cc/paper/6997-triple-generative-adversarial-nets.pdf,NIPS,2017,https://github.com/zhenxuan00/triple-gan,138,1/2/2019
+Embodied Question Answering,http://openaccess.thecvf.com/content_cvpr_2018/papers/Das_Embodied_Question_Answering_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/facebookresearch/EmbodiedQA,162,1/2/2019
+Conditional Similarity Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Veit_Conditional_Similarity_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/andreasveit/conditional-similarity-networks,142,1/2/2019
+Two-Stream Convolutional Networks for Dynamic Texture Synthesis,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tesfaldet_Two-Stream_Convolutional_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ryersonvisionlab/two-stream-dyntex-synth,141,1/2/2019
+Unsupervised Cross-Dataset Person Re-Identification by Transfer Learning of Spatial-Temporal Patterns,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lv_Unsupervised_Cross-Dataset_Person_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ahangchen/TFusion,166,1/2/2019
+Attentive Recurrent Comparators,http://proceedings.mlr.press/v70/shyam17a.html,ICML,2017,https://github.com/sanyam5/arc-pytorch,136,1/2/2019
+One-Sided Unsupervised Domain Mapping,http://papers.nips.cc/paper/6677-one-sided-unsupervised-domain-mapping.pdf,NIPS,2017,https://github.com/sagiebenaim/DistanceGAN,137,1/2/2019
+Densely Connected Pyramid Dehazing Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Densely_Connected_Pyramid_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/hezhangsprinter/DCPDN,155,1/2/2019
+Detecting Visual Relationships With Deep Relational Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Dai_Detecting_Visual_Relationships_CVPR_2017_paper.html,CVPR,2017,https://github.com/doubledaibo/drnet_cvpr2017,137,1/2/2019
+Rethinking the Inception Architecture for Computer Vision,http://openaccess.thecvf.com/content_cvpr_2016/html/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.html,CVPR,2016,https://github.com/Moodstocks/inception-v3.torch,130,1/2/2019
+Show and Tell: A Neural Image Caption Generator,http://openaccess.thecvf.com/content_cvpr_2015/html/Vinyals_Show_and_Tell_2015_CVPR_paper.html,CVPR,2015,https://github.com/KranthiGV/Pretrained-Show-and-Tell-model,141,1/2/2019
+Camera Style Adaptation for Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhong_Camera_Style_Adaptation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zhunzhong07/CamStyle,159,1/2/2019
+Neural Motifs: Scene Graph Parsing With Global Context,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zellers_Neural_Motifs_Scene_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/rowanz/neural-motifs,171,1/2/2019
+Gradient Episodic Memory for Continual Learning,http://papers.nips.cc/paper/7225-gradient-episodic-memory-for-continual-learning.pdf,NIPS,2017,https://github.com/facebookresearch/GradientEpisodicMemory,146,1/2/2019
+CREST: Convolutional Residual Learning for Visual Tracking,http://openaccess.thecvf.com/content_iccv_2017/html/Song_CREST_Convolutional_Residual_ICCV_2017_paper.html,ICCV,2017,https://github.com/ybsong00/CREST-Release,126,1/2/2019
+Weakly and Semi Supervised Human Body Part Parsing via Pose-Guided Knowledge Transfer,http://openaccess.thecvf.com/content_cvpr_2018/papers/Fang_Weakly_and_Semi_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/MVIG-SJTU/WSHP,159,1/2/2019
+Controlling Perceptual Factors in Neural Style Transfer,http://openaccess.thecvf.com/content_cvpr_2017/html/Gatys_Controlling_Perceptual_Factors_CVPR_2017_paper.html,CVPR,2017,https://github.com/leongatys/NeuralImageSynthesis,130,1/2/2019
+LSTM Pose Machines,http://openaccess.thecvf.com/content_cvpr_2018/papers/Luo_LSTM_Pose_Machines_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/lawy623/LSTM_Pose_Machines,141,1/2/2019
+Relational recurrent neural networks,https://arxiv.org/abs/1806.01822,NIPS,2018,https://github.com/L0SG/relational-rnn-pytorch,157,1/2/2019
+Multi-Context Attention for Human Pose Estimation,http://openaccess.thecvf.com/content_cvpr_2017/html/Chu_Multi-Context_Attention_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/bearpaw/pose-attention,131,1/2/2019
+SO-Net: Self-Organizing Network for Point Cloud Analysis,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_SO-Net_Self-Organizing_Network_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/lijx10/SO-Net,152,1/2/2019
+SegFlow: Joint Learning for Video Object Segmentation and Optical Flow,http://openaccess.thecvf.com/content_iccv_2017/html/Cheng_SegFlow_Joint_Learning_ICCV_2017_paper.html,ICCV,2017,https://github.com/JingchunCheng/SegFlow,127,1/2/2019
+Towards 3D Human Pose Estimation in the Wild: A Weakly-Supervised Approach,http://openaccess.thecvf.com/content_iccv_2017/html/Zhou_Towards_3D_Human_ICCV_2017_paper.html,ICCV,2017,https://github.com/xingyizhou/pose-hg-3d,136,1/2/2019
+Image-Image Domain Adaptation With Preserved Self-Similarity and Domain-Dissimilarity for Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2018/papers/Deng_Image-Image_Domain_Adaptation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Simon4Yan/Learning-via-Translation,137,1/2/2019
+An Improved Deep Learning Architecture for Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2015/html/Ahmed_An_Improved_Deep_2015_CVPR_paper.html,CVPR,2015,https://github.com/Ning-Ding/Implementation-CVPR2015-CNN-for-ReID,127,1/2/2019
+Context Embedding Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kim_Context_Embedding_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/thunlp/CANE,131,1/2/2019
+Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model,http://papers.nips.cc/paper/7145-deep-learning-for-precipitation-nowcasting-a-benchmark-and-a-new-model.pdf,NIPS,2017,https://github.com/sxjscience/HKO-7,134,1/2/2019
+Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images,http://openaccess.thecvf.com/content_cvpr_2016/html/Song_Deep_Sliding_Shapes_CVPR_2016_paper.html,CVPR,2016,https://github.com/shurans/DeepSlidingShape,126,1/2/2019
+DSAC - Differentiable RANSAC for Camera Localization,http://openaccess.thecvf.com/content_cvpr_2017/html/Brachmann_DSAC_-_Differentiable_CVPR_2017_paper.html,CVPR,2017,https://github.com/cvlab-dresden/DSAC,144,1/2/2019
+Learning a Multi-View Stereo Machine,http://papers.nips.cc/paper/6640-learning-a-multi-view-stereo-machine.pdf,NIPS,2017,https://github.com/akar43/lsm,135,1/2/2019
+Segmentation-Aware Convolutional Networks Using Local Attention Masks,http://openaccess.thecvf.com/content_iccv_2017/html/Harley_Segmentation-Aware_Convolutional_Networks_ICCV_2017_paper.html,ICCV,2017,https://github.com/aharley/segaware,126,1/2/2019
+Cross-Domain Weakly-Supervised Object Detection Through Progressive Domain Adaptation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Inoue_Cross-Domain_Weakly-Supervised_Object_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/naoto0804/cross-domain-detection,143,1/2/2019
+Bayesian Compression for Deep Learning,http://papers.nips.cc/paper/6921-bayesian-compression-for-deep-learning.pdf,NIPS,2017,https://github.com/KarenUllrich/Tutorial_BayesianCompressionForDL,130,1/2/2019
+Fast and Accurate Online Video Object Segmentation via Tracking Parts,http://openaccess.thecvf.com/content_cvpr_2018/papers/Cheng_Fast_and_Accurate_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/JingchunCheng/FAVOS,129,1/2/2019
+Learning to Compare: Relation Network for Few-Shot Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sung_Learning_to_Compare_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/lzrobots/LearningToCompare_ZSL,135,1/2/2019
+Dynamic Image Networks for Action Recognition,http://openaccess.thecvf.com/content_cvpr_2016/html/Bilen_Dynamic_Image_Networks_CVPR_2016_paper.html,CVPR,2016,https://github.com/hbilen/dynamic-image-nets,133,1/2/2019
+Context Encoders: Feature Learning by Inpainting,http://openaccess.thecvf.com/content_cvpr_2016/html/Pathak_Context_Encoders_Feature_CVPR_2016_paper.html,CVPR,2016,https://github.com/jazzsaxmafia/Inpainting,124,1/2/2019
+Weakly Supervised Instance Segmentation Using Class Peak Response,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhou_Weakly_Supervised_Instance_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ZhouYanzhao/PRM,166,1/2/2019
+MVSNet: Depth Inference for Unstructured Multi-view Stereo,http://openaccess.thecvf.com/content_ECCV_2018/html/Yao_Yao_MVSNet_Depth_Inference_ECCV_2018_paper.html,ECCV,2018,https://github.com/YoYo000/MVSNet,174,1/2/2019
+Recurrent Squeeze-and-Excitation Context Aggregation Net for Single Image Deraining,http://openaccess.thecvf.com/content_ECCV_2018/html/Xia_Li_Recurrent_Squeeze-and-Excitation_Context_ECCV_2018_paper.html,ECCV,2018,https://github.com/XiaLiPKU/RESCAN,142,1/2/2019
+L4: Practical loss-based stepsize adaptation for deep learning,http://arxiv.org/abs/1802.05074v4,NIPS,2018,https://github.com/martius-lab/l4-optimizer,123,1/2/2019
+Value Prediction Network,http://papers.nips.cc/paper/7192-value-prediction-network.pdf,NIPS,2017,https://github.com/junhyukoh/value-prediction-network,119,1/2/2019
+Structure Inference Net: Object Detection Using Scene-Level Context and Instance-Level Relationships,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Structure_Inference_Net_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/choasup/SIN,140,1/2/2019
+Hierarchical Attentive Recurrent Tracking,http://papers.nips.cc/paper/6898-hierarchical-attentive-recurrent-tracking.pdf,NIPS,2017,https://github.com/akosiorek/hart,121,1/2/2019
+A Closer Look at Spatiotemporal Convolutions for Action Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tran_A_Closer_Look_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/irhumshafkat/R2Plus1D-PyTorch,143,1/2/2019
+Discriminative Correlation Filter With Channel and Spatial Reliability,http://openaccess.thecvf.com/content_cvpr_2017/html/Lukezic_Discriminative_Correlation_Filter_CVPR_2017_paper.html,CVPR,2017,https://github.com/alanlukezic/csr-dcf,124,1/2/2019
+Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sun_Pix3D_Dataset_and_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/xingyuansun/pix3d,152,1/2/2019
+Unsupervised Learning of Monocular Depth Estimation and Visual Odometry With Deep Feature Reconstruction,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhan_Unsupervised_Learning_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Huangying-Zhan/Depth-VO-Feat,158,1/2/2019
+Learning by Association -- A Versatile Semi-Supervised Training Method for Neural Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Haeusser_Learning_by_Association_CVPR_2017_paper.html,CVPR,2017,https://github.com/haeusser/learning_by_association,119,1/2/2019
+Associative Domain Adaptation,http://openaccess.thecvf.com/content_iccv_2017/html/Haeusser_Associative_Domain_Adaptation_ICCV_2017_paper.html,ICCV,2017,https://github.com/haeusser/learning_by_association,119,1/2/2019
+Concrete Dropout,http://papers.nips.cc/paper/6949-concrete-dropout.pdf,NIPS,2017,https://github.com/yaringal/ConcreteDropout,127,1/2/2019
+SVDNet for Pedestrian Retrieval,http://openaccess.thecvf.com/content_iccv_2017/html/Sun_SVDNet_for_Pedestrian_ICCV_2017_paper.html,ICCV,2017,https://github.com/syfafterzy/SVDNet-for-Pedestrian-Retrieval,121,1/2/2019
+MultiPoseNet: Fast Multi-Person Pose Estimation using Pose Residual Network,http://openaccess.thecvf.com/content_ECCV_2018/html/Muhammed_Kocabas_MultiPoseNet_Fast_Multi-Person_ECCV_2018_paper.html,ECCV,2018,https://github.com/salihkaragoz/pose-residual-network-pytorch,167,1/2/2019
+Gated Path Planning Networks,http://proceedings.mlr.press/v80/lee18c.html,ICML,2018,https://github.com/lileee/gated-path-planning-networks,121,1/2/2019
+Semantic Image Synthesis via Adversarial Learning,http://openaccess.thecvf.com/content_iccv_2017/html/Dong_Semantic_Image_Synthesis_ICCV_2017_paper.html,ICCV,2017,https://github.com/woozzu/dong_iccv_2017,121,1/2/2019
+"Depth-Based Hand Pose Estimation: Data, Methods, and Challenges",http://openaccess.thecvf.com/content_iccv_2015/html/Supancic_Depth-Based_Hand_Pose_ICCV_2015_paper.html,ICCV,2015,https://github.com/jsupancic/deep_hand_pose,121,1/2/2019
+Deep Pyramidal Residual Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Han_Deep_Pyramidal_Residual_CVPR_2017_paper.html,CVPR,2017,https://github.com/jhkim89/PyramidNet,112,1/2/2019
+Spatiotemporal Multiplier Networks for Video Action Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Feichtenhofer_Spatiotemporal_Multiplier_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/feichtenhofer/st-resnet,121,1/2/2019
+PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Mallya_PackNet_Adding_Multiple_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/arunmallya/packnet,117,1/2/2019
+CosFace: Large Margin Cosine Loss for Deep Face Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_CosFace_Large_Margin_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yule-li/CosFace,135,1/2/2019
+Decoupled Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Decoupled_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/wy1iu/DCNets,105,1/2/2019
+Video Based Reconstruction of 3D People Models,http://openaccess.thecvf.com/content_cvpr_2018/papers/Alldieck_Video_Based_Reconstruction_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/thmoa/videoavatars,179,1/2/2019
+Good Semi-supervised Learning That Requires a Bad GAN,http://papers.nips.cc/paper/7229-good-semi-supervised-learning-that-requires-a-bad-gan.pdf,NIPS,2017,https://github.com/kimiyoung/ssl_bad_gan,120,1/2/2019
+DeepMVS: Learning Multi-View Stereopsis,http://openaccess.thecvf.com/content_cvpr_2018/papers/Huang_DeepMVS_Learning_Multi-View_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/phuang17/DeepMVS,125,1/2/2019
+Deep Watershed Transform for Instance Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/html/Bai_Deep_Watershed_Transform_CVPR_2017_paper.html,CVPR,2017,https://github.com/min2209/dwt,120,1/2/2019
+PoseTrack: Joint Multi-Person Pose Estimation and Tracking,http://openaccess.thecvf.com/content_cvpr_2017/html/Iqbal_PoseTrack_Joint_Multi-Person_CVPR_2017_paper.html,CVPR,2017,https://github.com/iqbalu/PoseTrack-CVPR2017,121,1/2/2019
+TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning,http://papers.nips.cc/paper/6749-terngrad-ternary-gradients-to-reduce-communication-in-distributed-deep-learning.pdf,NIPS,2017,https://github.com/wenwei202/terngrad,117,1/2/2019
+Adaptive Affinity Fields for Semantic Segmentation,http://openaccess.thecvf.com/content_ECCV_2018/html/Jyh-Jing_Hwang_Adaptive_Affinity_Field_ECCV_2018_paper.html,ECCV,2018,https://github.com/twke18/Adaptive_Affinity_Fields,141,1/2/2019
+"Show, Adapt and Tell: Adversarial Training of Cross-Domain Image Captioner",http://openaccess.thecvf.com/content_iccv_2017/html/Chen_Show_Adapt_and_ICCV_2017_paper.html,ICCV,2017,https://github.com/tsenghungchen/show-adapt-and-tell,115,1/2/2019
+Real-Time Seamless Single Shot 6D Object Pose Prediction,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tekin_Real-Time_Seamless_Single_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Microsoft/singleshotpose,174,1/2/2019
+Hierarchical Imitation and Reinforcement Learning,http://proceedings.mlr.press/v80/le18a.html,ICML,2018,https://github.com/hoangminhle/hierarchical_IL_RL,124,1/2/2019
+TI-Pooling: Transformation-Invariant Pooling for Feature Learning in Convolutional Neural Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Laptev_TI-Pooling_Transformation-Invariant_Pooling_CVPR_2016_paper.html,CVPR,2016,https://github.com/dlaptev/TI-pooling,109,1/2/2019
+Bayesian Optimization with Gradients,http://papers.nips.cc/paper/7111-bayesian-optimization-with-gradients.pdf,NIPS,2017,https://github.com/wujian16/Cornell-MOE,117,1/2/2019
+MemNet: A Persistent Memory Network for Image Restoration,http://openaccess.thecvf.com/content_iccv_2017/html/Tai_MemNet_A_Persistent_ICCV_2017_paper.html,ICCV,2017,https://github.com/tyshiwo/MemNet,119,1/2/2019
+Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Split-Brain_Autoencoders_Unsupervised_CVPR_2017_paper.html,CVPR,2017,https://github.com/richzhang/splitbrainauto,110,1/2/2019
+Long-term Tracking in the Wild: a Benchmark,http://openaccess.thecvf.com/content_ECCV_2018/html/Efstratios_Gavves_Long-term_Tracking_in_ECCV_2018_paper.html,ECCV,2018,https://github.com/oxuva/long-term-tracking-benchmark,116,1/2/2019
+Detail-Revealing Deep Video Super-Resolution,http://openaccess.thecvf.com/content_iccv_2017/html/Tao_Detail-Revealing_Deep_Video_ICCV_2017_paper.html,ICCV,2017,https://github.com/jiangsutx/SPMC_VideoSR,126,1/2/2019
+Realistic Evaluation of Deep Semi-Supervised Learning Algorithms,http://arxiv.org/abs/1804.09170v2,NIPS,2018,https://github.com/brain-research/realistic-ssl-evaluation,175,1/2/2019
+FaceNet: A Unified Embedding for Face Recognition and Clustering,http://openaccess.thecvf.com/content_cvpr_2015/html/Schroff_FaceNet_A_Unified_2015_CVPR_paper.html,CVPR,2015,https://github.com/liorshk/facenet_pytorch,124,1/2/2019
+Compressed Sensing using Generative Models,http://proceedings.mlr.press/v70/bora17a.html,ICML,2017,https://github.com/AshishBora/csgm,116,1/2/2019
+Unrestricted Facial Geometry Reconstruction Using Image-To-Image Translation,http://openaccess.thecvf.com/content_iccv_2017/html/Sela_Unrestricted_Facial_Geometry_ICCV_2017_paper.html,ICCV,2017,https://github.com/matansel/pix2vertex,119,1/2/2019
+Deep Back-Projection Networks for Super-Resolution,http://openaccess.thecvf.com/content_cvpr_2018/papers/Haris_Deep_Back-Projection_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/alterzero/DBPN-Pytorch,132,1/2/2019
+Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kendall_Multi-Task_Learning_Using_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/alexgkendall/multitaskvision,131,1/2/2019
+Deep Hyperspherical Learning,http://papers.nips.cc/paper/6984-deep-hyperspherical-learning.pdf,NIPS,2017,https://github.com/wy1iu/SphereNet,92,1/2/2019
+Recovering Realistic Texture in Image Super-Resolution by Deep Spatial Feature Transform,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Recovering_Realistic_Texture_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/xinntao/CVPR18-SFTGAN,139,1/2/2019
+Switching Convolutional Neural Network for Crowd Counting,http://openaccess.thecvf.com/content_cvpr_2017/html/Sam_Switching_Convolutional_Neural_CVPR_2017_paper.html,CVPR,2017,https://github.com/val-iisc/crowd-counting-scnn,116,1/2/2019
+3D-CODED: 3D Correspondences by Deep Deformation,http://openaccess.thecvf.com/content_ECCV_2018/html/Thibault_Groueix_Shape_correspondences_from_ECCV_2018_paper.html,ECCV,2018,https://github.com/ThibaultGROUEIX/3D-CODED,125,1/2/2019
+FeUdal Networks for Hierarchical Reinforcement Learning,http://proceedings.mlr.press/v70/vezhnevets17a.html,ICML,2017,https://github.com/dmakian/feudal_networks,107,1/2/2019
+PU-Net: Point Cloud Upsampling Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yu_PU-Net_Point_Cloud_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yulequan/PU-Net,117,1/2/2019
+Scale-Recurrent Network for Deep Image Deblurring,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tao_Scale-Recurrent_Network_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jiangsutx/SRN-Deblur,159,1/2/2019
+"WILDCAT: Weakly Supervised Learning of Deep ConvNets for Image Classification, Pointwise Localization and Segmentation",http://openaccess.thecvf.com/content_cvpr_2017/html/Durand_WILDCAT_Weakly_Supervised_CVPR_2017_paper.html,CVPR,2017,https://github.com/durandtibo/wildcat.pytorch,116,1/2/2019
+Noisy Natural Gradient as Variational Inference,http://proceedings.mlr.press/v80/zhang18l.html,ICML,2018,https://github.com/wlwkgus/NoisyNaturalGradient,108,1/2/2019
+Video Frame Synthesis Using Deep Voxel Flow,http://openaccess.thecvf.com/content_iccv_2017/html/Liu_Video_Frame_Synthesis_ICCV_2017_paper.html,ICCV,2017,https://github.com/liuziwei7/voxel-flow,114,1/2/2019
+Working hard to know your neighbor's margins: Local descriptor learning loss,http://papers.nips.cc/paper/7068-working-hard-to-know-your-neighbors-margins-local-descriptor-learning-loss.pdf,NIPS,2017,https://github.com/DagnyT/hardnet,128,1/2/2019
+Domain Adaptive Faster R-CNN for Object Detection in the Wild,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Domain_Adaptive_Faster_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yuhuayc/da-faster-rcnn,123,1/2/2019
+"Train longer, generalize better: closing the generalization gap in large batch training of neural networks",http://papers.nips.cc/paper/6770-train-longer-generalize-better-closing-the-generalization-gap-in-large-batch-training-of-neural-networks.pdf,NIPS,2017,https://github.com/eladhoffer/bigBatch,112,1/2/2019
+Natural Language Object Retrieval,http://openaccess.thecvf.com/content_cvpr_2016/html/Hu_Natural_Language_Object_CVPR_2016_paper.html,CVPR,2016,https://github.com/ronghanghu/natural-language-object-retrieval,100,1/2/2019
+Adversarial Discriminative Domain Adaptation,http://openaccess.thecvf.com/content_cvpr_2017/html/Tzeng_Adversarial_Discriminative_Domain_CVPR_2017_paper.html,CVPR,2017,https://github.com/corenel/pytorch-adda,129,1/2/2019
+Quantized Densely Connected U-Nets for Efficient Landmark Localization,http://openaccess.thecvf.com/content_ECCV_2018/html/Zhiqiang_Tang_Quantized_Densely_Connected_ECCV_2018_paper.html,ECCV,2018,https://github.com/zhiqiangdon/CU-Net,143,1/2/2019
+Rethinking Feature Distribution for Loss Functions in Image Classification,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wan_Rethinking_Feature_Distribution_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/WeitaoVan/L-GM-loss,120,1/2/2019
+DenseASPP for Semantic Segmentation in Street Scenes,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_DenseASPP_for_Semantic_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/DeepMotionAIResearch/DenseASPP,151,1/2/2019
+ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression,http://openaccess.thecvf.com/content_iccv_2017/html/Luo_ThiNet_A_Filter_ICCV_2017_paper.html,ICCV,2017,https://github.com/Roll920/ThiNet,105,1/2/2019
+Graph R-CNN for Scene Graph Generation,http://openaccess.thecvf.com/content_ECCV_2018/html/Jianwei_Yang_Graph_R-CNN_for_ECCV_2018_paper.html,ECCV,2018,https://github.com/jwyang/graph-rcnn.pytorch,144,1/2/2019
+"Factoring Shape, Pose, and Layout From the 2D Image of a 3D Scene",http://openaccess.thecvf.com/content_cvpr_2018/papers/Tulsiani_Factoring_Shape_Pose_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/shubhtuls/factored3d,114,1/2/2019
+Multi-View Supervision for Single-View Reconstruction via Differentiable Ray Consistency,http://openaccess.thecvf.com/content_cvpr_2017/html/Tulsiani_Multi-View_Supervision_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/shubhtuls/drc,100,1/2/2019
+Massively Parallel Multiview Stereopsis by Surface Normal Diffusion,http://openaccess.thecvf.com/content_iccv_2015/html/Galliani_Massively_Parallel_Multiview_ICCV_2015_paper.html,ICCV,2015,https://github.com/kysucix/gipuma,105,1/2/2019
+Deep Depth Completion of a Single RGB-D Image,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Deep_Depth_Completion_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yindaz/DeepCompletionRelease,134,1/2/2019
+Cross-Scale Cost Aggregation for Stereo Matching,http://openaccess.thecvf.com/content_cvpr_2014/html/Zhang_Cross-Scale_Cost_Aggregation_2014_CVPR_paper.html,CVPR,2014,https://github.com/rookiepig/CrossScaleStereo,106,1/2/2019
+Density-Aware Single Image De-Raining Using a Multi-Stream Dense Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Density-Aware_Single_Image_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/hezhangsprinter/DID-MDN,118,1/2/2019
+Weakly Supervised Deep Detection Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Bilen_Weakly_Supervised_Deep_CVPR_2016_paper.html,CVPR,2016,https://github.com/hbilen/WSDDN,103,1/2/2019
+Task-based End-to-end Model Learning in Stochastic Optimization,http://papers.nips.cc/paper/7132-task-based-end-to-end-model-learning-in-stochastic-optimization.pdf,NIPS,2017,https://github.com/locuslab/e2e-model-learning,100,1/2/2019
+MAttNet: Modular Attention Network for Referring Expression Comprehension,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yu_MAttNet_Modular_Attention_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/lichengunc/MAttNet,104,1/2/2019
+Interleaved Group Convolutions,http://openaccess.thecvf.com/content_iccv_2017/html/Zhang_Interleaved_Group_Convolutions_ICCV_2017_paper.html,ICCV,2017,https://github.com/hellozting/InterleavedGroupConvolutions,95,1/2/2019
+"Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis",http://proceedings.mlr.press/v80/wang18h.html,ICML,2018,https://github.com/syang1993/gst-tacotron,129,1/2/2019
+ELEGANT: Exchanging Latent Encodings with GAN for Transferring Multiple Face Attributes,http://openaccess.thecvf.com/content_ECCV_2018/html/Taihong_Xiao_ELEGANT_Exchanging_Latent_ECCV_2018_paper.html,ECCV,2018,https://github.com/Prinsphield/ELEGANT,117,1/2/2019
+Learning to Propose Objects,http://openaccess.thecvf.com/content_cvpr_2015/html/Krahenbuhl_Learning_to_Propose_2015_CVPR_paper.html,CVPR,2015,https://github.com/philkr/lpo,91,1/2/2019
+Learning to Compose Domain-Specific Transformations for Data Augmentation,http://papers.nips.cc/paper/6916-learning-to-compose-domain-specific-transformations-for-data-augmentation.pdf,NIPS,2017,https://github.com/HazyResearch/tanda,97,1/2/2019
+Deeply-Recursive Convolutional Network for Image Super-Resolution,http://openaccess.thecvf.com/content_cvpr_2016/html/Kim_Deeply-Recursive_Convolutional_Network_CVPR_2016_paper.html,CVPR,2016,https://github.com/jiny2001/deeply-recursive-cnn-tf,96,1/2/2019
+Neural Arithmetic Logic Units,http://arxiv.org/abs/1808.00508v1,NIPS,2018,https://github.com/llSourcell/Neural_Arithmetic_Logic_Units,87,1/2/2019
+Learning a Deep Embedding Model for Zero-Shot Learning,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Learning_a_Deep_CVPR_2017_paper.html,CVPR,2017,https://github.com/lzrobots/DeepEmbeddingModel_ZSL,104,1/2/2019
+Knowledge Aided Consistency for Weakly Supervised Phrase Grounding,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Knowledge_Aided_Consistency_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kanchen-usc/KAC-Net,87,1/2/2019
+AMC: Attention guided Multi-modal Correlation Learning for Image Search,http://openaccess.thecvf.com/content_cvpr_2017/html/Chen_AMC_Attention_guided_CVPR_2017_paper.html,CVPR,2017,https://github.com/kanchen-usc/AMC_ATT,90,1/2/2019
+Perturbative Neural Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Juefei-Xu_Perturbative_Neural_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/juefeix/pnn.pytorch,130,1/2/2019
+End-to-End Weakly-Supervised Semantic Alignment,http://openaccess.thecvf.com/content_cvpr_2018/papers/Rocco_End-to-End_Weakly-Supervised_Semantic_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ignacio-rocco/weakalign,106,1/2/2019
+Repulsion Loss: Detecting Pedestrians in a Crowd,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Repulsion_Loss_Detecting_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/bailvwangzi/repulsion_loss_ssd,113,1/2/2019
+Decoupled Neural Interfaces using Synthetic Gradients,http://proceedings.mlr.press/v70/jaderberg17a.html,ICML,2017,https://github.com/andrewliao11/dni.pytorch,90,1/2/2019
+Image Question Answering Using Convolutional Neural Network With Dynamic Parameter Prediction,http://openaccess.thecvf.com/content_cvpr_2016/html/Noh_Image_Question_Answering_CVPR_2016_paper.html,CVPR,2016,https://github.com/HyeonwooNoh/DPPnet,88,1/2/2019
+Semantic Autoencoder for Zero-Shot Learning,http://openaccess.thecvf.com/content_cvpr_2017/html/Kodirov_Semantic_Autoencoder_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/Elyorcv/SAE,92,1/2/2019
+Unite the People: Closing the Loop Between 3D and 2D Human Representations,http://openaccess.thecvf.com/content_cvpr_2017/html/Lassner_Unite_the_People_CVPR_2017_paper.html,CVPR,2017,https://github.com/classner/up,110,1/2/2019
+Genetic CNN,http://openaccess.thecvf.com/content_iccv_2017/html/Xie_Genetic_CNN_ICCV_2017_paper.html,ICCV,2017,https://github.com/aqibsaeed/Genetic-CNN,97,1/2/2019
+HashNet: Deep Learning to Hash by Continuation,http://openaccess.thecvf.com/content_iccv_2017/html/Cao_HashNet_Deep_Learning_ICCV_2017_paper.html,ICCV,2017,https://github.com/thuml/HashNet,97,1/2/2019
+Learning Blind Video Temporal Consistency,http://openaccess.thecvf.com/content_ECCV_2018/html/Wei-Sheng_Lai_Real-Time_Blind_Video_ECCV_2018_paper.html,ECCV,2018,https://github.com/phoenix104104/fast_blind_video_consistency,109,1/2/2019
+ECO: Efficient Convolution Operators for Tracking,http://openaccess.thecvf.com/content_cvpr_2017/html/Danelljan_ECO_Efficient_Convolution_CVPR_2017_paper.html,CVPR,2017,https://github.com/nicewsyly/ECO,103,1/2/2019
+PSANet: Point-wise Spatial Attention Network for Scene Parsing,http://openaccess.thecvf.com/content_ECCV_2018/html/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.html,ECCV,2018,https://github.com/hszhao/PSANet,121,1/2/2019
+Learning Combinatorial Optimization Algorithms over Graphs,http://papers.nips.cc/paper/7214-learning-combinatorial-optimization-algorithms-over-graphs.pdf,NIPS,2017,https://github.com/Hanjun-Dai/graph_comb_opt,109,1/2/2019
+Best of Both Worlds: Transferring Knowledge from Discriminative Learning to a Generative Visual Dialog Model,http://papers.nips.cc/paper/6635-best-of-both-worlds-transferring-knowledge-from-discriminative-learning-to-a-generative-visual-dialog-model.pdf,NIPS,2017,https://github.com/jiasenlu/visDial.pytorch,94,1/2/2019
+Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights,http://openaccess.thecvf.com/content_ECCV_2018/html/Arun_Mallya_Piggyback_Adapting_a_ECCV_2018_paper.html,ECCV,2018,https://github.com/arunmallya/piggyback,88,1/2/2019
+SCA-CNN: Spatial and Channel-Wise Attention in Convolutional Networks for Image Captioning,http://openaccess.thecvf.com/content_cvpr_2017/html/Chen_SCA-CNN_Spatial_and_CVPR_2017_paper.html,CVPR,2017,https://github.com/zjuchenlong/sca-cnn.cvpr17,102,1/2/2019
+GANs for Biological Image Synthesis,http://openaccess.thecvf.com/content_iccv_2017/html/Osokin_GANs_for_Biological_ICCV_2017_paper.html,ICCV,2017,https://github.com/aosokin/biogans,85,1/2/2019
+Fast-Slow Recurrent Neural Networks,http://papers.nips.cc/paper/7173-fast-slow-recurrent-neural-networks.pdf,NIPS,2017,https://github.com/amujika/Fast-Slow-LSTM,82,1/2/2019
+Nonlinear 3D Face Morphable Model,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tran_Nonlinear_3D_Face_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/tranluan/Nonlinear_Face_3DMM,128,1/2/2019
+Deep Mutual Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Deep_Mutual_Learning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/YingZhangDUT/Deep-Mutual-Learning,100,1/2/2019
+DynamicFusion: Reconstruction and Tracking of Non-Rigid Scenes in Real-Time,http://openaccess.thecvf.com/content_cvpr_2015/html/Newcombe_DynamicFusion_Reconstruction_and_2015_CVPR_paper.html,CVPR,2015,https://github.com/mihaibujanca/dynamicfusion,118,1/2/2019
+Octree Generating Networks: Efficient Convolutional Architectures for High-Resolution 3D Outputs,http://openaccess.thecvf.com/content_iccv_2017/html/Tatarchenko_Octree_Generating_Networks_ICCV_2017_paper.html,ICCV,2017,https://github.com/lmb-freiburg/ogn,92,1/2/2019
+Practical Bayesian Optimization for Model Fitting with Bayesian Adaptive Direct Search,http://papers.nips.cc/paper/6780-practical-bayesian-optimization-for-model-fitting-with-bayesian-adaptive-direct-search.pdf,NIPS,2017,https://github.com/lacerbi/bads,90,1/2/2019
+Optical Flow in Mostly Rigid Scenes,http://openaccess.thecvf.com/content_cvpr_2017/html/Wulff_Optical_Flow_in_CVPR_2017_paper.html,CVPR,2017,https://github.com/jswulff/mrflow,83,1/2/2019
+Representation Learning by Learning to Count,http://openaccess.thecvf.com/content_iccv_2017/html/Noroozi_Representation_Learning_by_ICCV_2017_paper.html,ICCV,2017,https://github.com/gitlimlab/Representation-Learning-by-Learning-to-Count,84,1/2/2019
+Image Inpainting for Irregular Holes Using Partial Convolutions,http://openaccess.thecvf.com/content_ECCV_2018/html/Guilin_Liu_Image_Inpainting_for_ECCV_2018_paper.html,ECCV,2018,https://github.com/naoto0804/pytorch-inpainting-with-partial-conv,153,1/2/2019
+Deeply-Learned Part-Aligned Representations for Person Re-Identification,http://openaccess.thecvf.com/content_iccv_2017/html/Zhao_Deeply-Learned_Part-Aligned_Representations_ICCV_2017_paper.html,ICCV,2017,https://github.com/zlmzju/part_reid,95,1/2/2019
+Unsupervised Learning of Disentangled and Interpretable Representations from Sequential Data,http://papers.nips.cc/paper/6784-unsupervised-learning-of-disentangled-and-interpretable-representations-from-sequential-data.pdf,NIPS,2017,https://github.com/wnhsu/FactorizedHierarchicalVAE,88,1/2/2019
+Deep Video Deblurring for Hand-Held Cameras,http://openaccess.thecvf.com/content_cvpr_2017/html/Su_Deep_Video_Deblurring_CVPR_2017_paper.html,CVPR,2017,https://github.com/shuochsu/DeepVideoDeblurring,89,1/2/2019
+A Comparative Study for Single Image Blind Deblurring,http://openaccess.thecvf.com/content_cvpr_2016/html/Lai_A_Comparative_Study_CVPR_2016_paper.html,CVPR,2016,https://github.com/phoenix104104/cvpr16_deblur_study,82,1/2/2019
+BodyNet: Volumetric Inference of 3D Human Body Shapes,http://openaccess.thecvf.com/content_ECCV_2018/html/Gul_Varol_BodyNet_Volumetric_Inference_ECCV_2018_paper.html,ECCV,2018,https://github.com/gulvarol/bodynet,126,1/2/2019
+Causal Effect Inference with Deep Latent-Variable Models,http://papers.nips.cc/paper/7223-causal-effect-inference-with-deep-latent-variable-models.pdf,NIPS,2017,https://github.com/AMLab-Amsterdam/CEVAE,87,1/2/2019
+FSRNet: End-to-End Learning Face Super-Resolution With Facial Priors,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_FSRNet_End-to-End_Learning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/tyshiwo/FSRNet,100,1/2/2019
+Multiple Instance Detection Network With Online Instance Classifier Refinement,http://openaccess.thecvf.com/content_cvpr_2017/html/Tang_Multiple_Instance_Detection_CVPR_2017_paper.html,CVPR,2017,https://github.com/ppengtang/oicr,113,1/2/2019
+MMD GAN: Towards Deeper Understanding of Moment Matching Network,http://papers.nips.cc/paper/6815-mmd-gan-towards-deeper-understanding-of-moment-matching-network.pdf,NIPS,2017,https://github.com/OctoberChang/MMD-GAN,84,1/2/2019
+Recurrent Convolutional Network for Video-Based Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2016/html/McLaughlin_Recurrent_Convolutional_Network_CVPR_2016_paper.html,CVPR,2016,https://github.com/niallmcl/Recurrent-Convolutional-Video-ReID,82,1/2/2019
+Integral Human Pose Regression,http://openaccess.thecvf.com/content_ECCV_2018/html/Xiao_Sun_Integral_Human_Pose_ECCV_2018_paper.html,ECCV,2018,https://github.com/JimmySuen/integral-human-pose,141,1/2/2019
+LiDAR-Video Driving Dataset: Learning Driving Policies Effectively,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_LiDAR-Video_Driving_Dataset_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/driving-behavior/DBNet,104,1/2/2019
+Multi-Scale Continuous CRFs as Sequential Deep Networks for Monocular Depth Estimation,http://openaccess.thecvf.com/content_cvpr_2017/html/Xu_Multi-Scale_Continuous_CRFs_CVPR_2017_paper.html,CVPR,2017,https://github.com/danxuhk/ContinuousCRF-CNN,93,1/2/2019
+Attention-based Deep Multiple Instance Learning,http://proceedings.mlr.press/v80/ilse18a.html,ICML,2018,https://github.com/AMLab-Amsterdam/AttentionDeepMIL,109,1/2/2019
+Multi-View Consistency as Supervisory Signal for Learning Shape and Pose Prediction,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tulsiani_Multi-View_Consistency_as_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/shubhtuls/mvcSnP,80,1/2/2019
+Macro-Micro Adversarial Network for Human Parsing,http://openaccess.thecvf.com/content_ECCV_2018/html/Yawei_Luo_Macro-Micro_Adversarial_Network_ECCV_2018_paper.html,ECCV,2018,https://github.com/RoyalVane/MMAN,98,1/2/2019
+A Convolutional Neural Network Cascade for Face Detection,http://openaccess.thecvf.com/content_cvpr_2015/html/Li_A_Convolutional_Neural_2015_CVPR_paper.html,CVPR,2015,https://github.com/mks0601/A-Convolutional-Neural-Network-Cascade-for-Face-Detection,85,1/2/2019
+Neural Module Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Andreas_Neural_Module_Networks_CVPR_2016_paper.html,CVPR,2016,https://github.com/HarshTrivedi/nmn-pytorch,81,1/2/2019
+Multi-view to Novel view: Synthesizing novel views with Self-Learned Confidence,http://openaccess.thecvf.com/content_ECCV_2018/html/Shao-Hua_Sun_Multi-view_to_Novel_ECCV_2018_paper.html,ECCV,2018,https://github.com/shaohua0116/Multiview2Novelview,92,1/2/2019
+Neural Kinematic Networks for Unsupervised Motion Retargetting,http://openaccess.thecvf.com/content_cvpr_2018/papers/Villegas_Neural_Kinematic_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/rubenvillegas/cvpr2018nkn,90,1/2/2019
+LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Dongqing_Zhang_Optimized_Quantization_for_ECCV_2018_paper.html,ECCV,2018,https://github.com/Microsoft/LQ-Nets,103,1/2/2019
+Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Learning_Spatial-Temporal_Regularized_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/lifeng9472/STRCF,86,1/2/2019
+Learning Spatially Regularized Correlation Filters for Visual Tracking,http://openaccess.thecvf.com/content_iccv_2015/html/Danelljan_Learning_Spatially_Regularized_ICCV_2015_paper.html,ICCV,2015,https://github.com/lifeng9472/STRCF,86,1/2/2019
+DeLiGAN : Generative Adversarial Networks for Diverse and Limited Data,http://openaccess.thecvf.com/content_cvpr_2017/html/Gurumurthy_DeLiGAN__Generative_CVPR_2017_paper.html,CVPR,2017,https://github.com/val-iisc/deligan,78,1/2/2019
+A PID Controller Approach for Stochastic Optimization of Deep Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/An_A_PID_Controller_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/tensorboy/PIDOptimizer,87,1/2/2019
+A-NICE-MC: Adversarial Training for MCMC,http://papers.nips.cc/paper/7099-a-nice-mc-adversarial-training-for-mcmc.pdf,NIPS,2017,https://github.com/jiamings/a-nice-mc,80,1/2/2019
+Coarse-To-Fine Volumetric Prediction for Single-Image 3D Human Pose,http://openaccess.thecvf.com/content_cvpr_2017/html/Pavlakos_Coarse-To-Fine_Volumetric_Prediction_CVPR_2017_paper.html,CVPR,2017,https://github.com/geopavlakos/c2f-vol-train,80,1/2/2019
+Synthesizing Images of Humans in Unseen Poses,http://openaccess.thecvf.com/content_cvpr_2018/papers/Balakrishnan_Synthesizing_Images_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/balakg/posewarp-cvpr2018,88,1/2/2019
+Tell Me Where to Look: Guided Attention Inference Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Tell_Me_Where_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/alokwhitewolf/Guided-Attention-Inference-Network,91,1/2/2019
+Stacked Attention Networks for Image Question Answering,http://openaccess.thecvf.com/content_cvpr_2016/html/Yang_Stacked_Attention_Networks_CVPR_2016_paper.html,CVPR,2016,https://github.com/zcyang/imageqa-san,78,1/2/2019
+VITAL: VIsual Tracking via Adversarial Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Song_VITAL_VIsual_Tracking_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ybsong00/Vital_release,86,1/2/2019
+VITON: An Image-Based Virtual Try-On Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Han_VITON_An_Image-Based_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/xthan/VITON,95,1/2/2019
+Recurrent Relational Networks,http://arxiv.org/abs/1711.08028v2,NIPS,2018,https://github.com/rasmusbergpalm/recurrent-relational-networks,121,1/2/2019
+Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network,http://openaccess.thecvf.com/content_cvpr_2016/html/Shi_Real-Time_Single_Image_CVPR_2016_paper.html,CVPR,2016,https://github.com/leftthomas/ESPCN,92,1/2/2019
+Local Binary Convolutional Neural Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Juefei-Xu_Local_Binary_Convolutional_CVPR_2017_paper.html,CVPR,2017,https://github.com/juefeix/lbcnn.torch,77,1/2/2019
+Unsupervised Video Summarization With Adversarial LSTM Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Mahasseni_Unsupervised_Video_Summarization_CVPR_2017_paper.html,CVPR,2017,https://github.com/j-min/Adversarial_Video_Summary,82,1/2/2019
+Multi-Scale Location-Aware Kernel Representation for Object Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Multi-Scale_Location-Aware_Kernel_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Hwang64/MLKP,84,1/2/2019
+Future Frame Prediction for Anomaly Detection – A New Baseline,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Future_Frame_Prediction_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/StevenLiuWen/ano_pred_cvpr2018,92,1/2/2019
+Hard-Aware Deeply Cascaded Embedding,http://openaccess.thecvf.com/content_iccv_2017/html/Yuan_Hard-Aware_Deeply_Cascaded_ICCV_2017_paper.html,ICCV,2017,https://github.com/PkuRainBow/Hard-Aware-Deeply-Cascaded-Embedding_release,75,1/2/2019
+Query-Guided Regression Network With Context Policy for Phrase Grounding,http://openaccess.thecvf.com/content_iccv_2017/html/Chen_Query-Guided_Regression_Network_ICCV_2017_paper.html,ICCV,2017,https://github.com/kanchen-usc/QRC-Net,72,1/2/2019
+End-To-End Instance Segmentation With Recurrent Attention,http://openaccess.thecvf.com/content_cvpr_2017/html/Ren_End-To-End_Instance_Segmentation_CVPR_2017_paper.html,CVPR,2017,https://github.com/renmengye/rec-attend-public,78,1/2/2019
+Improved Stereo Matching With Constant Highway Networks and Reflective Confidence Learning,http://openaccess.thecvf.com/content_cvpr_2017/html/Shaked_Improved_Stereo_Matching_CVPR_2017_paper.html,CVPR,2017,https://github.com/amitshaked/resmatch,72,1/2/2019
+Progressive Prioritized Multi-View Stereo,http://openaccess.thecvf.com/content_cvpr_2016/html/Locher_Progressive_Prioritized_Multi-View_CVPR_2016_paper.html,CVPR,2016,https://github.com/alexlocher/hpmvs,73,1/2/2019
+Recurrent Pixel Embedding for Instance Grouping,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kong_Recurrent_Pixel_Embedding_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping,85,1/2/2019
+Learning Shape Abstractions by Assembling Volumetric Primitives,http://openaccess.thecvf.com/content_cvpr_2017/html/Tulsiani_Learning_Shape_Abstractions_CVPR_2017_paper.html,CVPR,2017,https://github.com/shubhtuls/volumetricPrimitives,77,1/2/2019
+Constrained Policy Optimization,http://proceedings.mlr.press/v70/achiam17a.html,ICML,2017,https://github.com/jachiam/cpo,81,1/2/2019
+Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks,http://papers.nips.cc/paper/6960-geometric-matrix-completion-with-recurrent-multi-graph-neural-networks.pdf,NIPS,2017,https://github.com/fmonti/mgcnn,90,1/2/2019
+Learning Human-Object Interactions by Graph Parsing Neural Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Siyuan_Qi_Learning_Human-Object_Interactions_ECCV_2018_paper.html,ECCV,2018,https://github.com/SiyuanQi/gpnn,93,1/2/2019
+Positive-Unlabeled Learning with Non-Negative Risk Estimator,http://papers.nips.cc/paper/6765-positive-unlabeled-learning-with-non-negative-risk-estimator.pdf,NIPS,2017,https://github.com/kiryor/nnPUlearning,76,1/2/2019
+Unsupervised Visual Representation Learning by Context Prediction,http://openaccess.thecvf.com/content_iccv_2015/html/Doersch_Unsupervised_Visual_Representation_ICCV_2015_paper.html,ICCV,2015,https://github.com/cdoersch/deepcontext,73,1/2/2019
+Top-Down Visual Saliency Guided by Captions,http://openaccess.thecvf.com/content_cvpr_2017/html/Ramanishka_Top-Down_Visual_Saliency_CVPR_2017_paper.html,CVPR,2017,https://github.com/VisionLearningGroup/caption-guided-saliency,72,1/2/2019
+Deep Image Harmonization,http://openaccess.thecvf.com/content_cvpr_2017/html/Tsai_Deep_Image_Harmonization_CVPR_2017_paper.html,CVPR,2017,https://github.com/wasidennis/DeepHarmonization,73,1/2/2019
+Visual Feature Attribution Using Wasserstein GANs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Baumgartner_Visual_Feature_Attribution_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/orobix/Visual-Feature-Attribution-Using-Wasserstein-GANs-Pytorch,72,1/2/2019
+A Hierarchical Deep Temporal Model for Group Activity Recognition,http://openaccess.thecvf.com/content_cvpr_2016/html/Ibrahim_A_Hierarchical_Deep_CVPR_2016_paper.html,CVPR,2016,https://github.com/mostafa-saad/deep-activity-rec,71,1/2/2019
+What Actions Are Needed for Understanding Human Actions in Videos?,http://openaccess.thecvf.com/content_iccv_2017/html/Sigurdsson_What_Actions_Are_ICCV_2017_paper.html,ICCV,2017,https://github.com/gsig/actions-for-actions,71,1/2/2019
+Discriminative Learning of Deep Convolutional Feature Point Descriptors,http://openaccess.thecvf.com/content_iccv_2015/html/Simo-Serra_Discriminative_Learning_of_ICCV_2015_paper.html,ICCV,2015,https://github.com/etrulls/deepdesc-release,77,1/2/2019
+Repeatability Is Not Enough: Learning Affine Regions via Discriminability,http://openaccess.thecvf.com/content_ECCV_2018/html/Dmytro_Mishkin_Repeatability_Is_Not_ECCV_2018_paper.html,ECCV,2018,https://github.com/ducha-aiki/affnet,84,1/2/2019
+Shape Completion Using 3D-Encoder-Predictor CNNs and Shape Synthesis,http://openaccess.thecvf.com/content_cvpr_2017/html/Dai_Shape_Completion_Using_CVPR_2017_paper.html,CVPR,2017,https://github.com/angeladai/cnncomplete,73,1/2/2019
+Avatar-Net: Multi-Scale Zero-Shot Style Transfer by Feature Decoration,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sheng_Avatar-Net_Multi-Scale_Zero-Shot_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/LucasSheng/avatar-net,71,1/2/2019
+Feedback Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Zamir_Feedback_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/amir32002/feedback-networks,72,1/2/2019
+Video Propagation Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Jampani_Video_Propagation_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/varunjampani/video_prop_networks,70,1/2/2019
+Robust 3D Hand Pose Estimation in Single Depth Images: From Single-View CNN to Multi-View CNNs,http://openaccess.thecvf.com/content_cvpr_2016/html/Ge_Robust_3D_Hand_CVPR_2016_paper.html,CVPR,2016,https://github.com/geliuhao/CVPR2016_HandPoseEstimation,70,1/2/2019
+Factorizable Net: An Efficient Subgraph-based Framework for Scene Graph Generation,http://openaccess.thecvf.com/content_ECCV_2018/html/Yikang_LI_Factorizable_Net_An_ECCV_2018_paper.html,ECCV,2018,https://github.com/yikang-li/FactorizableNet,78,1/2/2019
+Saliency Detection by Multi-Context Deep Learning,http://openaccess.thecvf.com/content_cvpr_2015/html/Zhao_Saliency_Detection_by_2015_CVPR_paper.html,CVPR,2015,https://github.com/Robert0812/deepsaldet,66,1/2/2019
+Self-Supervised Learning of Visual Features Through Embedding Images Into Text Topic Spaces,http://openaccess.thecvf.com/content_cvpr_2017/html/Gomez_Self-Supervised_Learning_of_CVPR_2017_paper.html,CVPR,2017,https://github.com/lluisgomez/TextTopicNet,69,1/2/2019
+SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_SGPN_Similarity_Group_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/laughtervv/SGPN,84,1/2/2019
+Action-Decision Networks for Visual Tracking With Deep Reinforcement Learning,http://openaccess.thecvf.com/content_cvpr_2017/html/Yun_Action-Decision_Networks_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/hellbell/ADNet,71,1/2/2019
+Learning SO(3) Equivariant Representations with Spherical CNNs,http://openaccess.thecvf.com/content_ECCV_2018/html/Carlos_Esteves_Learning_SO3_Equivariant_ECCV_2018_paper.html,ECCV,2018,https://github.com/daniilidis-group/spherical-cnn,89,1/2/2019
+ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans,http://openaccess.thecvf.com/content_cvpr_2018/papers/Dai_ScanComplete_Large-Scale_Scene_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/angeladai/ScanComplete,97,1/2/2019
+Towards Open Set Deep Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Bendale_Towards_Open_Set_CVPR_2016_paper.html,CVPR,2016,https://github.com/abhijitbendale/OSDN,71,1/2/2019
+Deep Neural Networks Are Easily Fooled: High Confidence Predictions for Unrecognizable Images,http://openaccess.thecvf.com/content_cvpr_2015/html/Nguyen_Deep_Neural_Networks_2015_CVPR_paper.html,CVPR,2015,https://github.com/abhijitbendale/OSDN,71,1/2/2019
+Marr Revisited: 2D-3D Alignment via Surface Normal Prediction,http://openaccess.thecvf.com/content_cvpr_2016/html/Bansal_Marr_Revisited_2D-3D_CVPR_2016_paper.html,CVPR,2016,https://github.com/aayushbansal/MarrRevisited,72,1/2/2019
+Optical Flow Estimation Using a Spatial Pyramid Network,http://openaccess.thecvf.com/content_cvpr_2017/html/Ranjan_Optical_Flow_Estimation_CVPR_2017_paper.html,CVPR,2017,https://github.com/sniklaus/pytorch-spynet,90,1/2/2019
+SurfaceNet: An End-To-End 3D Neural Network for Multiview Stereopsis,http://openaccess.thecvf.com/content_iccv_2017/html/Ji_SurfaceNet_An_End-To-End_ICCV_2017_paper.html,ICCV,2017,https://github.com/mjiUST/SurfaceNet,66,1/2/2019
+TURN TAP: Temporal Unit Regression Network for Temporal Action Proposals,http://openaccess.thecvf.com/content_iccv_2017/html/Gao_TURN_TAP_Temporal_ICCV_2017_paper.html,ICCV,2017,https://github.com/jiyanggao/TURN-TAP,66,1/2/2019
+Raster-To-Vector: Revisiting Floorplan Transformation,http://openaccess.thecvf.com/content_iccv_2017/html/Liu_Raster-To-Vector_Revisiting_Floorplan_ICCV_2017_paper.html,ICCV,2017,https://github.com/art-programmer/FloorplanTransformation,76,1/2/2019
+Multi-Shot Pedestrian Re-Identification via Sequential Decision Making,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Multi-Shot_Pedestrian_Re-Identification_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/TuSimple/rl-multishot-reid,70,1/2/2019
+One-Shot Unsupervised Cross Domain Translation,http://arxiv.org/abs/1806.06029v1,NIPS,2018,https://github.com/sagiebenaim/OneShotTranslation,89,1/2/2019
+Not All Pixels Are Equal: Difficulty-Aware Semantic Segmentation via Deep Layer Cascade,http://openaccess.thecvf.com/content_cvpr_2017/html/Li_Not_All_Pixels_CVPR_2017_paper.html,CVPR,2017,https://github.com/liuziwei7/region-conv,73,1/2/2019
+Pairwise Confusion for Fine-Grained Visual Classification,http://openaccess.thecvf.com/content_ECCV_2018/html/Abhimanyu_Dubey_Improving_Fine-Grained_Visual_ECCV_2018_paper.html,ECCV,2018,https://github.com/abhimanyudubey/confusion,77,1/2/2019
+Borrowing Treasures From the Wealthy: Deep Transfer Learning Through Selective Joint Fine-Tuning,http://openaccess.thecvf.com/content_cvpr_2017/html/Ge_Borrowing_Treasures_From_CVPR_2017_paper.html,CVPR,2017,https://github.com/ZYYSzj/Selective-Joint-Fine-tuning,64,1/2/2019
+Generalizing A Person Retrieval Model Hetero- and Homogeneously,http://openaccess.thecvf.com/content_ECCV_2018/html/Zhun_Zhong_Generalizing_A_Person_ECCV_2018_paper.html,ECCV,2018,https://github.com/zhunzhong07/HHL,78,1/2/2019
+Jointly Attentive Spatial-Temporal Pooling Networks for Video-Based Person Re-Identification,http://openaccess.thecvf.com/content_iccv_2017/html/Xu_Jointly_Attentive_Spatial-Temporal_ICCV_2017_paper.html,ICCV,2017,https://github.com/shuangjiexu/Spatial-Temporal-Pooling-Networks-ReID,65,1/2/2019
+Learning Depth From Monocular Videos Using Direct Methods,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Learning_Depth_From_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/MightyChaos/LKVOLearner,97,1/2/2019
+Training Deep Networks without Learning Rates Through Coin Betting,http://papers.nips.cc/paper/6811-training-deep-networks-without-learning-rates-through-coin-betting.pdf,NIPS,2017,https://github.com/bremen79/cocob,66,1/2/2019
+Optimizing the Latent Space of Generative Networks,http://proceedings.mlr.press/v80/bojanowski18a.html,ICML,2018,https://github.com/tneumann/minimal_glo,66,1/2/2019
+Playing for Benchmarks,http://openaccess.thecvf.com/content_iccv_2017/html/Richter_Playing_for_Benchmarks_ICCV_2017_paper.html,ICCV,2017,https://github.com/PatrykChrabaszcz/Canonical_ES_Atari,61,1/2/2019
+Bilateral Space Video Segmentation,http://openaccess.thecvf.com/content_cvpr_2016/html/Maerki_Bilateral_Space_Video_CVPR_2016_paper.html,CVPR,2016,https://github.com/owang/BilateralVideoSegmentation,63,1/2/2019
+ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching,http://papers.nips.cc/paper/7133-alice-towards-understanding-adversarial-learning-for-joint-distribution-matching.pdf,NIPS,2017,https://github.com/ChunyuanLI/ALICE,63,1/2/2019
+Full Resolution Image Compression With Recurrent Neural Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Toderici_Full_Resolution_Image_CVPR_2017_paper.html,CVPR,2017,https://github.com/1zb/pytorch-image-comp-rnn,66,1/2/2019
+CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_CSRNet_Dilated_Convolutional_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/leeyeehoo/CSRNet-pytorch,87,1/2/2019
+"Deep Learning Face Representation from Predicting 10,000 Classes",http://openaccess.thecvf.com/content_cvpr_2014/html/Sun_Deep_Learning_Face_2014_CVPR_paper.html,CVPR,2014,https://github.com/joyhuang9473/deepid-implementation,62,1/2/2019
+Learning Attentions: Residual Attentional Siamese Network for High Performance Online Visual Tracking,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Learning_Attentions_Residual_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/foolwood/RASNet,67,1/2/2019
+“Zero-Shot” Super-Resolution Using Deep Internal Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Shocher_Zero-Shot_Super-Resolution_Using_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/assafshocher/ZSSR,84,1/2/2019
+Generative Neural Machine Translation,http://arxiv.org/abs/1806.05138v1,NIPS,2018,https://github.com/ZhenYangIACAS/NMT_GAN,68,1/2/2019
+Physically-Based Rendering for Indoor Scene Understanding Using Convolutional Neural Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Physically-Based_Rendering_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/yindaz/pbrs,67,1/2/2019
+AdaGAN: Boosting Generative Models,http://papers.nips.cc/paper/7126-adagan-boosting-generative-models.pdf,NIPS,2017,https://github.com/tolstikhin/adagan,59,1/2/2019
+Progressive Neural Architecture Search,http://openaccess.thecvf.com/content_ECCV_2018/html/Chenxi_Liu_Progressive_Neural_Architecture_ECCV_2018_paper.html,ECCV,2018,https://github.com/titu1994/progressive-neural-architecture-search,68,1/2/2019
+Quality Aware Network for Set to Set Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Liu_Quality_Aware_Network_CVPR_2017_paper.html,CVPR,2017,https://github.com/sciencefans/Quality-Aware-Network,69,1/2/2019
+PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Uy_PointNetVLAD_Deep_Point_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/mikacuy/pointnetvlad,69,1/2/2019
+Deep Filter Banks for Texture Recognition and Segmentation,http://openaccess.thecvf.com/content_cvpr_2015/html/Cimpoi_Deep_Filter_Banks_2015_CVPR_paper.html,CVPR,2015,https://github.com/mcimpoi/deep-fbanks,68,1/2/2019
+Person Re-Identification in the Wild,http://openaccess.thecvf.com/content_cvpr_2017/html/Zheng_Person_Re-Identification_in_CVPR_2017_paper.html,CVPR,2017,https://github.com/liangzheng06/PRW-baseline,63,1/2/2019
+Doubly Stochastic Variational Inference for Deep Gaussian Processes,http://papers.nips.cc/paper/7045-doubly-stochastic-variational-inference-for-deep-gaussian-processes.pdf,NIPS,2017,https://github.com/ICL-SML/Doubly-Stochastic-DGP,66,1/2/2019
+Toward Controlled Generation of Text,http://proceedings.mlr.press/v70/hu17e.html,ICML,2017,https://github.com/GBLin5566/toward-controlled-generation-of-text-pytorch,63,1/2/2019
+Learning to Reweight Examples for Robust Deep Learning,http://proceedings.mlr.press/v80/ren18a.html,ICML,2018,https://github.com/danieltan07/learning-to-reweight-examples,76,1/2/2019
+Dance Dance Convolution,http://proceedings.mlr.press/v70/donahue17a.html,ICML,2017,https://github.com/chrisdonahue/ddc,65,1/2/2019
+Generate to Adapt: Aligning Domains Using Generative Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sankaranarayanan_Generate_to_Adapt_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yogeshbalaji/Generate_To_Adapt,67,1/2/2019
+Image-To-Image Translation With Conditional Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Isola_Image-To-Image_Translation_With_CVPR_2017_paper.html,CVPR,2017,https://github.com/williamFalcon/pix2pix-keras,70,1/2/2019
+Decorrelated Batch Normalization,http://openaccess.thecvf.com/content_cvpr_2018/papers/Huang_Decorrelated_Batch_Normalization_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/umich-vl/DecorrelatedBN,57,1/2/2019
+Xception: Deep Learning With Depthwise Separable Convolutions,http://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html,CVPR,2017,https://github.com/tstandley/Xception-PyTorch,71,1/2/2019
+Geometry-Aware Learning of Maps for Camera Localization,http://openaccess.thecvf.com/content_cvpr_2018/papers/Brahmbhatt_Geometry-Aware_Learning_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/samarth-robo/MapNet,63,1/2/2019
+Improving Generalization via Scalable Neighborhood Component Analysis,http://openaccess.thecvf.com/content_ECCV_2018/html/Zhirong_Wu_Improving_Embedding_Generalization_ECCV_2018_paper.html,ECCV,2018,https://github.com/Microsoft/snca.pytorch,76,1/2/2019
+Convolutional Gaussian Processes,http://papers.nips.cc/paper/6877-convolutional-gaussian-processes.pdf,NIPS,2017,https://github.com/markvdw/convgp/,57,9/16/2018
+Path-Level Network Transformation for Efficient Architecture Search,http://proceedings.mlr.press/v80/cai18a.html,ICML,2018,https://github.com/han-cai/PathLevel-EAS,73,1/2/2019
+Ordinal Depth Supervision for 3D Human Pose Estimation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Pavlakos_Ordinal_Depth_Supervision_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/geopavlakos/ordinal-pose3d,74,1/2/2019
+Escape From Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models,http://openaccess.thecvf.com/content_iccv_2017/html/Klokov_Escape_From_Cells_ICCV_2017_paper.html,ICCV,2017,https://github.com/fxia22/kdnet.pytorch,68,1/2/2019
+Object Level Visual Reasoning in Videos,http://openaccess.thecvf.com/content_ECCV_2018/html/Fabien_Baradel_Object_Level_Visual_ECCV_2018_paper.html,ECCV,2018,https://github.com/fabienbaradel/object_level_visual_reasoning,71,1/2/2019
+Regularizing RNNs for Caption Generation by Reconstructing the Past With the Present,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Regularizing_RNNs_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/chenxinpeng/ARNet,70,1/2/2019
+Disentangled Person Image Generation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Ma_Disentangled_Person_Image_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/charliememory/Disentangled-Person-Image-Generation,75,1/2/2019
+Diverse Image-to-Image Translation via Disentangled Representations,http://openaccess.thecvf.com/content_ECCV_2018/html/Hsin-Ying_Lee_Diverse_Image-to-Image_Translation_ECCV_2018_paper.html,ECCV,2018,https://github.com/taki0112/DRIT-Tensorflow,72,1/2/2019
+A Distributional Perspective on Reinforcement Learning,http://proceedings.mlr.press/v70/bellemare17a.html,ICML,2017,https://github.com/Silvicek/distributional-dqn,68,1/2/2019
+Neural Program Synthesis from Diverse Demonstration Videos,http://proceedings.mlr.press/v80/sun18a.html,ICML,2018,https://github.com/shaohua0116/demo2program,62,1/2/2019
+Pointwise Convolutional Neural Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hua_Pointwise_Convolutional_Neural_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/scenenn/pointwise,67,1/2/2019
+Modeling Relationships in Referential Expressions With Compositional Modular Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Hu_Modeling_Relationships_in_CVPR_2017_paper.html,CVPR,2017,https://github.com/ronghanghu/cmn,57,1/2/2019
+Deep Subspace Clustering Networks,http://papers.nips.cc/paper/6608-deep-subspace-clustering-networks.pdf,NIPS,2017,https://github.com/panji1990/Deep-subspace-clustering-networks,68,1/2/2019
+Multi-Channel Weighted Nuclear Norm Minimization for Real Color Image Denoising,http://openaccess.thecvf.com/content_iccv_2017/html/Xu_Multi-Channel_Weighted_Nuclear_ICCV_2017_paper.html,ICCV,2017,https://github.com/csjunxu/MCWNNM-ICCV2017,61,1/2/2019
+Unsupervised Domain Adaptation for 3D Keypoint Estimation via View Consistency,http://openaccess.thecvf.com/content_ECCV_2018/html/Xingyi_Zhou_Unsupervised_Domain_Adaptation_ECCV_2018_paper.html,ECCV,2018,https://github.com/xingyizhou/3DKeypoints-DA,60,1/2/2019
+Learning Less Is More - 6D Camera Localization via 3D Surface Regression,http://openaccess.thecvf.com/content_cvpr_2018/papers/Brachmann_Learning_Less_Is_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/vislearn/LessMore,72,1/2/2019
+End-To-End 3D Face Reconstruction With Deep Neural Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Dou_End-To-End_3D_Face_CVPR_2017_paper.html,CVPR,2017,https://github.com/ShownX/mxnet-E2FAR,60,1/2/2019
+Learning Latent Super-Events to Detect Multiple Activities in Videos,http://openaccess.thecvf.com/content_cvpr_2018/papers/Piergiovanni_Learning_Latent_Super-Events_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/piergiaj/super-events-cvpr18,67,1/2/2019
+Factorized Bilinear Models for Image Recognition,http://openaccess.thecvf.com/content_iccv_2017/html/Li_Factorized_Bilinear_Models_ICCV_2017_paper.html,ICCV,2017,https://github.com/lyttonhao/Factorized-Bilinear-Network,55,1/2/2019
+Depth-aware CNN for RGB-D Segmentation,http://openaccess.thecvf.com/content_ECCV_2018/html/Weiyue_Wang_Depth-aware_CNN_for_ECCV_2018_paper.html,ECCV,2018,https://github.com/laughtervv/DepthAwareCNN,88,1/2/2019
+Online and Linear-Time Attention by Enforcing Monotonic Alignments,http://proceedings.mlr.press/v70/raffel17a.html,ICML,2017,https://github.com/craffel/mad,56,1/2/2019
+Unsupervised Discovery of Object Landmarks as Structural Representations,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Unsupervised_Discovery_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/YutingZhang/lmdis-rep,61,1/2/2019
+Crafting a Toolchain for Image Restoration by Deep Reinforcement Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yu_Crafting_a_Toolchain_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yuke93/RL-Restore,77,1/2/2019
+SparseMAP: Differentiable Sparse Structured Inference,http://proceedings.mlr.press/v80/niculae18a.html,ICML,2018,https://github.com/vene/sparsemap,75,1/2/2019
+Adversarial Feature Augmentation for Unsupervised Domain Adaptation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Volpi_Adversarial_Feature_Augmentation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ricvolpi/adversarial-feature-augmentation,67,1/2/2019
+Self-Supervised Adversarial Hashing Networks for Cross-Modal Retrieval,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Self-Supervised_Adversarial_Hashing_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/lelan-li/SSAH,72,1/2/2019
+Unsupervised Learning by Predicting Noise,http://proceedings.mlr.press/v70/bojanowski17a.html,ICML,2017,https://github.com/facebookresearch/noise-as-targets,60,1/2/2019
+Fast and Accurate Single Image Super-Resolution via Information Distillation Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hui_Fast_and_Accurate_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Zheng222/IDN-Caffe,71,1/2/2019
+CoupleNet: Coupling Global Structure With Local Parts for Object Detection,http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_CoupleNet_Coupling_Global_ICCV_2017_paper.html,ICCV,2017,https://github.com/tshizys/CoupleNet,59,1/2/2019
+A Deep Regression Architecture With Two-Stage Re-Initialization for High Performance Facial Landmark Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Lv_A_Deep_Regression_CVPR_2017_paper.html,CVPR,2017,https://github.com/shaoxiaohu/Face_Alignment_Two_Stage_Re-initialization,57,1/2/2019
+On-the-fly Operation Batching in Dynamic Computation Graphs,http://papers.nips.cc/paper/6986-on-the-fly-operation-batching-in-dynamic-computation-graphs.pdf,NIPS,2017,https://github.com/neulab/dynet-benchmark,54,1/2/2019
+Synthesizing 3D Shapes via Modeling Multi-View Depth Maps and Silhouettes With Deep Generative Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Soltani_Synthesizing_3D_Shapes_CVPR_2017_paper.html,CVPR,2017,https://github.com/Amir-Arsalan/Synthesize3DviaDepthOrSil,65,1/2/2019
+Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes,http://openaccess.thecvf.com/content_iccv_2017/html/Zhang_Curriculum_Domain_Adaptation_ICCV_2017_paper.html,ICCV,2017,https://github.com/YangZhang4065/AdaptationSeg,64,1/2/2019
+Deep Compositional Captioning: Describing Novel Object Categories Without Paired Training Data,http://openaccess.thecvf.com/content_cvpr_2016/html/Hendricks_Deep_Compositional_Captioning_CVPR_2016_paper.html,CVPR,2016,https://github.com/LisaAnne/DCC,57,1/2/2019
+Neural Style Transfer via Meta Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Shen_Neural_Style_Transfer_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/FalongShen/styletransfer,59,1/2/2019
+Deep Marching Cubes: Learning Explicit Surface Representations,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liao_Deep_Marching_Cubes_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yiyiliao/deep_marching_cubes,56,1/2/2019
+Shift-Net: Image Inpainting via Deep Feature Rearrangement,http://openaccess.thecvf.com/content_ECCV_2018/html/Zhaoyi_Yan_Shift-Net_Image_Inpainting_ECCV_2018_paper.html,ECCV,2018,https://github.com/Zhaoyi-Yan/Shift-Net_pytorch,74,1/2/2019
+Dense-Captioning Events in Videos,http://openaccess.thecvf.com/content_iccv_2017/html/Krishna_Dense-Captioning_Events_in_ICCV_2017_paper.html,ICCV,2017,https://github.com/ranjaykrishna/densevid_eval,55,1/2/2019
+Cascade R-CNN: Delving Into High Quality Object Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Cai_Cascade_R-CNN_Delving_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/guoruoqian/cascade-rcnn_Pytorch,93,1/2/2019
+Net-Trim: Convex Pruning of Deep Neural Networks with Performance Guarantee,http://papers.nips.cc/paper/6910-net-trim-convex-pruning-of-deep-neural-networks-with-performance-guarantee.pdf,NIPS,2017,https://github.com/DNNToolBox/Net-Trim-v1,54,1/2/2019
+Leveraging Unlabeled Data for Crowd Counting by Learning to Rank,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Leveraging_Unlabeled_Data_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/xialeiliu/CrowdCountingCVPR18,56,1/2/2019
+Learning From Synthetic Data: Addressing Domain Shift for Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sankaranarayanan_Learning_From_Synthetic_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/swamiviv/LSD-seg,56,1/2/2019
+Weakly-Supervised Semantic Segmentation Network With Deep Seeded Region Growing,http://openaccess.thecvf.com/content_cvpr_2018/papers/Huang_Weakly-Supervised_Semantic_Segmentation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/speedinghzl/DSRG,71,1/2/2019
+SST: Single-Stream Temporal Action Proposals,http://openaccess.thecvf.com/content_cvpr_2017/html/Buch_SST_Single-Stream_Temporal_CVPR_2017_paper.html,CVPR,2017,https://github.com/ranjaykrishna/SST,51,1/2/2019
+Fighting Fake News: Image Splice Detection via Learned Self-Consistency,http://openaccess.thecvf.com/content_ECCV_2018/html/Jacob_Huh_Fighting_Fake_News_ECCV_2018_paper.html,ECCV,2018,https://github.com/minyoungg/selfconsistency,62,1/2/2019
+Curiosity-driven Exploration by Self-supervised Prediction,http://proceedings.mlr.press/v70/pathak17a.html,ICML,2017,https://github.com/kimhc6028/pytorch-noreward-rl,56,1/2/2019
+Deep IV: A Flexible Approach for Counterfactual Prediction,http://proceedings.mlr.press/v70/hartford17a.html,ICML,2017,https://github.com/jhartford/DeepIV,52,1/2/2019
+Hierarchical Long-term Video Prediction without Supervision,http://proceedings.mlr.press/v80/wichers18a.html,ICML,2018,https://github.com/brain-research/long-term-video-prediction-without-supervision,60,1/2/2019
+PDE-Net: Learning PDEs from Data,http://proceedings.mlr.press/v80/long18a.html,ICML,2018,https://github.com/ZichaoLong/PDE-Net,75,1/2/2019
+Efficient 3D Room Shape Recovery From a Single Panorama,http://openaccess.thecvf.com/content_cvpr_2016/html/Yang_Efficient_3D_Room_CVPR_2016_paper.html,CVPR,2016,https://github.com/YANG-H/Panoramix,55,1/2/2019
+Learning Discrete Representations via Information Maximizing Self-Augmented Training,http://proceedings.mlr.press/v70/hu17b.html,ICML,2017,https://github.com/weihua916/imsat,49,1/2/2019
+Video Segmentation via Object Flow,http://openaccess.thecvf.com/content_cvpr_2016/html/Tsai_Video_Segmentation_via_CVPR_2016_paper.html,CVPR,2016,https://github.com/wasidennis/ObjectFlow,50,1/2/2019
+Person Search With Natural Language Description,http://openaccess.thecvf.com/content_cvpr_2017/html/Li_Person_Search_With_CVPR_2017_paper.html,CVPR,2017,https://github.com/ShuangLI59/Person-Search-with-Natural-Language-Description,61,1/2/2019
+Discriminability Objective for Training Descriptive Captions,http://openaccess.thecvf.com/content_cvpr_2018/papers/Luo_Discriminability_Objective_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ruotianluo/DiscCaptioning,54,1/2/2019
+Triangle Generative Adversarial Networks,http://papers.nips.cc/paper/7109-triangle-generative-adversarial-networks.pdf,NIPS,2017,https://github.com/LiqunChen0606/Triangle-GAN,51,1/2/2019
+The Neural Hawkes Process: A Neurally Self-Modulating Multivariate Point Process,http://papers.nips.cc/paper/7252-the-neural-hawkes-process-a-neurally-self-modulating-multivariate-point-process.pdf,NIPS,2017,https://github.com/HMEIatJHU/neurawkes,56,1/2/2019
+Finding Action Tubes,http://openaccess.thecvf.com/content_cvpr_2015/html/Gkioxari_Finding_Action_Tubes_2015_CVPR_paper.html,CVPR,2015,https://github.com/gkioxari/ActionTubes,51,1/2/2019
+Differentiable Learning of Logical Rules for Knowledge Base Reasoning,http://papers.nips.cc/paper/6826-differentiable-learning-of-logical-rules-for-knowledge-base-reasoning.pdf,NIPS,2017,https://github.com/fanyangxyz/Neural-LP,62,1/2/2019
+L2-Net: Deep Learning of Discriminative Patch Descriptor in Euclidean Space,http://openaccess.thecvf.com/content_cvpr_2017/html/Tian_L2-Net_Deep_Learning_CVPR_2017_paper.html,CVPR,2017,https://github.com/yuruntian/L2-Net,51,1/2/2019
+Visual Question Generation as Dual Task of Visual Question Answering,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Visual_Question_Generation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yikang-li/iQAN,50,1/2/2019
+DF-Net: Unsupervised Joint Learning of Depth and Flow using Cross-Task Consistency,http://openaccess.thecvf.com/content_ECCV_2018/html/Yuliang_Zou_DF-Net_Unsupervised_Joint_ECCV_2018_paper.html,ECCV,2018,https://github.com/vt-vl-lab/DF-Net,82,1/2/2019
+BlockDrop: Dynamic Inference Paths in Residual Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_BlockDrop_Dynamic_Inference_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Tushar-N/blockdrop,54,1/2/2019
+Efficient end-to-end learning for quantizable representations,http://proceedings.mlr.press/v80/jeong18a.html,ICML,2018,https://github.com/maestrojeong/Deep-Hash-Table-ICML18,50,1/2/2019
+Predicting Deeper Into the Future of Semantic Segmentation,http://openaccess.thecvf.com/content_iccv_2017/html/Luc_Predicting_Deeper_Into_ICCV_2017_paper.html,ICCV,2017,https://github.com/facebookresearch/SegmPred,51,1/2/2019
+Towards Diverse and Natural Image Descriptions via a Conditional GAN,http://openaccess.thecvf.com/content_iccv_2017/html/Dai_Towards_Diverse_and_ICCV_2017_paper.html,ICCV,2017,https://github.com/doubledaibo/gancaption_iccv2017,53,1/2/2019
+CDC: Convolutional-De-Convolutional Networks for Precise Temporal Action Localization in Untrimmed Videos,http://openaccess.thecvf.com/content_cvpr_2017/html/Shou_CDC_Convolutional-De-Convolutional_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/ColumbiaDVMM/CDC,53,1/2/2019
+Category-Specific Object Reconstruction From a Single Image,http://openaccess.thecvf.com/content_cvpr_2015/html/Kar_Category-Specific_Object_Reconstruction_2015_CVPR_paper.html,CVPR,2015,https://github.com/akar43/CategoryShapes,48,1/2/2019
+Learning to Find Good Correspondences,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yi_Learning_to_Find_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/vcg-uvic/learned-correspondence-release,72,1/2/2019
+Neural Expectation Maximization,http://papers.nips.cc/paper/7246-neural-expectation-maximization.pdf,NIPS,2017,https://github.com/sjoerdvansteenkiste/Neural-EM,56,1/2/2019
+Semantic Video CNNs Through Representation Warping,http://openaccess.thecvf.com/content_iccv_2017/html/Gadde_Semantic_Video_CNNs_ICCV_2017_paper.html,ICCV,2017,https://github.com/raghudeep/netwarp_public,46,1/2/2019
+EAST: An Efficient and Accurate Scene Text Detector,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhou_EAST_An_Efficient_CVPR_2017_paper.html,CVPR,2017,https://github.com/Kathrine94/EAST,51,1/2/2019
+Learning Blind Motion Deblurring,http://openaccess.thecvf.com/content_iccv_2017/html/Wieschollek_Learning_Blind_Motion_ICCV_2017_paper.html,ICCV,2017,https://github.com/cgtuebingen/learning-blind-motion-deblurring,54,1/2/2019
+Pose-Normalized Image Generation for Person Re-identification,http://openaccess.thecvf.com/content_ECCV_2018/html/Xuelin_Qian_Pose-Normalized_Image_Generation_ECCV_2018_paper.html,ECCV,2018,https://github.com/naiq/PN_GAN,75,1/2/2019
+Multi-Objective Convolutional Learning for Face Labeling,http://openaccess.thecvf.com/content_cvpr_2015/html/Liu_Multi-Objective_Convolutional_Learning_2015_CVPR_paper.html,CVPR,2015,https://github.com/Liusifei/Face_Parsing_2016,55,1/2/2019
+Wasserstein Introspective Neural Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lee_Wasserstein_Introspective_Neural_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kjunelee/WINN,51,1/2/2019
+Conditional Probability Models for Deep Image Compression,http://openaccess.thecvf.com/content_cvpr_2018/papers/Mentzer_Conditional_Probability_Models_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/fab-jul/imgcomp-cvpr,54,1/2/2019
+Efficient Diffusion on Region Manifolds: Recovering Small Objects With Compact CNN Representations,http://openaccess.thecvf.com/content_cvpr_2017/html/Iscen_Efficient_Diffusion_on_CVPR_2017_paper.html,CVPR,2017,https://github.com/ahmetius/diffusion-retrieval,48,1/2/2019
+Jointly Optimize Data Augmentation and Network Training: Adversarial Data Augmentation in Human Pose Estimation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Peng_Jointly_Optimize_Data_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zhiqiangdon/pose-adv-aug,54,1/2/2019
+PlaneMatch: Patch Coplanarity Prediction for Robust RGB-D Reconstruction,http://openaccess.thecvf.com/content_ECCV_2018/html/Yifei_Shi_PlaneMatch_Patch_Coplanarity_ECCV_2018_paper.html,ECCV,2018,https://github.com/yifeishi/PlaneMatch,57,1/2/2019
+Learning to Navigate for Fine-grained Classification,http://openaccess.thecvf.com/content_ECCV_2018/html/Ze_Yang_Learning_to_Navigate_ECCV_2018_paper.html,ECCV,2018,https://github.com/yangze0930/NTS-Net,74,1/2/2019
+Hybrid Reward Architecture for Reinforcement Learning,http://papers.nips.cc/paper/7123-hybrid-reward-architecture-for-reinforcement-learning.pdf,NIPS,2017,https://github.com/Maluuba/hra,50,1/2/2019
+Localizing Moments in Video With Natural Language,http://openaccess.thecvf.com/content_iccv_2017/html/Hendricks_Localizing_Moments_in_ICCV_2017_paper.html,ICCV,2017,https://github.com/LisaAnne/LocalizingMoments,60,1/2/2019
+FOTS: Fast Oriented Text Spotting With a Unified Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_FOTS_Fast_Oriented_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jiangxiluning/FOTS.PyTorch,118,1/2/2019
+Grammar Variational Autoencoder,http://proceedings.mlr.press/v70/kusner17a.html,ICML,2017,https://github.com/episodeyang/grammar_variational_autoencoder,46,1/2/2019
+Measuring abstract reasoning in neural networks,http://proceedings.mlr.press/v80/santoro18a.html,ICML,2018,https://github.com/deepmind/abstract-reasoning-matrices,51,1/2/2019
+Unsupervised Attention-guided Image-to-Image Translation,https://arxiv.org/abs/1806.02311,NIPS,2018,https://github.com/AlamiMejjati/Unsupervised-Attention-guided-Image-to-Image-Translation,110,1/2/2019
+Visual Translation Embedding Network for Visual Relation Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Visual_Translation_Embedding_CVPR_2017_paper.html,CVPR,2017,https://github.com/zawlin/cvpr17_vtranse,54,1/2/2019
+Learning towards Minimum Hyperspherical Energy,http://arxiv.org/abs/1805.09298v4,NIPS,2018,https://github.com/wy1iu/MHE,54,1/2/2019
+Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network,http://papers.nips.cc/paper/6854-predicting-organic-reaction-outcomes-with-weisfeiler-lehman-network.pdf,NIPS,2017,https://github.com/wengong-jin/nips17-rexgen,46,1/2/2019
+Structured Bayesian Pruning via Log-Normal Multiplicative Noise,http://papers.nips.cc/paper/7254-structured-bayesian-pruning-via-log-normal-multiplicative-noise.pdf,NIPS,2017,https://github.com/necludov/group-sparsity-sbp,44,1/2/2019
+Modulating early visual processing by language,http://papers.nips.cc/paper/7237-modulating-early-visual-processing-by-language.pdf,NIPS,2017,https://github.com/GuessWhatGame/guesswhat,49,1/2/2019
+Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam,http://proceedings.mlr.press/v80/khan18a.html,ICML,2018,https://github.com/emtiyaz/vadam,49,1/2/2019
+A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning,http://papers.nips.cc/paper/6951-a-disentangled-recognition-and-nonlinear-dynamics-model-for-unsupervised-learning.pdf,NIPS,2017,https://github.com/simonkamronn/kvae,53,1/2/2019
+Learning Pose Specific Representations by Predicting Different Views,http://openaccess.thecvf.com/content_cvpr_2018/papers/Poier_Learning_Pose_Specific_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/poier/PreView,44,1/2/2019
+Learning Rigidity in Dynamic Scenes with a Moving Camera for 3D Motion Field Estimation,http://openaccess.thecvf.com/content_ECCV_2018/html/Zhaoyang_Lv_Learning_Rigidity_in_ECCV_2018_paper.html,ECCV,2018,https://github.com/NVlabs/learningrigidity,61,1/2/2019
+Adversarial Examples for Semantic Segmentation and Object Detection,http://openaccess.thecvf.com/content_iccv_2017/html/Xie_Adversarial_Examples_for_ICCV_2017_paper.html,ICCV,2017,https://github.com/cihangxie/DAG,49,1/2/2019
+BING: Binarized Normed Gradients for Objectness Estimation at 300fps,http://openaccess.thecvf.com/content_cvpr_2014/html/Cheng_BING_Binarized_Normed_2014_CVPR_paper.html,CVPR,2014,https://github.com/alessandroferrari/BING-Objectness,44,1/2/2019
+Video Pixel Networks,http://proceedings.mlr.press/v70/kalchbrenner17a.html,ICML,2017,https://github.com/3ammor/Video-Pixel-Networks,45,1/2/2019
+Learning Residual Images for Face Attribute Manipulation,http://openaccess.thecvf.com/content_cvpr_2017/html/Shen_Learning_Residual_Images_CVPR_2017_paper.html,CVPR,2017,https://github.com/Zhongdao/FaceAttributeManipulation,43,1/2/2019
+Differentiable Compositional Kernel Learning for Gaussian Processes,http://proceedings.mlr.press/v80/sun18e.html,ICML,2018,https://github.com/ssydasheng/Neural-Kernel-Network,45,1/2/2019
+Learned D-AMP: Principled Neural Network based Compressive Image Recovery,http://papers.nips.cc/paper/6774-learned-d-amp-principled-neural-network-based-compressive-image-recovery.pdf,NIPS,2017,https://github.com/ricedsp/D-AMP_Toolbox,47,1/2/2019
+Accurate Optical Flow via Direct Cost Volume Processing,http://openaccess.thecvf.com/content_cvpr_2017/html/Xu_Accurate_Optical_Flow_CVPR_2017_paper.html,CVPR,2017,https://github.com/IntelVCL/dcflow,42,1/2/2019
+Learning From Massive Noisy Labeled Data for Image Classification,http://openaccess.thecvf.com/content_cvpr_2015/html/Xiao_Learning_From_Massive_2015_CVPR_paper.html,CVPR,2015,https://github.com/Cysu/noisy_label,45,1/2/2019
+Hierarchical Bilinear Pooling for Fine-Grained Visual Recognition,http://openaccess.thecvf.com/content_ECCV_2018/html/Chaojian_Yu_Hierarchical_Bilinear_Pooling_ECCV_2018_paper.html,ECCV,2018,https://github.com/ChaojianYu/Hierarchical-Bilinear-Pooling,57,1/2/2019
+CRAFT Objects From Images,http://openaccess.thecvf.com/content_cvpr_2016/html/Yang_CRAFT_Objects_From_CVPR_2016_paper.html,CVPR,2016,https://github.com/byangderek/CRAFT,41,1/2/2019
+Semantic Compositional Networks for Visual Captioning,http://openaccess.thecvf.com/content_cvpr_2017/html/Gan_Semantic_Compositional_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/zhegan27/Semantic_Compositional_Nets,45,1/2/2019
+Exploit the Unknown Gradually: One-Shot Video-Based Person Re-Identification by Stepwise Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wu_Exploit_the_Unknown_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Yu-Wu/Exploit-Unknown-Gradually,59,1/2/2019
+Real-World Anomaly Detection in Surveillance Videos,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sultani_Real-World_Anomaly_Detection_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/WaqasSultani/AnomalyDetectionCVPR2018,72,1/2/2019
+Deriving Neural Architectures from Sequence and Graph Kernels,http://proceedings.mlr.press/v70/lei17a.html,ICML,2017,https://github.com/taolei87/icml17_knn,44,1/2/2019
+DeepVS: A Deep Learning Based Video Saliency Prediction Approach,http://openaccess.thecvf.com/content_ECCV_2018/html/Lai_Jiang_DeepVS_A_Deep_ECCV_2018_paper.html,ECCV,2018,https://github.com/remega/OMCNN_2CLSTM,53,1/2/2019
+Slicing Convolutional Neural Network for Crowd Video Understanding,http://openaccess.thecvf.com/content_cvpr_2016/html/Shao_Slicing_Convolutional_Neural_CVPR_2016_paper.html,CVPR,2016,https://github.com/amandajshao/Slicing-CNN,40,1/2/2019
+A Linear-Time Kernel Goodness-of-Fit Test,http://papers.nips.cc/paper/6630-a-linear-time-kernel-goodness-of-fit-test.pdf,NIPS,2017,https://github.com/wittawatj/kernel-gof,40,1/2/2019
+Stabilizing Training of Generative Adversarial Networks through Regularization,http://papers.nips.cc/paper/6797-stabilizing-training-of-generative-adversarial-networks-through-regularization.pdf,NIPS,2017,https://github.com/rothk/Stabilizing_GANs,45,1/2/2019
+RayNet: Learning Volumetric 3D Reconstruction With Ray Potentials,http://openaccess.thecvf.com/content_cvpr_2018/papers/Paschalidou_RayNet_Learning_Volumetric_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/paschalidoud/raynet,51,1/2/2019
+Rotation-Sensitive Regression for Oriented Scene Text Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liao_Rotation-Sensitive_Regression_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/MhLiao/RRD,61,1/2/2019
+Learning Intrinsic Image Decomposition From Watching the World,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Learning_Intrinsic_Image_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/lixx2938/unsupervised-learning-intrinsic-images,45,1/2/2019
+Learning Efficient Single-stage Pedestrian Detectors by Asymptotic Localization Fitting,http://openaccess.thecvf.com/content_ECCV_2018/html/Wei_Liu_Learning_Efficient_Single-stage_ECCV_2018_paper.html,ECCV,2018,https://github.com/liuwei16/ALFNet,52,1/2/2019
+Neural Scene De-Rendering,http://openaccess.thecvf.com/content_cvpr_2017/html/Wu_Neural_Scene_De-Rendering_CVPR_2017_paper.html,CVPR,2017,https://github.com/jiajunwu/nsd,40,1/2/2019
+P-CNN: Pose-Based CNN Features for Action Recognition,http://openaccess.thecvf.com/content_iccv_2015/html/Cheron_P-CNN_Pose-Based_CNN_ICCV_2015_paper.html,ICCV,2015,https://github.com/gcheron/P-CNN,45,1/2/2019
+Video Re-localization,http://openaccess.thecvf.com/content_ECCV_2018/html/Yang_Feng_Video_Re-localization_via_ECCV_2018_paper.html,ECCV,2018,https://github.com/fengyang0317/video_reloc,46,1/2/2019
+Image Manipulation with Perceptual Discriminators,http://openaccess.thecvf.com/content_ECCV_2018/html/Diana_Sungatullina_Image_Manipulation_with_ECCV_2018_paper.html,ECCV,2018,https://github.com/egorzakharov/PerceptualGAN,45,1/2/2019
+Unsupervised Adaptation for Deep Stereo,http://openaccess.thecvf.com/content_iccv_2017/html/Tonioni_Unsupervised_Adaptation_for_ICCV_2017_paper.html,ICCV,2017,https://github.com/CVLAB-Unibo/Unsupervised-Adaptation-for-Deep-Stereo,44,1/2/2019
+Generalized Orderless Pooling Performs Implicit Salient Matching,http://openaccess.thecvf.com/content_iccv_2017/html/Simon_Generalized_Orderless_Pooling_ICCV_2017_paper.html,ICCV,2017,https://github.com/cvjena/alpha_pooling,42,1/2/2019
+Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model,http://openaccess.thecvf.com/content_ECCV_2018/html/Baris_Gecer_Semi-supervised_Adversarial_Learning_ECCV_2018_paper.html,ECCV,2018,https://github.com/barisgecer/facegan,55,1/2/2019
+Comparative Evaluation of Hand-Crafted and Learned Local Features,http://openaccess.thecvf.com/content_cvpr_2017/html/Schonberger_Comparative_Evaluation_of_CVPR_2017_paper.html,CVPR,2017,https://github.com/ahojnnes/local-feature-evaluation,42,1/2/2019
+Deep Region and Multi-Label Learning for Facial Action Unit Detection,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhao_Deep_Region_and_CVPR_2016_paper.html,CVPR,2016,https://github.com/zkl20061823/DRML,43,1/2/2019
+On-Demand Learning for Deep Image Restoration,http://openaccess.thecvf.com/content_iccv_2017/html/Gao_On-Demand_Learning_for_ICCV_2017_paper.html,ICCV,2017,https://github.com/rhgao/on-demand-learning,45,1/2/2019
+Wavelet-SRNet: A Wavelet-Based CNN for Multi-Scale Face Super Resolution,http://openaccess.thecvf.com/content_iccv_2017/html/Huang_Wavelet-SRNet_A_Wavelet-Based_ICCV_2017_paper.html,ICCV,2017,https://github.com/hhb072/WaveletSRNet,56,1/2/2019
+Coloring with Words: Guiding Image Colorization Through Text-based Palette Generation,http://openaccess.thecvf.com/content_ECCV_2018/html/Hyojin_Bahng_Coloring_with_Words_ECCV_2018_paper.html,ECCV,2018,https://github.com/awesome-davian/Text2Colors,50,1/2/2019
+SchNet: A continuous-filter convolutional neural network for modeling quantum interactions,http://papers.nips.cc/paper/6700-schnet-a-continuous-filter-convolutional-neural-network-for-modeling-quantum-interactions.pdf,NIPS,2017,https://github.com/atomistic-machine-learning/SchNet,41,1/2/2019
+Diversified Texture Synthesis With Feed-Forward Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Li_Diversified_Texture_Synthesis_CVPR_2017_paper.html,CVPR,2017,https://github.com/Yijunmaverick/MultiTextureSynthesis,39,1/2/2019
+Deep k-Means: Re-Training and Parameter Sharing with Harder Cluster Assignments for Compressing Deep Convolutions,http://proceedings.mlr.press/v80/wu18h.html,ICML,2018,https://github.com/Sandbox3aster/Deep-K-Means-pytorch,48,1/2/2019
+Superpixel Sampling Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Varun_Jampani_Superpixel_Sampling_Networks_ECCV_2018_paper.html,ECCV,2018,https://github.com/NVlabs/ssn_superpixels,74,1/2/2019
+Multiple People Tracking by Lifted Multicut and Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2017/html/Tang_Multiple_People_Tracking_CVPR_2017_paper.html,CVPR,2017,https://github.com/jutanke/cabbage,47,1/2/2019
+TALL: Temporal Activity Localization via Language Query,http://openaccess.thecvf.com/content_iccv_2017/html/Gao_TALL_Temporal_Activity_ICCV_2017_paper.html,ICCV,2017,https://github.com/jiyanggao/TALL,50,1/2/2019
+Learning Pixel-Level Semantic Affinity With Image-Level Supervision for Weakly Supervised Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Ahn_Learning_Pixel-Level_Semantic_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jiwoon-ahn/psa,52,1/2/2019
+Least Squares Generative Adversarial Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Mao_Least_Squares_Generative_ICCV_2017_paper.html,ICCV,2017,https://github.com/GunhoChoi/LSGAN-TF,39,1/2/2019
+Masked Autoregressive Flow for Density Estimation,http://papers.nips.cc/paper/6828-masked-autoregressive-flow-for-density-estimation.pdf,NIPS,2017,https://github.com/gpapamak/maf,44,1/2/2019
+Fast Fourier Color Constancy,http://openaccess.thecvf.com/content_cvpr_2017/html/Barron_Fast_Fourier_Color_CVPR_2017_paper.html,CVPR,2017,https://github.com/google/ffcc,49,1/2/2019
+A Generic Deep Architecture for Single Image Reflection Removal and Image Smoothing,http://openaccess.thecvf.com/content_iccv_2017/html/Fan_A_Generic_Deep_ICCV_2017_paper.html,ICCV,2017,https://github.com/fqnchina/CEILNet,52,1/2/2019
+Neural Episodic Control,http://proceedings.mlr.press/v70/pritzel17a.html,ICML,2017,https://github.com/EndingCredits/Neural-Episodic-Control,37,1/2/2019
+Multiplicative Normalizing Flows for Variational Bayesian Neural Networks,http://proceedings.mlr.press/v70/louizos17a.html,ICML,2017,https://github.com/AMLab-Amsterdam/MNF_VBNN,41,1/2/2019
+CBAM: Convolutional Block Attention Module,http://openaccess.thecvf.com/content_ECCV_2018/html/Sanghyun_Woo_Convolutional_Block_Attention_ECCV_2018_paper.html,ECCV,2018,https://github.com/Youngkl0726/Convolutional-Block-Attention-Module,57,1/2/2019
+Self-produced Guidance for Weakly-supervised Object Localization,http://openaccess.thecvf.com/content_ECCV_2018/html/Xiaolin_Zhang_Self-produced_Guidance_for_ECCV_2018_paper.html,ECCV,2018,https://github.com/xiaomengyc/SPG,51,1/2/2019
+Deep Spectral Clustering Learning,http://proceedings.mlr.press/v70/law17a.html,ICML,2017,https://github.com/wlwkgus/DeepSpectralClustering,45,1/2/2019
+"Face Normals ""In-The-Wild"" Using Fully Convolutional Networks",http://openaccess.thecvf.com/content_cvpr_2017/html/Trigeorgis_Face_Normals_In-The-Wild_CVPR_2017_paper.html,CVPR,2017,https://github.com/trigeorgis/face_normals_cvpr17,38,1/2/2019
+What's in a Question: Using Visual Questions as a Form of Supervision,http://openaccess.thecvf.com/content_cvpr_2017/html/Ganju_Whats_in_a_CVPR_2017_paper.html,CVPR,2017,https://github.com/sidgan/whats_in_a_question,38,1/2/2019
+Surface Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kostrikov_Surface_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jiangzhongshi/SurfaceNetworks,48,1/2/2019
+PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning,http://proceedings.mlr.press/v80/wang18b.html,ICML,2018,https://github.com/Yunbo426/predrnn-pp,42,1/2/2019
+FC4: Fully Convolutional Color Constancy With Confidence-Weighted Pooling,http://openaccess.thecvf.com/content_cvpr_2017/html/Hu_FC4_Fully_Convolutional_CVPR_2017_paper.html,CVPR,2017,https://github.com/yuanming-hu/fc4,47,1/2/2019
+Convolutional Color Constancy,http://openaccess.thecvf.com/content_iccv_2015/html/Barron_Convolutional_Color_Constancy_ICCV_2015_paper.html,ICCV,2015,https://github.com/yuanming-hu/fc4,47,1/2/2019
+Deep Supervised Hashing for Fast Image Retrieval,http://openaccess.thecvf.com/content_cvpr_2016/html/Liu_Deep_Supervised_Hashing_CVPR_2016_paper.html,CVPR,2016,https://github.com/yg33717/DSH_tensorflow,50,1/2/2019
+SketchyGAN: Towards Diverse and Realistic Sketch to Image Synthesis,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_SketchyGAN_Towards_Diverse_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/wchen342/SketchyGAN,51,1/2/2019
+Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples,http://proceedings.mlr.press/v80/weiss18a.html,ICML,2018,https://github.com/tech-srl/lstar_extraction,37,1/2/2019
+Template Matching With Deformable Diversity Similarity,http://openaccess.thecvf.com/content_cvpr_2017/html/Talmi_Template_Matching_With_CVPR_2017_paper.html,CVPR,2017,https://github.com/roimehrez/DDIS,38,1/2/2019
+Temporal Generative Adversarial Nets With Singular Value Clipping,http://openaccess.thecvf.com/content_iccv_2017/html/Saito_Temporal_Generative_Adversarial_ICCV_2017_paper.html,ICCV,2017,https://github.com/pfnet-research/tgan,41,1/2/2019
+Structured Embedding Models for Grouped Data,http://papers.nips.cc/paper/6629-structured-embedding-models-for-grouped-data.pdf,NIPS,2017,https://github.com/mariru/structured_embeddings,36,1/2/2019
+Overcoming Catastrophic Forgetting with Hard Attention to the Task,http://proceedings.mlr.press/v80/serra18a.html,ICML,2018,https://github.com/joansj/hat,44,1/2/2019
+Predicting Matchability,http://openaccess.thecvf.com/content_cvpr_2014/html/Hartmann_Predicting_Matchability_2014_CVPR_paper.html,CVPR,2014,https://github.com/jacekm-git/BetBoy,38,1/2/2019
+3D Reconstruction from Accidental Motion,http://openaccess.thecvf.com/content_cvpr_2014/html/Yu_3D_Reconstruction_from_2014_CVPR_paper.html,CVPR,2014,https://github.com/fyu/tiny,42,1/2/2019
+Neural Autoregressive Flows,http://proceedings.mlr.press/v80/huang18d.html,ICML,2018,https://github.com/CW-Huang/NAF,47,1/2/2019
+Image Specificity,http://openaccess.thecvf.com/content_cvpr_2015/html/Jas_Image_Specificity_2015_CVPR_paper.html,CVPR,2015,https://github.com/burliEnterprises/tensorflow-image-classifier,40,1/2/2019
+Robust Classification With Convolutional Prototype Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_Robust_Classification_With_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/YangHM/Convolutional-Prototype-Learning,43,1/2/2019
+Transfer Joint Matching for Unsupervised Domain Adaptation,http://openaccess.thecvf.com/content_cvpr_2014/html/Long_Transfer_Joint_Matching_2014_CVPR_paper.html,CVPR,2014,https://github.com/USTCPCS/CVPR2018_attention,67,1/2/2019
+Deep Transfer Learning with Joint Adaptation Networks,http://proceedings.mlr.press/v70/long17a.html,ICML,2017,https://github.com/USTCPCS/CVPR2018_attention,67,1/2/2019
+Face Flow,http://openaccess.thecvf.com/content_iccv_2015/html/Snape_Face_Flow_ICCV_2015_paper.html,ICCV,2015,https://github.com/shashanktyagi/HyperFace-TensorFlow-implementation,45,1/2/2019
+Sketch Me That Shoe,http://openaccess.thecvf.com/content_cvpr_2016/html/Yu_Sketch_Me_That_CVPR_2016_paper.html,CVPR,2016,https://github.com/seuliufeng/DeepSBIR,39,1/2/2019
+Learning to Generate Long-term Future via Hierarchical Prediction,http://proceedings.mlr.press/v70/villegas17a.html,ICML,2017,https://github.com/rubenvillegas/icml2017hierchvid,43,1/2/2019
+"Predicting Depth, Surface Normals and Semantic Labels With a Common Multi-Scale Convolutional Architecture",http://openaccess.thecvf.com/content_iccv_2015/html/Eigen_Predicting_Depth_Surface_ICCV_2015_paper.html,ICCV,2015,https://github.com/Rostifar/NYUDepthNet,35,1/2/2019
+One Millisecond Face Alignment with an Ensemble of Regression Trees,http://openaccess.thecvf.com/content_cvpr_2014/html/Kazemi_One_Millisecond_Face_2014_CVPR_paper.html,CVPR,2014,https://github.com/jjrCN/ERT-GBDT_Face_Alignment,43,1/2/2019
+Neural Activation Constellations: Unsupervised Part Model Discovery With Convolutional Networks,http://openaccess.thecvf.com/content_iccv_2015/html/Simon_Neural_Activation_Constellations_ICCV_2015_paper.html,ICCV,2015,https://github.com/cvjena/part_constellation_models,35,1/2/2019
+Mid-Level Deep Pattern Mining,http://openaccess.thecvf.com/content_cvpr_2015/html/Li_Mid-Level_Deep_Pattern_2015_CVPR_paper.html,CVPR,2015,https://github.com/yaoliUoA/MDPM,34,1/2/2019
+Partial Adversarial Domain Adaptation,http://openaccess.thecvf.com/content_ECCV_2018/html/Zhangjie_Cao_Partial_Adversarial_Domain_ECCV_2018_paper.html,ECCV,2018,https://github.com/thuml/PADA,43,1/2/2019
+Real Time Image Saliency for Black Box Classifiers,http://papers.nips.cc/paper/7272-real-time-image-saliency-for-black-box-classifiers.pdf,NIPS,2017,https://github.com/PiotrDabkowski/pytorch-saliency,48,1/2/2019
+Pose Partition Networks for Multi-Person Pose Estimation,http://openaccess.thecvf.com/content_ECCV_2018/html/Xuecheng_Nie_Pose_Partition_Networks_ECCV_2018_paper.html,ECCV,2018,https://github.com/NieXC/pytorch-ppn,47,1/2/2019
+Mutual Learning to Adapt for Joint Human Parsing and Pose Estimation,http://openaccess.thecvf.com/content_ECCV_2018/html/Xuecheng_Nie_Mutual_Learning_to_ECCV_2018_paper.html,ECCV,2018,https://github.com/NieXC/pytorch-mula,43,1/2/2019
+Frame-Recurrent Video Super-Resolution,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sajjadi_Frame-Recurrent_Video_Super-Resolution_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/msmsajjadi/FRVSR,58,1/2/2019
+VQA: Visual Question Answering,http://openaccess.thecvf.com/content_iccv_2015/html/Antol_VQA_Visual_Question_ICCV_2015_paper.html,ICCV,2015,https://github.com/imatge-upc/vqa-2016-cvprw,35,1/2/2019
+Multi-View Silhouette and Depth Decomposition for High Resolution 3D Object Representation,https://arxiv.org/abs/1802.09987,NIPS,2018,https://github.com/EdwardSmith1884/Multi-View-Silhouette-and-Depth-Decomposition-for-High-Resolution-3D-Object-Representation,40,1/2/2019
+Part-Aligned Bilinear Representations for Person Re-Identification,http://openaccess.thecvf.com/content_ECCV_2018/html/Yumin_Suh_Part-Aligned_Bilinear_Representations_ECCV_2018_paper.html,ECCV,2018,https://github.com/yuminsuh/part_bilinear_reid,64,1/2/2019
+Structured Attentions for Visual Question Answering,http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Structured_Attentions_for_ICCV_2017_paper.html,ICCV,2017,https://github.com/shtechair/vqa-sva,34,1/2/2019
+Generalisation in humans and deep neural networks,http://arxiv.org/abs/1808.08750v1,NIPS,2018,https://github.com/rgeirhos/generalisation-humans-DNNs,41,1/2/2019
+Using Ranking-CNN for Age Estimation,http://openaccess.thecvf.com/content_cvpr_2017/html/Chen_Using_Ranking-CNN_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/RankingCNN/Using-Ranking-CNN-for-Age-Estimation,33,1/2/2019
+Generative Adversarial Perturbations,http://openaccess.thecvf.com/content_cvpr_2018/papers/Poursaeed_Generative_Adversarial_Perturbations_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/OmidPoursaeed/Generative_Adversarial_Perturbations,40,1/2/2019
+EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis,http://openaccess.thecvf.com/content_iccv_2017/html/Sajjadi_EnhanceNet_Single_Image_ICCV_2017_paper.html,ICCV,2017,https://github.com/msmsajjadi/EnhanceNet-Code,46,1/2/2019
+A Dual-Source Approach for 3D Pose Estimation From a Single Image,http://openaccess.thecvf.com/content_cvpr_2016/html/Yasin_A_Dual-Source_Approach_CVPR_2016_paper.html,CVPR,2016,https://github.com/iqbalu/3D_Pose_Estimation_CVPR2016,32,1/2/2019
+Human Semantic Parsing for Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kalayeh_Human_Semantic_Parsing_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/emrahbasaran/SPReID,61,1/2/2019
+Car That Knows Before You Do: Anticipating Maneuvers via Learning Temporal Driving Models,http://openaccess.thecvf.com/content_iccv_2015/html/Jain_Car_That_Knows_ICCV_2015_paper.html,ICCV,2015,https://github.com/asheshjain399/ICCV2015_Brain4Cars,33,1/2/2019
+3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation,http://openaccess.thecvf.com/content_ECCV_2018/html/Angela_Dai_3DMV_Joint_3D-Multi-View_ECCV_2018_paper.html,ECCV,2018,https://github.com/angeladai/3DMV,74,1/2/2019
+Towards Binary-Valued Gates for Robust LSTM Training,http://proceedings.mlr.press/v80/li18c.html,ICML,2018,https://github.com/zhuohan123/g2-lstm,41,1/2/2019
+Dynamic Word Embeddings,http://proceedings.mlr.press/v70/bamler17a.html,ICML,2017,https://github.com/YingyuLiang/SemanticVector,32,1/2/2019
+Holistic 3D Scene Parsing and Reconstruction from a Single RGB Image,http://openaccess.thecvf.com/content_ECCV_2018/html/Siyuan_Huang_Monocular_Scene_Parsing_ECCV_2018_paper.html,ECCV,2018,https://github.com/thusiyuan/holistic_scene_parsing,72,1/2/2019
+Unified Deep Supervised Domain Adaptation and Generalization,http://openaccess.thecvf.com/content_iccv_2017/html/Motiian_Unified_Deep_Supervised_ICCV_2017_paper.html,ICCV,2017,https://github.com/samotiian/CCSA,35,1/2/2019
+Conditional Image Synthesis with Auxiliary Classifier GANs,http://proceedings.mlr.press/v70/odena17a.html,ICML,2017,https://github.com/kimhc6028/acgan-pytorch,37,1/2/2019
+Few-Shot Image Recognition by Predicting Parameters From Activations,http://openaccess.thecvf.com/content_cvpr_2018/papers/Qiao_Few-Shot_Image_Recognition_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/joe-siyuan-qiao/FewShot-CVPR,37,1/2/2019
+Actor and Observer: Joint Modeling of First and Third-Person Videos,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sigurdsson_Actor_and_Observer_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/gsig/actor-observer,48,1/2/2019
+Visualizing and Understanding Atari Agents,http://proceedings.mlr.press/v80/greydanus18a.html,ICML,2018,https://github.com/greydanus/visualize_atari,45,1/2/2019
+A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation,http://openaccess.thecvf.com/content_cvpr_2016/html/Perazzi_A_Benchmark_Dataset_CVPR_2016_paper.html,CVPR,2016,https://github.com/davisvideochallenge/davis-matlab,33,1/2/2019
+NetGAN: Generating Graphs via Random Walks,http://proceedings.mlr.press/v80/bojchevski18a.html,ICML,2018,https://github.com/danielzuegner/netgan,39,1/2/2019
+Hyperbolic Entailment Cones for Learning Hierarchical Embeddings,http://proceedings.mlr.press/v80/ganea18a.html,ICML,2018,https://github.com/dalab/hyperbolic_cones,46,1/2/2019
+Semantic Image Inpainting With Deep Generative Models,http://openaccess.thecvf.com/content_cvpr_2017/html/Yeh_Semantic_Image_Inpainting_CVPR_2017_paper.html,CVPR,2017,https://github.com/ChengBinJin/semantic-image-inpainting,40,1/2/2019
+Image Captioning With Semantic Attention,http://openaccess.thecvf.com/content_cvpr_2016/html/You_Image_Captioning_With_CVPR_2016_paper.html,CVPR,2016,https://github.com/chapternewscu/image-captioning-with-semantic-attention,35,1/2/2019
+Safe Model-based Reinforcement Learning with Stability Guarantees,http://papers.nips.cc/paper/6692-safe-model-based-reinforcement-learning-with-stability-guarantees.pdf,NIPS,2017,https://github.com/befelix/safe_learning,45,1/2/2019
+Learning Detection With Diverse Proposals,http://openaccess.thecvf.com/content_cvpr_2017/html/Azadi_Learning_Detection_With_CVPR_2017_paper.html,CVPR,2017,https://github.com/azadis/LDDP,31,1/2/2019
+Learning-based Video Motion Magnification,http://openaccess.thecvf.com/content_ECCV_2018/html/Tae-Hyun_Oh_Learning-based_Video_Motion_ECCV_2018_paper.html,ECCV,2018,https://github.com/12dmodel/deep_motion_mag,47,1/2/2019
+Choose Your Neuron: Incorporating Domain Knowledge through Neuron-Importance,http://openaccess.thecvf.com/content_ECCV_2018/html/Ramprasaath_Ramasamy_Selvaraju_Choose_Your_Neuron_ECCV_2018_paper.html,ECCV,2018,https://github.com/ramprs/neuron-importance-zsl,40,1/2/2019
+Mean Field Multi-Agent Reinforcement Learning,http://proceedings.mlr.press/v80/yang18d.html,ICML,2018,https://github.com/mlii/mfrl,43,1/2/2019
+Learning Active Learning from Data,http://papers.nips.cc/paper/7010-learning-active-learning-from-data.pdf,NIPS,2017,https://github.com/ksenia-konyushkova/LAL,36,1/2/2019
+TILDE: A Temporally Invariant Learned DEtector,http://openaccess.thecvf.com/content_cvpr_2015/html/Verdie_TILDE_A_Temporally_2015_CVPR_paper.html,CVPR,2015,https://github.com/kmyid/TILDE,30,1/2/2019
+Deep Saliency With Encoded Low Level Distance Map and High Level Features,http://openaccess.thecvf.com/content_cvpr_2016/html/Lee_Deep_Saliency_With_CVPR_2016_paper.html,CVPR,2016,https://github.com/gylee1103/SaliencyELD,34,1/2/2019
+Learning Visual Question Answering by Bootstrapping Hard Attention,http://openaccess.thecvf.com/content_ECCV_2018/html/Mateusz_Malinowski_Learning_Visual_Question_ECCV_2018_paper.html,ECCV,2018,https://github.com/gnouhp/PyTorch-AdaHAN,33,1/2/2019
+Non-Local Image Dehazing,http://openaccess.thecvf.com/content_cvpr_2016/html/Berman_Non-Local_Image_Dehazing_CVPR_2016_paper.html,CVPR,2016,https://github.com/danaberman/non-local-dehazing,50,1/2/2019
+QMDP-Net: Deep Learning for Planning under Partial Observability,http://papers.nips.cc/paper/7055-qmdp-net-deep-learning-for-planning-under-partial-observability.pdf,NIPS,2017,https://github.com/AdaCompNUS/qmdp-net,34,1/2/2019
+3D-PRNN: Generating Shape Primitives With Recurrent Neural Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Zou_3D-PRNN_Generating_Shape_ICCV_2017_paper.html,ICCV,2017,https://github.com/zouchuhang/3D-PRNN,37,1/2/2019
+Learning Local Image Descriptors With Deep Siamese and Triplet Convolutional Networks by Minimising Global Loss Functions,http://openaccess.thecvf.com/content_cvpr_2016/html/G_Learning_Local_Image_CVPR_2016_paper.html,CVPR,2016,https://github.com/vijaykbg/deep-patchmatch,30,1/2/2019
+Transformation-Grounded Image Generation Network for Novel 3D View Synthesis,http://openaccess.thecvf.com/content_cvpr_2017/html/Park_Transformation-Grounded_Image_Generation_CVPR_2017_paper.html,CVPR,2017,https://github.com/silverbottlep/tvsn,35,1/2/2019
+Zero-Shot Object Detection,http://openaccess.thecvf.com/content_ECCV_2018/html/Ankan_Bansal_Zero-Shot_Object_Detection_ECCV_2018_paper.html,ECCV,2018,https://github.com/salman-h-khan/ZSD_Release,43,1/2/2019
+Speaking the Same Language: Matching Machine to Human Captions by Adversarial Training,http://openaccess.thecvf.com/content_iccv_2017/html/Shetty_Speaking_the_Same_ICCV_2017_paper.html,ICCV,2017,https://github.com/rakshithShetty/captionGAN,30,1/2/2019
+Black-box Adversarial Attacks with Limited Queries and Information,http://proceedings.mlr.press/v80/ilyas18a.html,ICML,2018,https://github.com/labsix/limited-blackbox-attacks,46,1/2/2019
+Stacked Cross Attention for Image-Text Matching,http://openaccess.thecvf.com/content_ECCV_2018/html/Kuang-Huei_Lee_Stacked_Cross_Attention_ECCV_2018_paper.html,ECCV,2018,https://github.com/kuanghuei/SCAN,48,1/2/2019
+StyleNet: Generating Attractive Visual Captions With Styles,http://openaccess.thecvf.com/content_cvpr_2017/html/Gan_StyleNet_Generating_Attractive_CVPR_2017_paper.html,CVPR,2017,https://github.com/kacky24/stylenet,32,1/2/2019
+Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes,http://openaccess.thecvf.com/content_cvpr_2017/html/Pohlen_Full-Resolution_Residual_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/hiwonjoon/tf-frrn,31,1/2/2019
+Geometric Loss Functions for Camera Pose Regression With Deep Learning,http://openaccess.thecvf.com/content_cvpr_2017/html/Kendall_Geometric_Loss_Functions_CVPR_2017_paper.html,CVPR,2017,https://github.com/futurely/deep-camera-relocalization,34,1/2/2019
+VidLoc: A Deep Spatio-Temporal Model for 6-DoF Video-Clip Relocalization,http://openaccess.thecvf.com/content_cvpr_2017/html/Clark_VidLoc_A_Deep_CVPR_2017_paper.html,CVPR,2017,https://github.com/futurely/deep-camera-relocalization,34,1/2/2019
+PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization,http://openaccess.thecvf.com/content_iccv_2015/html/Kendall_PoseNet_A_Convolutional_ICCV_2015_paper.html,ICCV,2015,https://github.com/futurely/deep-camera-relocalization,34,1/2/2019
+The Statistical Recurrent Unit,http://proceedings.mlr.press/v70/oliva17a.html,ICML,2017,https://github.com/DLHacks/SRU,29,1/2/2019
+SplitNet: Learning to Semantically Split Deep Networks for Parameter Reduction and Model Parallelization,http://proceedings.mlr.press/v70/kim17b.html,ICML,2017,https://github.com/dalgu90/splitnet-wrn,29,1/2/2019
+Graphical Generative Adversarial Networks,http://arxiv.org/abs/1804.03429v1,NIPS,2018,https://github.com/zhenxuan00/graphical-gan,36,1/2/2019
+Fast Bilateral-Space Stereo for Synthetic Defocus,http://openaccess.thecvf.com/content_cvpr_2015/html/Barron_Fast_Bilateral-Space_Stereo_2015_CVPR_paper.html,CVPR,2015,https://github.com/tvandenzegel/fast_bilateral_space_stereo,29,1/2/2019
+Gated Fusion Network for Single Image Dehazing,http://openaccess.thecvf.com/content_cvpr_2018/papers/Ren_Gated_Fusion_Network_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/rwenqi/GFN-dehazing,35,1/2/2019
+Isolating Sources of Disentanglement in Variational Autoencoders,http://arxiv.org/abs/1802.04942v2,NIPS,2018,https://github.com/rtqichen/beta-tcvae,62,1/2/2019
+Learning Semantic Representations for Unsupervised Domain Adaptation,http://proceedings.mlr.press/v80/xie18c.html,ICML,2018,https://github.com/Mid-Push/Moving-Semantic-Transfer-Network,39,1/2/2019
+GP CaKe: Effective brain connectivity with causal kernels,http://papers.nips.cc/paper/6696-gp-cake-effective-brain-connectivity-with-causal-kernels.pdf,NIPS,2017,https://github.com/LucaAmbrogioni/GP-CaKe-project,46,1/2/2019
+CleanNet: Transfer Learning for Scalable Image Classifier Training With Label Noise,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lee_CleanNet_Transfer_Learning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kuanghuei/clean-net,33,1/2/2019
+Recurrent Convolutional Neural Network for Object Recognition,http://openaccess.thecvf.com/content_cvpr_2015/html/Liang_Recurrent_Convolutional_Neural_2015_CVPR_paper.html,CVPR,2015,https://github.com/JimLee4530/RCNN,32,1/2/2019
+On the Robustness of Semantic Segmentation Models to Adversarial Attacks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Arnab_On_the_Robustness_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/hmph/adversarial-attacks,31,1/2/2019
+3D Point Cloud Registration for Localization Using a Deep Neural Network Auto-Encoder,http://openaccess.thecvf.com/content_cvpr_2017/html/Elbaz_3D_Point_Cloud_CVPR_2017_paper.html,CVPR,2017,https://github.com/gilbaz/LORAX,32,1/2/2019
+Continual Learning Through Synaptic Intelligence,http://proceedings.mlr.press/v70/zenke17a.html,ICML,2017,https://github.com/ganguli-lab/pathint,31,1/2/2019
+In Defense of Color-Based Model-Free Tracking,http://openaccess.thecvf.com/content_cvpr_2015/html/Possegger_In_Defense_of_2015_CVPR_paper.html,CVPR,2015,https://github.com/foolwood/DAT,30,1/2/2019
+SeGAN: Segmenting and Generating the Invisible,http://openaccess.thecvf.com/content_cvpr_2018/papers/Ehsani_SeGAN_Segmenting_and_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ehsanik/SeGAN,36,1/2/2019
+Unsupervised Learning of Disentangled Representations from Video,http://papers.nips.cc/paper/7028-unsupervised-learning-of-disentangled-representations-from-video.pdf,NIPS,2017,https://github.com/edenton/drnet-py,32,1/2/2019
+Deeply Learned Attributes for Crowded Scene Understanding,http://openaccess.thecvf.com/content_cvpr_2015/html/Shao_Deeply_Learned_Attributes_2015_CVPR_paper.html,CVPR,2015,https://github.com/amandajshao/www_deep_crowd,27,1/2/2019
+Parsimonious Labeling,http://openaccess.thecvf.com/content_iccv_2015/html/Dokania_Parsimonious_Labeling_ICCV_2015_paper.html,ICCV,2015,https://github.com/aimerykong/Pixel-Attentional-Gating,33,1/2/2019
+Deep Learning on Lie Groups for Skeleton-Based Action Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Deep_Learning_on_CVPR_2017_paper.html,CVPR,2017,https://github.com/zzhiwu/LieNet,32,1/2/2019
+A Unified Approach of Multi-Scale Deep and Hand-Crafted Features for Defocus Estimation,http://openaccess.thecvf.com/content_cvpr_2017/html/Park_A_Unified_Approach_CVPR_2017_paper.html,CVPR,2017,https://github.com/zzangjinsun/DHDE_CVPR17,28,1/2/2019
+Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Jiang_Super_SloMo_High_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/TheFairBear/Super-SlowMo,47,1/2/2019
+Human-Centric Indoor Scene Synthesis Using Stochastic Grammar,http://openaccess.thecvf.com/content_cvpr_2018/papers/Qi_Human-Centric_Indoor_Scene_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/SiyuanQi/human-centric-scene-synthesis,33,1/2/2019
+The Sound of Pixels,http://openaccess.thecvf.com/content_ECCV_2018/html/Hang_Zhao_The_Sound_of_ECCV_2018_paper.html,ECCV,2018,https://github.com/roudimit/MUSIC_dataset,40,1/2/2019
+Video Rain Streak Removal by Multiscale Convolutional Sparse Coding,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Video_Rain_Streak_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/MinghanLi/MS-CSC-Rain-Streak-Removal,29,1/2/2019
+Adversarial Logit Pairing,http://arxiv.org/abs/1803.06373v1,NIPS,2018,https://github.com/labsix/adversarial-logit-pairing-analysis,32,1/2/2019
+Deflecting Adversarial Attacks With Pixel Deflection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Prakash_Deflecting_Adversarial_Attacks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/iamaaditya/pixel-deflection,34,1/2/2019
+LCNN: Lookup-Based Convolutional Neural Network,http://openaccess.thecvf.com/content_cvpr_2017/html/Bagherinezhad_LCNN_Lookup-Based_Convolutional_CVPR_2017_paper.html,CVPR,2017,https://github.com/hessamb/lcnn,31,1/2/2019
+Deep Model-Based 6D Pose Refinement in RGB,http://openaccess.thecvf.com/content_ECCV_2018/html/Fabian_Manhardt_Deep_Model-Based_6D_ECCV_2018_paper.html,ECCV,2018,https://github.com/fabi92/eccv18-rgb_pose_refinement,30,1/2/2019
+No Fuss Distance Metric Learning Using Proxies,http://openaccess.thecvf.com/content_iccv_2017/html/Movshovitz-Attias_No_Fuss_Distance_ICCV_2017_paper.html,ICCV,2017,https://github.com/dichotomies/proxy-nca,38,1/2/2019
+Learning Warped Guidance for Blind Face Restoration,http://openaccess.thecvf.com/content_ECCV_2018/html/Xiaoming_Li_Learning_Warped_Guidance_ECCV_2018_paper.html,ECCV,2018,https://github.com/csxmli2016/GFRNet,39,1/2/2019
+Structured Feature Learning for Pose Estimation,http://openaccess.thecvf.com/content_cvpr_2016/html/Chu_Structured_Feature_Learning_CVPR_2016_paper.html,CVPR,2016,https://github.com/chuxiaoselena/StructuredFeature,29,1/2/2019
+Dense Semantic Image Segmentation with Objects and Attributes,http://openaccess.thecvf.com/content_cvpr_2014/html/Zheng_Dense_Semantic_Image_2014_CVPR_paper.html,CVPR,2014,https://github.com/bittnt/ImageSpirit,28,1/2/2019
+Scene-Independent Group Profiling in Crowd,http://openaccess.thecvf.com/content_cvpr_2014/html/Shao_Scene-Independent_Group_Profiling_2014_CVPR_paper.html,CVPR,2014,https://github.com/amandajshao/crowd_group_profile,28,1/2/2019
+Hierarchical Boundary-Aware Neural Encoder for Video Captioning,http://openaccess.thecvf.com/content_cvpr_2017/html/Baraldi_Hierarchical_Boundary-Aware_Neural_CVPR_2017_paper.html,CVPR,2017,https://github.com/Yugnaynehc/banet,33,1/2/2019
+Neural Guided Constraint Logic Programming for Program Synthesis,http://arxiv.org/abs/1809.02840v2,NIPS,2018,https://github.com/xuexue/neuralkanren,32,1/2/2019
+Ordinal Regression With Multiple Output CNN for Age Estimation,http://openaccess.thecvf.com/content_cvpr_2016/html/Niu_Ordinal_Regression_With_CVPR_2016_paper.html,CVPR,2016,https://github.com/luoyetx/OrdinalRegression,30,1/2/2019
+Unsupervised Learning of Edges,http://openaccess.thecvf.com/content_cvpr_2016/html/Li_Unsupervised_Learning_of_CVPR_2016_paper.html,CVPR,2016,https://github.com/happyharrycn/unsupervised_edges,29,1/2/2019
+TOM-Net: Learning Transparent Object Matting From a Single Image,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_TOM-Net_Learning_Transparent_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/guanyingc/TOM-Net,30,1/2/2019
+Harvesting Multiple Views for Marker-Less 3D Human Pose Annotations,http://openaccess.thecvf.com/content_cvpr_2017/html/Pavlakos_Harvesting_Multiple_Views_CVPR_2017_paper.html,CVPR,2017,https://github.com/geopavlakos/harvesting,27,1/2/2019
+PatchBatch: A Batch Augmented Loss for Optical Flow,http://openaccess.thecvf.com/content_cvpr_2016/html/Gadot_PatchBatch_A_Batch_CVPR_2016_paper.html,CVPR,2016,https://github.com/DediGadot/PatchBatch,27,1/2/2019
+Real-Time Monocular Depth Estimation Using Synthetic Data With Domain Adaptation via Image Style Transfer,http://openaccess.thecvf.com/content_cvpr_2018/papers/Atapour-Abarghouei_Real-Time_Monocular_Depth_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/atapour/monocularDepth-Inference,37,1/2/2019
+Deep Co-Occurrence Feature Learning for Visual Object Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Shih_Deep_Co-Occurrence_Feature_CVPR_2017_paper.html,CVPR,2017,https://github.com/yafangshih/Deep-COOC,29,1/2/2019
+"Understanding Tools: Task-Oriented Object Modeling, Learning and Recognition",http://openaccess.thecvf.com/content_cvpr_2015/html/Zhu_Understanding_Tools_Task-Oriented_2015_CVPR_paper.html,CVPR,2015,https://github.com/xiaozhuchacha/Kinect2Toolbox,27,1/2/2019
+Quaternion Convolutional Neural Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Xuanyu_Zhu_Quaternion_Convolutional_Neural_ECCV_2018_paper.html,ECCV,2018,https://github.com/TParcollet/Quaternion-Convolutional-Neural-Networks-for-End-to-End-Automatic-Speech-Recognition,30,1/2/2019
+Learning Dynamic Memory Networks for Object Tracking,http://openaccess.thecvf.com/content_ECCV_2018/html/Tianyu_Yang_Learning_Dynamic_Memory_ECCV_2018_paper.html,ECCV,2018,https://github.com/skyoung/MemTrack,32,1/2/2019
+Viewpoints and Keypoints,http://openaccess.thecvf.com/content_cvpr_2015/html/Tulsiani_Viewpoints_and_Keypoints_2015_CVPR_paper.html,CVPR,2015,https://github.com/shubhtuls/ViewpointsAndKeypoints,25,1/2/2019
+DeepCD: Learning Deep Complementary Descriptors for Patch Representations,http://openaccess.thecvf.com/content_iccv_2017/html/Yang_DeepCD_Learning_Deep_ICCV_2017_paper.html,ICCV,2017,https://github.com/shamangary/DeepCD,26,1/2/2019
+Interpretable Convolutional Neural Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Interpretable_Convolutional_Neural_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/seongjunyun/CNN-with-Dual-Local-and-Global-Attention,40,1/2/2019
+Learning to Detect Salient Objects With Image-Level Supervision,http://openaccess.thecvf.com/content_cvpr_2017/html/Wang_Learning_to_Detect_CVPR_2017_paper.html,CVPR,2017,https://github.com/scott89/WSS,26,1/2/2019
+Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields,http://openaccess.thecvf.com/content_cvpr_2017/html/Cao_Realtime_Multi-Person_2D_CVPR_2017_paper.html,CVPR,2017,https://github.com/PoseAIChallenger/mxnet_pose_for_AI_challenger,29,1/2/2019
+Deep Variation-Structured Reinforcement Learning for Visual Relationship and Attribute Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Liang_Deep_Variation-Structured_Reinforcement_CVPR_2017_paper.html,CVPR,2017,https://github.com/nexusapoorvacus/DeepVariationStructuredRL,32,1/2/2019
+State-Frequency Memory Recurrent Neural Networks,http://proceedings.mlr.press/v70/hu17c.html,ICML,2017,https://github.com/hhkunming/State-Frequency-Memory-Recurrent-Neural-Networks,27,1/2/2019
+Deep 360 Pilot: Learning a Deep Agent for Piloting Through 360deg Sports Videos,http://openaccess.thecvf.com/content_cvpr_2017/html/Hu_Deep_360_Pilot_CVPR_2017_paper.html,CVPR,2017,https://github.com/eborboihuc/Deep360Pilot-CVPR17,27,1/2/2019
+Mask-Guided Contrastive Attention Model for Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2018/papers/Song_Mask-Guided_Contrastive_Attention_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/developfeng/MGCAM,41,1/2/2019
+Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain Surgeon,http://papers.nips.cc/paper/7071-learning-to-prune-deep-neural-networks-via-layer-wise-optimal-brain-surgeon.pdf,NIPS,2017,https://github.com/csyhhu/L-OBS,31,1/2/2019
+Neural Message Passing for Quantum Chemistry,http://proceedings.mlr.press/v70/gilmer17a.html,ICML,2017,https://github.com/brain-research/mpnn,27,1/2/2019
+Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite Sum Structure,http://papers.nips.cc/paper/6760-stochastic-optimization-with-variance-reduction-for-infinite-datasets-with-finite-sum-structure.pdf,NIPS,2017,https://github.com/albietz/stochs,26,1/2/2019
+Recurrent Scene Parsing With Perspective Understanding in the Loop,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kong_Recurrent_Scene_Parsing_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/aimerykong/Recurrent-Scene-Parsing-with-Perspective-Understanding-in-the-loop,29,1/2/2019
+Disentangling by Factorising,http://proceedings.mlr.press/v80/kim18b.html,ICML,2018,https://github.com/1Konny/FactorVAE,37,1/2/2019
+Actionness Estimation Using Hybrid Fully Convolutional Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Wang_Actionness_Estimation_Using_CVPR_2016_paper.html,CVPR,2016,https://github.com/wanglimin/Actionness-Estimation,26,1/2/2019
+Tangent Convolutions for Dense Prediction in 3D,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tatarchenko_Tangent_Convolutions_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/tatarchm/tangent_conv,37,1/2/2019
+SketchyScene: Richly-Annotated Scene Sketches,http://openaccess.thecvf.com/content_ECCV_2018/html/Changqing_Zou_SketchyScene_Richly-Annotated_Scene_ECCV_2018_paper.html,ECCV,2018,https://github.com/SketchyScene/SketchyScene,31,1/2/2019
+Learning to Evaluate Image Captioning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Cui_Learning_to_Evaluate_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/richardaecn/cvpr18-caption-eval,38,1/2/2019
+Joint distribution optimal transportation for domain adaptation,http://papers.nips.cc/paper/6963-joint-distribution-optimal-transportation-for-domain-adaptation.pdf,NIPS,2017,https://github.com/rflamary/JDOT,29,1/2/2019
+Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors,http://openaccess.thecvf.com/content_cvpr_2017/html/Huang_SpeedAccuracy_Trade-Offs_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/rayanelleuch/Speed-accuracy-trade-offs-for-modern-convolutional-object-detectors,26,1/2/2019
+Unconstrained 3D Face Reconstruction,http://openaccess.thecvf.com/content_cvpr_2015/html/Roth_Unconstrained_3D_Face_2015_CVPR_paper.html,CVPR,2015,https://github.com/NJUPole/CVPR2015-Unconstrained-3D-Face-Reconstruction,26,1/2/2019
+Adversarially Learned One-Class Classifier for Novelty Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sabokrou_Adversarially_Learned_One-Class_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/khalooei/ALOCC-CVPR2018,37,1/2/2019
+Layer-structured 3D Scene Inference via View Synthesis,http://openaccess.thecvf.com/content_ECCV_2018/html/Shubham_Tulsiani_Layer-structured_3D_Scene_ECCV_2018_paper.html,ECCV,2018,https://github.com/google/layered-scene-inference,28,1/2/2019
+Learning Spread-Out Local Feature Descriptors,http://openaccess.thecvf.com/content_iccv_2017/html/Zhang_Learning_Spread-Out_Local_ICCV_2017_paper.html,ICCV,2017,https://github.com/ColumbiaDVMM/Spread-out_Local_Feature_Descriptor,28,1/2/2019
+Recurrent Attention Models for Depth-Based Person Identification,http://openaccess.thecvf.com/content_cvpr_2016/html/Haque_Recurrent_Attention_Models_CVPR_2016_paper.html,CVPR,2016,https://github.com/ahaque/ram_person_id,24,9/16/2018
+Bidirectional Feature Pyramid Network with Recurrent Attention Residual Modules for Shadow Detection,http://openaccess.thecvf.com/content_ECCV_2018/html/Lei_Zhu_Bi-directional_Feature_Pyramid_ECCV_2018_paper.html,ECCV,2018,https://github.com/zijundeng/BDRAR,32,1/2/2019
+Controllable Video Generation With Sparse Trajectories,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hao_Controllable_Video_Generation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zekunhao1995/ControllableVideoGen,28,1/2/2019
+First Order Generative Adversarial Networks,http://proceedings.mlr.press/v80/seward18a.html,ICML,2018,https://github.com/zalandoresearch/first_order_gan,25,1/2/2019
+Data-Driven 3D Voxel Patterns for Object Category Recognition,http://openaccess.thecvf.com/content_cvpr_2015/html/Xiang_Data-Driven_3D_Voxel_2015_CVPR_paper.html,CVPR,2015,https://github.com/yuxng/3DVP,24,1/2/2019
+Blazingly Fast Video Object Segmentation With Pixel-Wise Metric Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Blazingly_Fast_Video_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yuhuayc/fast-vos,30,1/2/2019
+Revisiting Video Saliency: A Large-Scale Benchmark and a New Model,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Revisiting_Video_Saliency_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/wenguanwang/DHF1K,30,1/2/2019
+Temporal Context Network for Activity Localization in Videos,http://openaccess.thecvf.com/content_iccv_2017/html/Dai_Temporal_Context_Network_ICCV_2017_paper.html,ICCV,2017,https://github.com/vdavid70619/TCN,24,1/2/2019
+Universal Adversarial Perturbations,http://openaccess.thecvf.com/content_cvpr_2017/html/Moosavi-Dezfooli_Universal_Adversarial_Perturbations_CVPR_2017_paper.html,CVPR,2017,https://github.com/val-iisc/fast-feature-fool,24,1/2/2019
+Shrinkage Fields for Effective Image Restoration,http://openaccess.thecvf.com/content_cvpr_2014/html/Schmidt_Shrinkage_Fields_for_2014_CVPR_paper.html,CVPR,2014,https://github.com/uschmidt83/shrinkage-fields,25,1/2/2019
+Interpretable Intuitive Physics Model,http://openaccess.thecvf.com/content_ECCV_2018/html/Tian_Ye_Interpretable_Intuitive_Physics_ECCV_2018_paper.html,ECCV,2018,https://github.com/tianye95/interpretable-intuitive-physics-model,27,1/2/2019
+Holistically-Nested Edge Detection,http://openaccess.thecvf.com/content_iccv_2015/html/Xie_Holistically-Nested_Edge_Detection_ICCV_2015_paper.html,ICCV,2015,https://github.com/s9xie/hed_release-deprecated,25,1/2/2019
+Improved Variational Autoencoders for Text Modeling using Dilated Convolutions,http://proceedings.mlr.press/v70/yang17d.html,ICML,2017,https://github.com/ryokamoi/dcnn_textvae,26,1/2/2019
+YASS: Yet Another Spike Sorter,http://papers.nips.cc/paper/6989-yass-yet-another-spike-sorter.pdf,NIPS,2017,https://github.com/paninski-lab/yass,25,1/2/2019
+Phase-Based Frame Interpolation for Video,http://openaccess.thecvf.com/content_cvpr_2015/html/Meyer_Phase-Based_Frame_Interpolation_2015_CVPR_paper.html,CVPR,2015,https://github.com/owang/PhaseBasedInterpolation,28,1/2/2019
+Going Deeper With Convolutions,http://openaccess.thecvf.com/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html,CVPR,2015,https://github.com/nutszebra/googlenet,25,1/2/2019
+Shading Annotations in the Wild,http://openaccess.thecvf.com/content_cvpr_2017/html/Kovacs_Shading_Annotations_in_CVPR_2017_paper.html,CVPR,2017,https://github.com/kovibalu/saw_release,24,1/2/2019
+Deep Texture Manifold for Ground Terrain Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Xue_Deep_Texture_Manifold_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jiaxue1993/Deep-Encoding-Pooling-Network-DEP-,25,1/2/2019
+Structured Attention Guided Convolutional Neural Fields for Monocular Depth Estimation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Xu_Structured_Attention_Guided_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/danxuhk/StructuredAttentionDepthEstimation,46,1/2/2019
+IQA: Visual Question Answering in Interactive Environments,http://openaccess.thecvf.com/content_cvpr_2018/papers/Gordon_IQA_Visual_Question_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/danielgordon10/thor-iqa-cvpr-2018,60,1/2/2019
+Real-Time Neural Style Transfer for Videos,http://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Real-Time_Neural_Style_CVPR_2017_paper.html,CVPR,2017,https://github.com/curaai00/RT-StyleTransfer-forVideo,30,1/2/2019
+Deep Regression Tracking with Shrinkage Loss,http://openaccess.thecvf.com/content_ECCV_2018/html/Xiankai_Lu_Deep_Regression_Tracking_ECCV_2018_paper.html,ECCV,2018,https://github.com/chaoma99/DSLT,34,1/2/2019
+Multi-Agent Diverse Generative Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Ghosh_Multi-Agent_Diverse_Generative_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/arnabgho/MADGAN,23,9/16/2018
+Reducing Reparameterization Gradient Variance,http://papers.nips.cc/paper/6961-reducing-reparameterization-gradient-variance.pdf,NIPS,2017,https://github.com/andymiller/ReducedVarianceReparamGradients,24,1/2/2019
+"You Only Look Once: Unified, Real-Time Object Detection",http://openaccess.thecvf.com/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html,CVPR,2016,https://github.com/andersy005/keras-yolo,26,1/2/2019
+Fast Training of Triplet-Based Deep Binary Embedding Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhuang_Fast_Training_of_CVPR_2016_paper.html,CVPR,2016,https://github.com/xwzy/Triplet-deep-hash-pytorch,25,1/2/2019
+L0TV: A New Method for Image Restoration in the Presence of Impulse Noise,http://openaccess.thecvf.com/content_cvpr_2015/html/Yuan_L0TV_A_New_2015_CVPR_paper.html,CVPR,2015,https://github.com/peisuke/L0TV,22,1/2/2019
+Adaptive Color Attributes for Real-Time Visual Tracking,http://openaccess.thecvf.com/content_cvpr_2014/html/Danelljan_Adaptive_Color_Attributes_2014_CVPR_paper.html,CVPR,2014,https://github.com/mostafaizz/ColorTracker,25,1/2/2019
+Domain-Adaptive Deep Network Compression,http://openaccess.thecvf.com/content_iccv_2017/html/Masana_Domain-Adaptive_Deep_Network_ICCV_2017_paper.html,ICCV,2017,https://github.com/mmasana/DALR,24,1/2/2019
+Interspecies Knowledge Transfer for Facial Keypoint Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Rashid_Interspecies_Knowledge_Transfer_CVPR_2017_paper.html,CVPR,2017,https://github.com/menorashid/animal_human_kp,25,1/2/2019
+Zero-Order Reverse Filtering,http://openaccess.thecvf.com/content_iccv_2017/html/Tao_Zero-Order_Reverse_Filtering_ICCV_2017_paper.html,ICCV,2017,https://github.com/jiangsutx/DeFilter,23,1/2/2019
+Reconstructing the World* in Six Days *(As Captured by the Yahoo 100 Million Image Dataset),http://openaccess.thecvf.com/content_cvpr_2015/html/Heinly_Reconstructing_the_World_2015_CVPR_paper.html,CVPR,2015,https://github.com/jheinly/streaming_connected_component_discovery,25,1/2/2019
+Learning High Dynamic Range From Outdoor Panoramas,http://openaccess.thecvf.com/content_iccv_2017/html/Zhang_Learning_High_Dynamic_ICCV_2017_paper.html,ICCV,2017,https://github.com/jacenfox/ldr2hdr-public,26,1/2/2019
+A Dirichlet Mixture Model of Hawkes Processes for Event Sequence Clustering,http://papers.nips.cc/paper/6734-a-dirichlet-mixture-model-of-hawkes-processes-for-event-sequence-clustering.pdf,NIPS,2017,https://github.com/HongtengXu/Hawkes-Process-Toolkit,24,1/2/2019
+Multimodal Transfer: A Hierarchical Deep Convolutional Neural Network for Fast Artistic Style Transfer,http://openaccess.thecvf.com/content_cvpr_2017/html/Wang_Multimodal_Transfer_A_CVPR_2017_paper.html,CVPR,2017,https://github.com/fullfanta/multimodal_transfer,22,1/2/2019
+Contrastive Learning for Image Captioning,http://papers.nips.cc/paper/6691-contrastive-learning-for-image-captioning.pdf,NIPS,2017,https://github.com/doubledaibo/clcaption_nips2017,26,1/2/2019
+Graph-Cut RANSAC,http://openaccess.thecvf.com/content_cvpr_2018/papers/Barath_Graph-Cut_RANSAC_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/danini/graph-cut-ransac,32,1/2/2019
+A Trilateral Weighted Sparse Coding Scheme for Real-World Image Denoising,http://openaccess.thecvf.com/content_ECCV_2018/html/XU_JUN_A_Trilateral_Weighted_ECCV_2018_paper.html,ECCV,2018,https://github.com/csjunxu/TWSC-ECCV2018,30,1/2/2019
+Phrase Localization and Visual Relationship Detection With Comprehensive Image-Language Cues,http://openaccess.thecvf.com/content_iccv_2017/html/Plummer_Phrase_Localization_and_ICCV_2017_paper.html,ICCV,2017,https://github.com/BryanPlummer/pl-clc,27,1/2/2019
+Conditional Image-to-Image Translation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lin_Conditional_Image-to-Image_Translation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/znxlwm/pytorch-Conditional-image-to-image-translation,25,1/2/2019
+Learning to Promote Saliency Detectors,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zeng_Learning_to_Promote_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zengxianyu/lps,21,1/2/2019
+LF-Net: Learning Local Features from Images,https://arxiv.org/abs/1805.09662,NIPS,2018,https://github.com/vcg-uvic/lf-net-release,55,1/2/2019
+Straight to Shapes: Real-Time Detection of Encoded Shapes,http://openaccess.thecvf.com/content_cvpr_2017/html/Jetley_Straight_to_Shapes_CVPR_2017_paper.html,CVPR,2017,https://github.com/torrvision/straighttoshapes,23,1/2/2019
+Visualizing the Loss Landscape of Neural Nets,http://arxiv.org/abs/1712.09913v2,NIPS,2018,https://github.com/tomgoldstein/loss-landscape,724,1/2/2019
+First Person Action Recognition Using Deep Learned Descriptors,http://openaccess.thecvf.com/content_cvpr_2016/html/Singh_First_Person_Action_CVPR_2016_paper.html,CVPR,2016,https://github.com/suriyasingh/EgoConvNet,21,1/2/2019
+Exploring Disentangled Feature Representation Beyond Face Identification,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Exploring_Disentangled_Feature_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/sciencefans/D2AE-Face-Generator,29,1/2/2019
+Between-Class Learning for Image Classification,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tokozume_Between-Class_Learning_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/mil-tokyo/bc_learning_image,26,1/2/2019
+CBMV: A Coalesced Bidirectional Matching Volume for Disparity Estimation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Batsos_CBMV_A_Coalesced_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kbatsos/CBMV,25,1/2/2019
+Dense Human Body Correspondences Using Convolutional Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Wei_Dense_Human_Body_CVPR_2016_paper.html,CVPR,2016,https://github.com/halimacc/DenseHumanBodyCorrespondences,27,1/2/2019
+Hash Embeddings for Efficient Word Representations,http://papers.nips.cc/paper/7078-hash-embeddings-for-efficient-word-representations.pdf,NIPS,2017,https://github.com/dsv77/hashembedding/,21,9/16/2018
+Exploiting Saliency for Object Segmentation From Image Level Labels,http://openaccess.thecvf.com/content_cvpr_2017/html/Oh_Exploiting_Saliency_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/coallaoh/GuidedLabelling,24,1/2/2019
+Improving Shape Deformation in Unsupervised Image-to-Image Translation,http://openaccess.thecvf.com/content_ECCV_2018/html/Aaron_Gokaslan_Improving_Shape_Deformation_ECCV_2018_paper.html,ECCV,2018,https://github.com/brownvc/ganimorph,33,1/2/2019
+Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net,http://papers.nips.cc/paper/7026-variational-walkback-learning-a-transition-operator-as-a-stochastic-recurrent-net.pdf,NIPS,2017,https://github.com/anirudh9119/walkback_nips17,23,1/2/2019
+Eye In-Painting With Exemplar Generative Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Dolhansky_Eye_In-Painting_With_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zhangqianhui/Exemplar-GAN-Eye-Inpainting-Tensorflow,35,1/2/2019
+EC-Net: an Edge-aware Point set Consolidation Network,http://openaccess.thecvf.com/content_ECCV_2018/html/Lequan_Yu_EC-Net_an_Edge-aware_ECCV_2018_paper.html,ECCV,2018,https://github.com/yulequan/EC-Net,27,1/2/2019
+Asymmetric Tri-training for Unsupervised Domain Adaptation,http://proceedings.mlr.press/v70/saito17a.html,ICML,2017,https://github.com/vtddggg/ATDA,24,1/2/2019
+Detecting Vanishing Points Using Global Image Context in a Non-Manhattan World,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhai_Detecting_Vanishing_Points_CVPR_2016_paper.html,CVPR,2016,https://github.com/viibridges/gc-horizon-detector,22,1/2/2019
+STD2P: RGBD Semantic Segmentation Using Spatio-Temporal Data-Driven Pooling,http://openaccess.thecvf.com/content_cvpr_2017/html/He_STD2P_RGBD_Semantic_CVPR_2017_paper.html,CVPR,2017,https://github.com/SSAW14/STD2P,22,1/2/2019
+Deep Mean-Shift Priors for Image Restoration,http://papers.nips.cc/paper/6678-deep-mean-shift-priors-for-image-restoration.pdf,NIPS,2017,https://github.com/siavashBigdeli/DMSP,20,1/2/2019
+Beyond Frontal Faces: Improving Person Recognition Using Multiple Cues,http://openaccess.thecvf.com/content_cvpr_2015/html/Zhang_Beyond_Frontal_Faces_2015_CVPR_paper.html,CVPR,2015,https://github.com/sciencefans/Beyond-Frontal-Faces,21,1/2/2019
+SimplE Embedding for Link Prediction in Knowledge Graphs,http://arxiv.org/abs/1802.04868v1,NIPS,2018,https://github.com/Mehran-k/SimplE,42,1/2/2019
+Learning Continuous Semantic Representations of Symbolic Expressions,http://proceedings.mlr.press/v70/allamanis17a.html,ICML,2017,https://github.com/mast-group/eqnet,22,1/2/2019
+CondenseNet: An Efficient DenseNet Using Learned Group Convolutions,http://openaccess.thecvf.com/content_cvpr_2018/papers/Huang_CondenseNet_An_Efficient_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/markdtw/condensenet-tensorflow,22,1/2/2019
+The Numerics of GANs,http://papers.nips.cc/paper/6779-the-numerics-of-gans.pdf,NIPS,2017,https://github.com/LMescheder/TheNumericsOfGANs,20,1/2/2019
+Dense Captioning With Joint Inference and Visual Context,http://openaccess.thecvf.com/content_cvpr_2017/html/Yang_Dense_Captioning_With_CVPR_2017_paper.html,CVPR,2017,https://github.com/linjieyangsc/densecap,24,1/2/2019
+Learning Convolutional Networks for Content-Weighted Image Compression,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Learning_Convolutional_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/limuhit/ImageCompression,25,1/2/2019
+SYQ: Learning Symmetric Quantization for Efficient Deep Neural Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Faraone_SYQ_Learning_Symmetric_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/julianfaraone/SYQ,24,1/2/2019
+Weakly-Supervised Learning of Visual Relations,http://openaccess.thecvf.com/content_iccv_2017/html/Peyre_Weakly-Supervised_Learning_of_ICCV_2017_paper.html,ICCV,2017,https://github.com/jpeyre/unrel,20,1/2/2019
+CSGNet: Neural Shape Parser for Constructive Solid Geometry,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sharma_CSGNet_Neural_Shape_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Hippogriff/CSGNet,21,1/2/2019
+Towards Accurate Multi-Person Pose Estimation in the Wild,http://openaccess.thecvf.com/content_cvpr_2017/html/Papandreou_Towards_Accurate_Multi-Person_CVPR_2017_paper.html,CVPR,2017,https://github.com/hackiey/keypoints,30,1/2/2019
+Improved Fusion of Visual and Language Representations by Dense Symmetric Co-Attention for Visual Question Answering,http://openaccess.thecvf.com/content_cvpr_2018/papers/Nguyen_Improved_Fusion_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/cvlab-tohoku/Dense-CoAttention-Network,33,1/2/2019
+Real-time 'Actor-Critic' Tracking,http://openaccess.thecvf.com/content_ECCV_2018/html/Boyu_Chen_Real-time_Actor-Critic_Tracking_ECCV_2018_paper.html,ECCV,2018,https://github.com/bychen515/ACT,46,1/2/2019
+Flow-Grounded Spatial-Temporal Video Prediction from Still Images,http://openaccess.thecvf.com/content_ECCV_2018/html/Yijun_Li_Flow-Grounded_Spatial-Temporal_Video_ECCV_2018_paper.html,ECCV,2018,https://github.com/Yijunmaverick/FlowGrounded-VideoPrediction,32,1/2/2019
+Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings,http://proceedings.mlr.press/v80/co-reyes18a.html,ICML,2018,https://github.com/wyndwarrior/Sectar,29,1/2/2019
+Dual Discriminator Generative Adversarial Nets,http://papers.nips.cc/paper/6860-dual-discriminator-generative-adversarial-nets.pdf,NIPS,2017,https://github.com/tund/D2GAN,23,1/2/2019
+Partial Transfer Learning With Selective Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Cao_Partial_Transfer_Learning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/thuml/SAN,26,1/2/2019
+Learning Single-View 3D Reconstruction with Limited Pose Supervision,http://openaccess.thecvf.com/content_ECCV_2018/html/Guandao_Yang_A_Unified_Framework_ECCV_2018_paper.html,ECCV,2018,https://github.com/stevenygd/3d-recon,33,1/2/2019
+Cross-Modal Deep Variational Hand Pose Estimation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Spurr_Cross-Modal_Deep_Variational_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/spurra/vae-hands-3d,26,1/2/2019
+Exploiting the Potential of Standard Convolutional Autoencoders for Image Restoration by Evolutionary Search,http://proceedings.mlr.press/v80/suganuma18a.html,ICML,2018,https://github.com/sg-nm/Evolutionary-Autoencoders,23,1/2/2019
+Long Short-Term Memory Kalman Filters: Recurrent Neural Estimators for Pose Regularization,http://openaccess.thecvf.com/content_iccv_2017/html/Coskun_Long_Short-Term_Memory_ICCV_2017_paper.html,ICCV,2017,https://github.com/Seleucia/lstmkf_ICCV2017,24,1/2/2019
+Speaker-Follower Models for Vision-and-Language Navigation,https://arxiv.org/abs/1806.02724,NIPS,2018,https://github.com/ronghanghu/speaker_follower,33,1/2/2019
+Learning Mid-level Filters for Person Re-identification,http://openaccess.thecvf.com/content_cvpr_2014/html/Zhao_Learning_Mid-level_Filters_2014_CVPR_paper.html,CVPR,2014,https://github.com/Robert0812/midfilter_reid,20,1/2/2019
+Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation,http://openaccess.thecvf.com/content_ECCV_2018/html/Liang-Chieh_Chen_Encoder-Decoder_with_Atrous_ECCV_2018_paper.html,ECCV,2018,https://github.com/qixuxiang/deeplabv3plus,28,1/2/2019
+Deep Growing Learning,http://openaccess.thecvf.com/content_iccv_2017/html/Wang_Deep_Growing_Learning_ICCV_2017_paper.html,ICCV,2017,https://github.com/QData/deep2Read,21,1/2/2019
+When Unsupervised Domain Adaptation Meets Tensor Representations,http://openaccess.thecvf.com/content_iccv_2017/html/Lu_When_Unsupervised_Domain_ICCV_2017_paper.html,ICCV,2017,https://github.com/poppinace/TAISL,22,1/2/2019
+DropoutNet: Addressing Cold Start in Recommender Systems,http://papers.nips.cc/paper/7081-dropoutnet-addressing-cold-start-in-recommender-systems.pdf,NIPS,2017,https://github.com/layer6ai-labs/DropoutNet,27,1/2/2019
+Incremental Learning of Object Detectors Without Catastrophic Forgetting,http://openaccess.thecvf.com/content_iccv_2017/html/Shmelkov_Incremental_Learning_of_ICCV_2017_paper.html,ICCV,2017,https://github.com/kshmelkov/incremental_detectors,24,1/2/2019
+Adversarial Feature Matching for Text Generation,http://proceedings.mlr.press/v70/zhang17b.html,ICML,2017,https://github.com/Jeff-HOU/UROP-Adversarial-Feature-Matching-for-Text-Generation,18,1/2/2019
+Explicit Inductive Bias for Transfer Learning with Convolutional Networks,http://proceedings.mlr.press/v80/li18a.html,ICML,2018,https://github.com/holyseven/TransferLearningClassification,24,1/2/2019
+Learning to Blend Photos,http://openaccess.thecvf.com/content_ECCV_2018/html/Wei-Chih_Hung_Learning_to_Blend_ECCV_2018_paper.html,ECCV,2018,https://github.com/hfslyc/LearnToBlend,42,1/2/2019
+Open Set Domain Adaptation,http://openaccess.thecvf.com/content_iccv_2017/html/Busto_Open_Set_Domain_ICCV_2017_paper.html,ICCV,2017,https://github.com/Heliot7/open-set-da,25,1/2/2019
+Learning to Pivot with Adversarial Networks,http://papers.nips.cc/paper/6699-learning-to-pivot-with-adversarial-networks.pdf,NIPS,2017,https://github.com/glouppe/paper-learning-to-pivot,21,1/2/2019
+A Generative Adversarial Approach for Zero-Shot Learning From Noisy Texts,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhu_A_Generative_Adversarial_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/EthanZhu90/ZSL_GAN_CVPR18,122,1/2/2019
+Event-Based Visual Inertial Odometry,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhu_Event-Based_Visual_Inertial_CVPR_2017_paper.html,CVPR,2017,https://github.com/daniilidis-group/event_feature_tracking,27,1/2/2019
+Hyperbolic Neural Networks,http://arxiv.org/abs/1805.09112v2,NIPS,2018,https://github.com/dalab/hyperbolic_nn,37,1/2/2019
+LEGO: Learning Edge With Geometry All at Once by Watching Videos,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_LEGO_Learning_Edge_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zhenheny/LEGO,24,1/2/2019
+Audio-Visual Event Localization in Unconstrained Videos,http://openaccess.thecvf.com/content_ECCV_2018/html/Yapeng_Tian_Audio-Visual_Event_Localization_ECCV_2018_paper.html,ECCV,2018,https://github.com/YapengTian/AVE-ECCV18,25,1/2/2019
+Learning Dynamic Siamese Network for Visual Object Tracking,http://openaccess.thecvf.com/content_iccv_2017/html/Guo_Learning_Dynamic_Siamese_ICCV_2017_paper.html,ICCV,2017,https://github.com/tsingqguo/DSiam,21,1/2/2019
+Structured Generative Adversarial Networks,http://papers.nips.cc/paper/6979-structured-generative-adversarial-networks.pdf,NIPS,2017,https://github.com/thudzj/StructuredGAN,19,1/2/2019
+Neural Code Comprehension: A Learnable Representation of Code Semantics,http://arxiv.org/abs/1806.07336v2,NIPS,2018,https://github.com/spcl/ncc,35,1/2/2019
+Im2Flow: Motion Hallucination From Static Images for Action Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Gao_Im2Flow_Motion_Hallucination_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/rhgao/Im2Flow,22,1/2/2019
+Deep Reinforcement Learning of Marked Temporal Point Processes,http://arxiv.org/abs/1805.09360v1,NIPS,2018,https://github.com/Networks-Learning/tpprl,24,1/2/2019
+Understanding Deep Features With Computer-Generated Imagery,http://openaccess.thecvf.com/content_iccv_2015/html/Aubry_Understanding_Deep_Features_ICCV_2015_paper.html,ICCV,2015,https://github.com/mathieuaubry/features_analysis,19,1/2/2019
+Single Shot Scene Text Retrieval,http://openaccess.thecvf.com/content_ECCV_2018/html/Lluis_Gomez_Single_Shot_Scene_ECCV_2018_paper.html,ECCV,2018,https://github.com/lluisgomez/single-shot-str,29,1/2/2019
+Deep Randomized Ensembles for Metric Learning,http://openaccess.thecvf.com/content_ECCV_2018/html/Hong_Xuan_Randomized_Ensemble_Embeddings_ECCV_2018_paper.html,ECCV,2018,https://github.com/littleredxh/DREML,30,1/2/2019
+Image Super-Resolution Using Dense Skip Connections,http://openaccess.thecvf.com/content_iccv_2017/html/Tong_Image_Super-Resolution_Using_ICCV_2017_paper.html,ICCV,2017,https://github.com/kweisamx/TensorFlow-SR-DenseNet,22,1/2/2019
+Hallucinated-IQA: No-Reference Image Quality Assessment via Adversarial Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lin_Hallucinated-IQA_No-Reference_Image_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kwanyeelin/HIQA,22,1/2/2019
+Neural Architecture Search with Bayesian Optimisation and Optimal Transport,https://arxiv.org/abs/1802.07191,NIPS,2018,https://github.com/kirthevasank/nasbot,39,1/2/2019
+Joint Gap Detection and Inpainting of Line Drawings,http://openaccess.thecvf.com/content_cvpr_2017/html/Sasaki_Joint_Gap_Detection_CVPR_2017_paper.html,CVPR,2017,https://github.com/kaidlc/CVPR2017_linedrawings,19,1/2/2019
+Learning to Multitask,http://arxiv.org/abs/1805.07541v1,NIPS,2018,https://github.com/jfutoma/MGP-RNN,22,1/2/2019
+Learning to Detect Sepsis with a Multitask Gaussian Process RNN Classifier,http://proceedings.mlr.press/v70/futoma17a.html,ICML,2017,https://github.com/jfutoma/MGP-RNN,22,1/2/2019
+Combined Group and Exclusive Sparsity for Deep Neural Networks,http://proceedings.mlr.press/v70/yoon17a.html,ICML,2017,https://github.com/jaehong-yoon93/CGES,21,1/2/2019
+Skeleton Key: Image Captioning by Skeleton-Attribute Decomposition,http://openaccess.thecvf.com/content_cvpr_2017/html/Wang_Skeleton_Key_Image_CVPR_2017_paper.html,CVPR,2017,https://github.com/feiyu1990/Skeleton-key,20,1/2/2019
+Deep High Dynamic Range Imaging with Large Foreground Motions,http://openaccess.thecvf.com/content_ECCV_2018/html/Shangzhe_Wu_Deep_High_Dynamic_ECCV_2018_paper.html,ECCV,2018,https://github.com/elliottwu/DeepHDR,30,1/2/2019
+Who Let the Dogs Out? Modeling Dog Behavior From Visual Data,http://openaccess.thecvf.com/content_cvpr_2018/papers/Ehsani_Who_Let_the_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ehsanik/dogTorch,27,1/2/2019
+GraphBit: Bitwise Interaction Mining via Deep Reinforcement Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Duan_GraphBit_Bitwise_Interaction_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/duanyq14/GraphBit,20,1/2/2019
+Stochastic Generative Hashing,http://proceedings.mlr.press/v70/dai17a.html,ICML,2017,https://github.com/doubling/Stochastic_Generative_Hashing,18,1/2/2019
+Minimal Scene Descriptions from Structure from Motion Models,http://openaccess.thecvf.com/content_cvpr_2014/html/Cao_Minimal_Scene_Descriptions_2014_CVPR_paper.html,CVPR,2014,https://github.com/caosong/minimal_scene,22,1/2/2019
+Context Selection for Embedding Models,http://papers.nips.cc/paper/7067-context-selection-for-embedding-models.pdf,NIPS,2017,https://github.com/blei-lab/context-selection-embedding,20,1/2/2019
+HICO: A Benchmark for Recognizing Human-Object Interactions in Images,http://openaccess.thecvf.com/content_iccv_2015/html/Chao_HICO_A_Benchmark_ICCV_2015_paper.html,ICCV,2015,https://github.com/ywchao/hico_benchmark,18,1/2/2019
+Fully Motion-Aware Network for Video Object Detection,http://openaccess.thecvf.com/content_ECCV_2018/html/Shiyao_Wang_Fully_Motion-Aware_Network_ECCV_2018_paper.html,ECCV,2018,https://github.com/wangshy31/MANet_for_Video_Object_Detection,41,1/2/2019
+DualNet: Learn Complementary Features for Image Recognition,http://openaccess.thecvf.com/content_iccv_2017/html/Hou_DualNet_Learn_Complementary_ICCV_2017_paper.html,ICCV,2017,https://github.com/ustc-vim/dualnet,17,1/2/2019
+PiCANet: Learning Pixel-Wise Contextual Attention for Saliency Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_PiCANet_Learning_Pixel-Wise_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Ugness/PiCANet-Implementation,28,1/2/2019
+A Bayesian Data Augmentation Approach for Learning Deep Models,http://papers.nips.cc/paper/6872-a-bayesian-data-augmentation-approach-for-learning-deep-models.pdf,NIPS,2017,https://github.com/toantm/keras-bda,18,1/2/2019
+Attentive Semantic Video Generation Using Captions,http://openaccess.thecvf.com/content_iccv_2017/html/Marwah_Attentive_Semantic_Video_ICCV_2017_paper.html,ICCV,2017,https://github.com/Singularity42/cap2vid,18,1/2/2019
+Diversity Regularized Spatiotemporal Attention for Video-Based Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Diversity_Regularized_Spatiotemporal_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ShuangLI59/Diversity-Regularized-Spatiotemporal-Attention,25,1/2/2019
+Accumulated Stability Voting: A Robust Descriptor From Descriptors of Multiple Scales,http://openaccess.thecvf.com/content_cvpr_2016/html/Yang_Accumulated_Stability_Voting_CVPR_2016_paper.html,CVPR,2016,https://github.com/shamangary/ASV,19,1/2/2019
+PieAPP: Perceptual Image-Error Assessment Through Pairwise Preference,http://openaccess.thecvf.com/content_cvpr_2018/papers/Prashnani_PieAPP_Perceptual_Image-Error_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/prashnani/PerceptualImageError,36,1/2/2019
+Link Prediction Based on Graph Neural Networks,http://arxiv.org/abs/1802.09691v2,NIPS,2018,https://github.com/muhanzhang/SEAL,41,1/2/2019
+Multi-scale Residual Network for Image Super-Resolution,http://openaccess.thecvf.com/content_ECCV_2018/html/Juncheng_Li_Multi-scale_Residual_Network_ECCV_2018_paper.html,ECCV,2018,https://github.com/MIVRC/MSRN-PyTorch,41,1/2/2019
+Learning Compact Geometric Features,http://openaccess.thecvf.com/content_iccv_2017/html/Khoury_Learning_Compact_Geometric_ICCV_2017_paper.html,ICCV,2017,https://github.com/marckhoury/CGF,19,1/2/2019
+GeoDesc: Learning Local Descriptors by Integrating Geometry Constraints,http://openaccess.thecvf.com/content_ECCV_2018/html/Zixin_Luo_Learning_Local_Descriptors_ECCV_2018_paper.html,ECCV,2018,https://github.com/lzx551402/geodesc,32,1/2/2019
+Fast Edge-Preserving PatchMatch for Large Displacement Optical Flow,http://openaccess.thecvf.com/content_cvpr_2014/html/Bao_Fast_Edge-Preserving_PatchMatch_2014_CVPR_paper.html,CVPR,2014,https://github.com/linchaobao/EPPM,18,1/2/2019
+Scene Parsing With Global Context Embedding,http://openaccess.thecvf.com/content_iccv_2017/html/Hung_Scene_Parsing_With_ICCV_2017_paper.html,ICCV,2017,https://github.com/hfslyc/GCPNet,20,1/2/2019
+DVAE#: Discrete Variational Autoencoders with Relaxed Boltzmann Priors,http://arxiv.org/abs/1805.07445v3,NIPS,2018,https://github.com/dojoteef/dvae,18,1/2/2019
+Deep Metric Learning via Facility Location,http://openaccess.thecvf.com/content_cvpr_2017/html/Song_Deep_Metric_Learning_CVPR_2017_paper.html,CVPR,2017,https://github.com/CongWeilin/cluster-loss-tensorflow,20,1/2/2019
+Proposal Flow,http://openaccess.thecvf.com/content_cvpr_2016/html/Ham_Proposal_Flow_CVPR_2016_paper.html,CVPR,2016,https://github.com/bsham/ProposalFlow,20,1/2/2019
+Semantic Component Analysis,http://openaccess.thecvf.com/content_iccv_2015/html/Murdock_Semantic_Component_Analysis_ICCV_2015_paper.html,ICCV,2015,https://github.com/aubry74/visual-word2vec,17,1/2/2019
+Learning Large-Scale Automatic Image Colorization,http://openaccess.thecvf.com/content_iccv_2015/html/Deshpande_Learning_Large-Scale_Automatic_ICCV_2015_paper.html,ICCV,2015,https://github.com/aditya12agd5/iccv15_lscolorization,17,1/2/2019
+Predictive-Corrective Networks for Action Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Dave_Predictive-Corrective_Networks_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/achalddave/predictive-corrective,18,1/2/2019
+MDNet: A Semantically and Visually Interpretable Medical Image Diagnosis Network,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_MDNet_A_Semantically_CVPR_2017_paper.html,CVPR,2017,https://github.com/zizhaozhang/mdnet-cvpr2017,18,1/2/2019
+Scale-Aware Alignment of Hierarchical Image Segmentation,http://openaccess.thecvf.com/content_cvpr_2016/html/Chen_Scale-Aware_Alignment_of_CVPR_2016_paper.html,CVPR,2016,https://github.com/yuhuayc/align-hier,20,1/2/2019
+Dimensionality-Driven Learning with Noisy Labels,http://proceedings.mlr.press/v80/ma18d.html,ICML,2018,https://github.com/xingjunm/dimensionality-driven-learning,20,1/2/2019
+Estimating Mutual Information for Discrete-Continuous Mixtures,http://papers.nips.cc/paper/7180-estimating-mutual-information-for-discrete-continuous-mixtures.pdf,NIPS,2017,https://github.com/wgao9/mixed_KSG,16,1/2/2019
+Learning to Push the Limits of Efficient FFT-Based Image Deconvolution,http://openaccess.thecvf.com/content_iccv_2017/html/Kruse_Learning_to_Push_ICCV_2017_paper.html,ICCV,2017,https://github.com/uschmidt83/fourier-deconvolution-network,16,1/2/2019
+Accuracy First: Selecting a Differential Privacy Level for Accuracy Constrained ERM,http://papers.nips.cc/paper/6850-accuracy-first-selecting-a-differential-privacy-level-for-accuracy-constrained-erm.pdf,NIPS,2017,https://github.com/steven7woo/Accuracy-First-Differential-Privacy,21,1/2/2019
+Crowd Counting With Deep Negative Correlation Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Shi_Crowd_Counting_With_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/shizenglin/Deep-NCL,20,1/2/2019
+Triplet Loss in Siamese Network for Object Tracking,http://openaccess.thecvf.com/content_ECCV_2018/html/Xingping_Dong_Triplet_Loss_with_ECCV_2018_paper.html,ECCV,2018,https://github.com/shenjianbing/TripletTracking,17,1/2/2019
+Learning Generative ConvNets via Multi-Grid Modeling and Sampling,http://openaccess.thecvf.com/content_cvpr_2018/papers/Gao_Learning_Generative_ConvNets_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ruiqigao/Multigrid_learning,17,1/2/2019
+Explainable Neural Computation via Stack Neural Module Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Ronghang_Hu_Explainable_Neural_Computation_ECCV_2018_paper.html,ECCV,2018,https://github.com/ronghanghu/snmn,29,1/2/2019
+FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis,http://openaccess.thecvf.com/content_cvpr_2018/papers/Verma_FeaStNet_Feature-Steered_Graph_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/nitika-verma/FeaStNet,18,1/2/2019
+Deep Future Gaze: Gaze Anticipation on Egocentric Videos Using Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Deep_Future_Gaze_CVPR_2017_paper.html,CVPR,2017,https://github.com/Mengmi/deepfuturegaze_gan,17,1/2/2019
+3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data,https://arxiv.org/abs/1807.02547,NIPS,2018,https://github.com/mariogeiger/se3cnn,33,1/2/2019
+FALKON: An Optimal Large Scale Kernel Method,http://papers.nips.cc/paper/6978-falkon-an-optimal-large-scale-kernel-method.pdf,NIPS,2017,https://github.com/LCSL/FALKON_paper,17,1/2/2019
+Towards Faster Training of Global Covariance Pooling Networks by Iterative Matrix Square Root Normalization,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Towards_Faster_Training_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jiangtaoxie/fast-MPN-COV,40,1/2/2019
+Simultaneous Feature Learning and Hash Coding With Deep Neural Networks,http://openaccess.thecvf.com/content_cvpr_2015/html/Lai_Simultaneous_Feature_Learning_2015_CVPR_paper.html,CVPR,2015,https://github.com/HYPJUDY/caffe-dnnh,16,1/2/2019
+POSEidon: Face-From-Depth for Driver Pose Estimation,http://openaccess.thecvf.com/content_cvpr_2017/html/Borghi_POSEidon_Face-From-Depth_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/gdubrg/POSEidon-Biwi,20,1/2/2019
+Semantic Segmentation With Boundary Neural Fields,http://openaccess.thecvf.com/content_cvpr_2016/html/Bertasius_Semantic_Segmentation_With_CVPR_2016_paper.html,CVPR,2016,https://github.com/gberta/BNF_globalization,19,1/2/2019
+InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations,http://papers.nips.cc/paper/6971-infogail-interpretable-imitation-learning-from-visual-demonstrations.pdf,NIPS,2017,https://github.com/ermongroup/infogail,20,1/2/2019
+Neural system identification for large populations separating “what” and “where”,http://papers.nips.cc/paper/6942-neural-system-identification-for-large-populations-separating-what-and-where.pdf,NIPS,2017,https://github.com/david-klindt/NIPS2017,17,1/2/2019
+Zero-Inflated Exponential Family Embeddings,http://proceedings.mlr.press/v70/liu17a.html,ICML,2017,https://github.com/blei-lab/zero-inflated-embedding,20,1/2/2019
+Visual Question Reasoning on General Dependency Tree,http://openaccess.thecvf.com/content_cvpr_2018/papers/Cao_Visual_Question_Reasoning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/bezorro/ACMN-Pytorch,17,1/2/2019
+Deep Unsupervised Similarity Learning Using Partially Ordered Sets,http://openaccess.thecvf.com/content_cvpr_2017/html/Bautista_Deep_Unsupervised_Similarity_CVPR_2017_paper.html,CVPR,2017,https://github.com/asanakoy/deep_unsupervised_posets,17,1/2/2019
+Disentangling Factors of Variation with Cycle-Consistent Variational Auto-Encoders,http://openaccess.thecvf.com/content_ECCV_2018/html/Ananya_Harsh_Jha_Disentangling_Factors_of_ECCV_2018_paper.html,ECCV,2018,https://github.com/ananyahjha93/cycle-consistent-vae,19,1/2/2019
+Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html,ICCV,2017,https://github.com/adepierre/Caffe_CycleGAN,20,1/2/2019
+Zero-Shot Visual Recognition Using Semantics-Preserving Adversarial Embedding Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Zero-Shot_Visual_Recognition_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zjuchenlong/sp-aen.cvpr18,20,1/2/2019
+Weakly-Supervised Action Segmentation With Iterative Soft Boundary Assignment,http://openaccess.thecvf.com/content_cvpr_2018/papers/Ding_Weakly-Supervised_Action_Segmentation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Zephyr-D/TCFPN-ISBA,16,1/2/2019
+Label Distribution Learning Forests,http://papers.nips.cc/paper/6685-label-distribution-learning-forests.pdf,NIPS,2017,https://github.com/shenwei1231/caffe-LDLForests,16,1/2/2019
+Shallow Updates for Deep Reinforcement Learning,http://papers.nips.cc/paper/6906-shallow-updates-for-deep-reinforcement-learning.pdf,NIPS,2017,https://github.com/Shallow-Updates-for-Deep-RL/Shallow_Updates_for_Deep_RL,15,1/2/2019
+Learning Spherical Convolution for Fast Features from 360° Imagery,http://papers.nips.cc/paper/6656-learning-spherical-convolution-for-fast-features-from-360-imagery.pdf,NIPS,2017,https://github.com/sammy-su/Spherical-Convolution,22,1/2/2019
+Bottom-Up and Top-Down Reasoning With Hierarchical Rectified Gaussians,http://openaccess.thecvf.com/content_cvpr_2016/html/Hu_Bottom-Up_and_Top-Down_CVPR_2016_paper.html,CVPR,2016,https://github.com/peiyunh/rg-mpii,16,1/2/2019
+"Chained Multi-Stream Networks Exploiting Pose, Motion, and Appearance for Action Classification and Detection",http://openaccess.thecvf.com/content_iccv_2017/html/Zolfaghari_Chained_Multi-Stream_Networks_ICCV_2017_paper.html,ICCV,2017,https://github.com/mzolfaghari/chained-multistream-networks,19,1/2/2019
+BIER - Boosting Independent Embeddings Robustly,http://openaccess.thecvf.com/content_iccv_2017/html/Opitz_BIER_-_Boosting_ICCV_2017_paper.html,ICCV,2017,https://github.com/mop/bier,18,1/2/2019
+Seeing 3D Chairs: Exemplar Part-based 2D-3D Alignment using a Large Dataset of CAD Models,http://openaccess.thecvf.com/content_cvpr_2014/html/Aubry_Seeing_3D_Chairs_2014_CVPR_paper.html,CVPR,2014,https://github.com/mathieuaubry/seeing3Dchairs,15,1/2/2019
+Deep One-Class Classification,http://proceedings.mlr.press/v80/ruff18a.html,ICML,2018,https://github.com/lukasruff/Deep-SVDD,34,1/2/2019
+Coded Sparse Matrix Multiplication,http://proceedings.mlr.press/v80/wang18e.html,ICML,2018,https://github.com/ksopyla/CudaDotProd,16,1/2/2019
+Product Sparse Coding,http://openaccess.thecvf.com/content_cvpr_2014/html/Ge_Product_Sparse_Coding_2014_CVPR_paper.html,CVPR,2014,https://github.com/ksopyla/CudaDotProd,16,1/2/2019
+Learning Descriptor Networks for 3D Shape Synthesis and Analysis,http://openaccess.thecvf.com/content_cvpr_2018/papers/Xie_Learning_Descriptor_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jianwen-xie/3DDescriptorNet,19,1/2/2019
+Automatic Discovery of the Statistical Types of Variables in a Dataset,http://proceedings.mlr.press/v70/valera17a.html,ICML,2017,https://github.com/ivaleraM/DataTypes,15,1/2/2019
+3D Object Reconstruction From Hand-Object Interactions,http://openaccess.thecvf.com/content_iccv_2015/html/Tzionas_3D_Object_Reconstruction_ICCV_2015_paper.html,ICCV,2015,https://github.com/dimtziwnas/InHandScanningICCV15_Reconstruction,15,1/2/2019
+Structure From Motion With Objects,http://openaccess.thecvf.com/content_cvpr_2016/html/Crocco_Structure_From_Motion_CVPR_2016_paper.html,CVPR,2016,https://github.com/danylaksono/Android-SfM-client,17,1/2/2019
+EPINET: A Fully-Convolutional Neural Network Using Epipolar Geometry for Depth From Light Field Images,http://openaccess.thecvf.com/content_cvpr_2018/papers/Shin_EPINET_A_Fully-Convolutional_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/chshin10/epinet,18,1/2/2019
+Deep Learning with Topological Signatures,http://papers.nips.cc/paper/6761-deep-learning-with-topological-signatures.pdf,NIPS,2017,https://github.com/c-hofer/nips2017,17,1/2/2019
+Conditional Image-Text Embedding Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Bryan_Plummer_Conditional_Image-Text_Embedding_ECCV_2018_paper.html,ECCV,2018,https://github.com/BryanPlummer/cite,18,1/2/2019
+Functional Gradient Boosting based on Residual Network Perception,http://proceedings.mlr.press/v80/nitanda18a.html,ICML,2018,https://github.com/anitan0925/ResFGB,16,1/2/2019
+Deep Multitask Architecture for Integrated 2D and 3D Human Sensing,http://openaccess.thecvf.com/content_cvpr_2017/html/Popa_Deep_Multitask_Architecture_CVPR_2017_paper.html,CVPR,2017,https://github.com/alinionutpopa/dmhs,16,1/2/2019
+Action Sets: Weakly Supervised Action Segmentation Without Ordering Constraints,http://openaccess.thecvf.com/content_cvpr_2018/papers/Richard_Action_Sets_Weakly_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/alexanderrichard/action-sets,14,1/2/2019
+Grounding Referring Expressions in Images by Variational Context,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Grounding_Referring_Expressions_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yuleiniu/vc,15,1/2/2019
+Automatic Spatially-Aware Fashion Concept Discovery,http://openaccess.thecvf.com/content_iccv_2017/html/Han_Automatic_Spatially-Aware_Fashion_ICCV_2017_paper.html,ICCV,2017,https://github.com/xthan/fashion-200k,20,1/2/2019
+Single-Image Crowd Counting via Multi-Column Convolutional Neural Network,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhang_Single-Image_Crowd_Counting_CVPR_2016_paper.html,CVPR,2016,https://github.com/uestcchicken/crowd-counting-MCNN,19,1/2/2019
+Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems,http://openaccess.thecvf.com/content_iccv_2017/html/Meinhardt_Learning_Proximal_Operators_ICCV_2017_paper.html,ICCV,2017,https://github.com/tum-vision/learn_prox_ops,15,1/2/2019
+A Spectral Approach to Gradient Estimation for Implicit Distributions,http://proceedings.mlr.press/v80/shi18a.html,ICML,2018,https://github.com/thjashin/spectral-stein-grad,17,1/2/2019
+Toward Characteristic-Preserving Image-based Virtual Try-On Network,http://openaccess.thecvf.com/content_ECCV_2018/html/Bochao_Wang_Toward_Characteristic-Preserving_Image-based_ECCV_2018_paper.html,ECCV,2018,https://github.com/sergeywong/cp-vton,29,1/2/2019
+Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Cui_Large_Scale_Fine-Grained_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/richardaecn/cvpr18-inaturalist-transfer,31,1/2/2019
+Weakly- and Semi-Supervised Panoptic Segmentation,http://openaccess.thecvf.com/content_ECCV_2018/html/Anurag_Arnab_Weakly-_and_Semi-Supervised_ECCV_2018_paper.html,ECCV,2018,https://github.com/qizhuli/Weakly-Supervised-Panoptic-Segmentation,46,1/2/2019
+Quantized Convolutional Neural Networks for Mobile Devices,http://openaccess.thecvf.com/content_cvpr_2016/html/Wu_Quantized_Convolutional_Neural_CVPR_2016_paper.html,CVPR,2016,https://github.com/OluwoleOyetoke/Computer_Vision_Using_TensorFlowLite,20,1/2/2019
+Fully-Adaptive Feature Sharing in Multi-Task Networks With Applications in Person Attribute Classification,http://openaccess.thecvf.com/content_cvpr_2017/html/Lu_Fully-Adaptive_Feature_Sharing_CVPR_2017_paper.html,CVPR,2017,https://github.com/luyongxi/deep_share,19,1/2/2019
+StyleBank: An Explicit Representation for Neural Image Style Transfer,http://openaccess.thecvf.com/content_cvpr_2017/html/Chen_StyleBank_An_Explicit_CVPR_2017_paper.html,CVPR,2017,https://github.com/jxcodetw/Stylebank,16,1/2/2019
+ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_ISTA-Net_Interpretable_Optimization-Inspired_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jianzhangcs/ISTA-Net,22,1/2/2019
+Spatially-Varying Blur Detection Based on Multiscale Fused and Sorted Transform Coefficients of Gradient Magnitudes,http://openaccess.thecvf.com/content_cvpr_2017/html/Golestaneh_Spatially-Varying_Blur_Detection_CVPR_2017_paper.html,CVPR,2017,https://github.com/isalirezag/HiFST,16,1/2/2019
+Predicting Gaze in Egocentric Video by Learning Task-dependent Attention Transition,http://openaccess.thecvf.com/content_ECCV_2018/html/Huang_Predicting_Gaze_in_ECCV_2018_paper.html,ECCV,2018,https://github.com/hyf015/egocentric-gaze-prediction,16,1/2/2019
+Unsupervised Geometry-Aware Representation for 3D Human Pose Estimation,http://openaccess.thecvf.com/content_ECCV_2018/html/Helge_Rhodin_Unsupervised_Geometry-Aware_Representation_ECCV_2018_paper.html,ECCV,2018,https://github.com/hrhodin/UnsupervisedGeometryAwareRepresentationLearning,37,1/2/2019
+RoomNet: End-To-End Room Layout Estimation,http://openaccess.thecvf.com/content_iccv_2017/html/Lee_RoomNet_End-To-End_Room_ICCV_2017_paper.html,ICCV,2017,https://github.com/GitBoSun/roomnet,17,1/2/2019
+Federated Multi-Task Learning,http://papers.nips.cc/paper/7029-federated-multi-task-learning.pdf,NIPS,2017,https://github.com/gingsmith/fmtl,16,1/2/2019
+Revisiting Deep Intrinsic Image Decompositions,http://openaccess.thecvf.com/content_cvpr_2018/papers/Fan_Revisiting_Deep_Intrinsic_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/fqnchina/IntrinsicImage,17,1/2/2019
+Few-Shot Learning Through an Information Retrieval Lens,http://papers.nips.cc/paper/6820-few-shot-learning-through-an-information-retrieval-lens.pdf,NIPS,2017,https://github.com/eleniTriantafillou/few_shot_mAP_public,16,1/2/2019
+Learning Temporal Embeddings for Complex Video Analysis,http://openaccess.thecvf.com/content_iccv_2015/html/Ramanathan_Learning_Temporal_Embeddings_ICCV_2015_paper.html,ICCV,2015,https://github.com/eevignesh/videovector,14,1/2/2019
+Streaming Weak Submodularity: Interpreting Neural Networks on the Fly,http://papers.nips.cc/paper/6993-streaming-weak-submodularity-interpreting-neural-networks-on-the-fly.pdf,NIPS,2017,https://github.com/eelenberg/streak,14,1/2/2019
+Structure-Measure: A New Way to Evaluate Foreground Maps,http://openaccess.thecvf.com/content_iccv_2017/html/Fan_Structure-Measure_A_New_ICCV_2017_paper.html,ICCV,2017,https://github.com/DengPingFan/S-measure,15,1/2/2019
+Stacked Conditional Generative Adversarial Networks for Jointly Learning Shadow Detection and Shadow Removal,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Stacked_Conditional_Generative_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/DeepInsight-PCALab/ST-CGAN,20,1/2/2019
+Structured Feature Selection,http://openaccess.thecvf.com/content_iccv_2015/html/Gao_Structured_Feature_Selection_ICCV_2015_paper.html,ICCV,2015,https://github.com/csliangdu/FSASL,17,1/2/2019
+Convolutional Sequence to Sequence Model for Human Dynamics,http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Convolutional_Sequence_to_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/chaneyddtt/Convolutional-Sequence-to-Sequence-Model-for-Human-Dynamics,15,1/2/2019
+Bayesian Optimization of Combinatorial Structures,http://proceedings.mlr.press/v80/baptista18a.html,ICML,2018,https://github.com/baptistar/BOCS,18,1/2/2019
+Off-policy evaluation for slate recommendation,http://papers.nips.cc/paper/6954-off-policy-evaluation-for-slate-recommendation.pdf,NIPS,2017,https://github.com/adith387/slates_semisynth_expts,15,1/2/2019
+Interactive Segmentation on RGBD Images via Cue Selection,http://openaccess.thecvf.com/content_cvpr_2016/html/Feng_Interactive_Segmentation_on_CVPR_2016_paper.html,CVPR,2016,https://github.com/ZVsion/rgbd_image_segmentation,14,1/2/2019
+Weakly Supervised Affordance Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Sawatzky_Weakly_Supervised_Affordance_CVPR_2017_paper.html,CVPR,2017,https://github.com/ykztawas/Weakly-Supervised-Affordance-Detection,13,1/2/2019
+3DFeat-Net: Weakly Supervised Local 3D Features for Point Cloud Registration,http://openaccess.thecvf.com/content_ECCV_2018/html/Zi_Jian_Yew_3DFeat-Net_Weakly_Supervised_ECCV_2018_paper.html,ECCV,2018,https://github.com/yewzijian/3DFeatNet,27,1/2/2019
+Towards Human-Machine Cooperation: Self-Supervised Sample Mining for Object Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Towards_Human-Machine_Cooperation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yanxp/SSM,13,1/2/2019
+Captioning Images With Diverse Objects,http://openaccess.thecvf.com/content_cvpr_2017/html/Venugopalan_Captioning_Images_With_CVPR_2017_paper.html,CVPR,2017,https://github.com/vsubhashini/noc,15,1/2/2019
+NAG: Network for Adversary Generation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Mopuri_NAG_Network_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/val-iisc/nag,16,1/2/2019
+Variational Dropout Sparsifies Deep Neural Networks,http://proceedings.mlr.press/v70/molchanov17a.html,ICML,2017,https://github.com/soskek/variational_dropout_sparsifies_dnn,15,1/2/2019
+Fast Video Object Segmentation by Reference-Guided Mask Propagation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Oh_Fast_Video_Object_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/seoungwugoh/RGMP,27,1/2/2019
+Oriented Edge Forests for Boundary Detection,http://openaccess.thecvf.com/content_cvpr_2015/html/Hallman_Oriented_Edge_Forests_2015_CVPR_paper.html,CVPR,2015,https://github.com/samhallman/oef,13,1/2/2019
+Learning to See by Moving,http://openaccess.thecvf.com/content_iccv_2015/html/Agrawal_Learning_to_See_ICCV_2015_paper.html,ICCV,2015,https://github.com/pulkitag/learning-to-see-by-moving,14,1/2/2019
+Multi-Scale Weighted Nuclear Norm Image Restoration,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yair_Multi-Scale_Weighted_Nuclear_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/noamyairTC/MSWNNM,14,1/2/2019
+"Total Capture: A 3D Deformation Model for Tracking Faces, Hands, and Bodies",http://openaccess.thecvf.com/content_cvpr_2018/papers/Joo_Total_Capture_A_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Myzhencai/Total-Capture,17,1/2/2019
+Recurrent 3D Pose Sequence Machines,http://openaccess.thecvf.com/content_cvpr_2017/html/Lin_Recurrent_3D_Pose_CVPR_2017_paper.html,CVPR,2017,https://github.com/MudeLin/RPSM,15,1/2/2019
+Hierarchical Relational Networks for Group Activity Recognition and Retrieval,http://openaccess.thecvf.com/content_ECCV_2018/html/Mostafa_Ibrahim_Hierarchical_Relational_Networks_ECCV_2018_paper.html,ECCV,2018,https://github.com/mostafa-saad/hierarchical-relational-network,22,1/2/2019
+Collaborative and Adversarial Network for Unsupervised Domain Adaptation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Collaborative_and_Adversarial_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/mahfuj9346449/iCAN,22,1/2/2019
+Wasserstein Generative Adversarial Networks,http://proceedings.mlr.press/v70/arjovsky17a.html,ICML,2017,https://github.com/luslab/scRNAseq-WGAN-GP,15,1/2/2019
+ReconNet: Non-Iterative Reconstruction of Images From Compressively Sensed Measurements,http://openaccess.thecvf.com/content_cvpr_2016/html/Kulkarni_ReconNet_Non-Iterative_Reconstruction_CVPR_2016_paper.html,CVPR,2016,https://github.com/KuldeepKulkarni/ReconNet,15,1/2/2019
+Adversarial Attack on Graph Structured Data,http://proceedings.mlr.press/v80/dai18b.html,ICML,2018,https://github.com/Hanjun-Dai/graph_adversarial_attack,17,1/2/2019
+To Trust Or Not To Trust A Classifier,http://arxiv.org/abs/1805.11783v1,NIPS,2018,https://github.com/google/TrustScore,23,1/2/2019
+Efficient Neural Audio Synthesis,http://proceedings.mlr.press/v80/kalchbrenner18a.html,ICML,2018,https://github.com/fedden/TensorFlow-Efficient-Neural-Audio-Synthesis,15,1/2/2019
+Visual Coreference Resolution in Visual Dialog using Neural Module Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Satwik_Kottur_Visual_Coreference_Resolution_ECCV_2018_paper.html,ECCV,2018,https://github.com/facebookresearch/corefnmn,25,1/2/2019
+"ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events",http://papers.nips.cc/paper/6932-extremeweather-a-large-scale-climate-dataset-for-semi-supervised-detection-localization-and-understanding-of-extreme-weather-events.pdf,NIPS,2017,https://github.com/eracah/hur-detect,13,1/2/2019
+Estimating Accuracy from Unlabeled Data: A Probabilistic Logic Approach,http://papers.nips.cc/paper/7023-estimating-accuracy-from-unlabeled-data-a-probabilistic-logic-approach.pdf,NIPS,2017,https://github.com/eaplatanios/makina,16,1/2/2019
+Spherical convolutions and their application in molecular modelling,http://papers.nips.cc/paper/6935-spherical-convolutions-and-their-application-in-molecular-modelling.pdf,NIPS,2017,https://github.com/deepfold/NIPS2017,14,1/2/2019
+Multi-Information Source Optimization,http://papers.nips.cc/paper/7016-multi-information-source-optimization.pdf,NIPS,2017,https://github.com/deepfold/NIPS2017,14,1/2/2019
+Learning 3D Shape Completion From Laser Scan Data With Weak Supervision,http://openaccess.thecvf.com/content_cvpr_2018/papers/Stutz_Learning_3D_Shape_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/davidstutz/cvpr2018-shape-completion,17,1/2/2019
+VQS: Linking Segmentations to Questions and Answers for Supervised Attention in VQA and Question-Focused Semantic Segmentation,http://openaccess.thecvf.com/content_iccv_2017/html/Gan_VQS_Linking_Segmentations_ICCV_2017_paper.html,ICCV,2017,https://github.com/Cold-Winter/vqs,14,1/2/2019
+Neural Face Editing With Intrinsic Image Disentangling,http://openaccess.thecvf.com/content_cvpr_2017/html/Shu_Neural_Face_Editing_CVPR_2017_paper.html,CVPR,2017,https://github.com/zhixinshu/NeuralFaceEditing,14,1/2/2019
+Convexified Convolutional Neural Networks,http://proceedings.mlr.press/v70/zhang17f.html,ICML,2017,https://github.com/zhangyuc/CCNN,12,1/2/2019
+Adversarial Complementary Learning for Weakly Supervised Object Localization,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Adversarial_Complementary_Learning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/xiaomengyc/ACoL,39,1/2/2019
+Awesome Typography: Statistics-Based Text Effects Transfer,http://openaccess.thecvf.com/content_cvpr_2017/html/Yang_Awesome_Typography_Statistics-Based_CVPR_2017_paper.html,CVPR,2017,https://github.com/williamyang1991/Text-Effects-Transfer,17,1/2/2019
+"Hunt For The Unique, Stable, Sparse And Fast Feature Learning On Graphs",http://papers.nips.cc/paper/6614-hunt-for-the-unique-stable-sparse-and-fast-feature-learning-on-graphs.pdf,NIPS,2017,https://github.com/vermaMachineLearning/FGSD,13,1/2/2019
+Consensus Convolutional Sparse Coding,http://openaccess.thecvf.com/content_iccv_2017/html/Choudhury_Consensus_Convolutional_Sparse_ICCV_2017_paper.html,ICCV,2017,https://github.com/vccimaging/CCSC_code_ICCV2017,13,1/2/2019
+Reflection Removal Using Ghosting Cues,http://openaccess.thecvf.com/content_cvpr_2015/html/Shih_Reflection_Removal_Using_2015_CVPR_paper.html,CVPR,2015,https://github.com/thongnguyendev/single_image,14,1/2/2019
+Streaming Sparse Gaussian Process Approximations,http://papers.nips.cc/paper/6922-streaming-sparse-gaussian-process-approximations.pdf,NIPS,2017,https://github.com/thangbui/streaming_sparse_gp,17,1/2/2019
+Image Transformer,http://proceedings.mlr.press/v80/parmar18a.html,ICML,2018,https://github.com/ssingal05/ImageTransformer,14,1/2/2019
+Semantic Filtering,http://openaccess.thecvf.com/content_cvpr_2016/html/Yang_Semantic_Filtering_CVPR_2016_paper.html,CVPR,2016,https://github.com/shenshen-hungry/Semantic-CNN,16,1/2/2019
+Objects that Sound,http://openaccess.thecvf.com/content_ECCV_2018/html/Relja_Arandjelovic_Objects_that_Sound_ECCV_2018_paper.html,ECCV,2018,https://github.com/rohitrango/objects-that-sound,20,1/2/2019
+Arbitrary Style Transfer With Deep Feature Reshuffle,http://openaccess.thecvf.com/content_cvpr_2018/papers/Gu_Arbitrary_Style_Transfer_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/msracver/Style-Feature-Reshuffle,17,1/2/2019
+StoryGraphs: Visualizing Character Interactions as a Timeline,http://openaccess.thecvf.com/content_cvpr_2014/html/Tapaswi_StoryGraphs_Visualizing_Character_2014_CVPR_paper.html,CVPR,2014,https://github.com/makarandtapaswi/StoryGraphs_CVPR2014,14,1/2/2019
+Deep Supervised Discrete Hashing,http://papers.nips.cc/paper/6842-deep-supervised-discrete-hashing.pdf,NIPS,2017,https://github.com/liqi-casia/DSDH-HashingCode,16,1/2/2019
+Convolutional Neural Networks for No-Reference Image Quality Assessment,http://openaccess.thecvf.com/content_cvpr_2014/html/Kang_Convolutional_Neural_Networks_2014_CVPR_paper.html,CVPR,2014,https://github.com/lidq92/CNNIQA,16,1/2/2019
+Realistic Dynamic Facial Textures From a Single Image Using GANs,http://openaccess.thecvf.com/content_iccv_2017/html/Olszewski_Realistic_Dynamic_Facial_ICCV_2017_paper.html,ICCV,2017,https://github.com/leehomyc/ICCV-2017-Paper,14,1/2/2019
+Unrolled Memory Inner-Products: An Abstract GPU Operator for Efficient Vision-Related Computations,http://openaccess.thecvf.com/content_iccv_2017/html/Lin_Unrolled_Memory_Inner-Products_ICCV_2017_paper.html,ICCV,2017,https://github.com/johnjohnlin/UMI,12,1/2/2019
+CTAP: Complementary Temporal Action Proposal Generation,http://openaccess.thecvf.com/content_ECCV_2018/html/Jiyang_Gao_CTAP_Complementary_Temporal_ECCV_2018_paper.html,ECCV,2018,https://github.com/jiyanggao/CTAP,18,1/2/2019
+Deep Cross-Modal Hashing,http://openaccess.thecvf.com/content_cvpr_2017/html/Jiang_Deep_Cross-Modal_Hashing_CVPR_2017_paper.html,CVPR,2017,https://github.com/jiangqy/DCMH-CVPR2017,22,1/2/2019
+Coordinated Multi-Agent Imitation Learning,http://proceedings.mlr.press/v70/le17a.html,ICML,2017,https://github.com/hoangminhle/MultiAgent-ImitationLearning,12,1/2/2019
+Convolutional Neural Network Architecture for Geometric Matching,http://openaccess.thecvf.com/content_cvpr_2017/html/Rocco_Convolutional_Neural_Network_CVPR_2017_paper.html,CVPR,2017,https://github.com/hjweide/convnet-for-geometric-matching,14,1/2/2019
+Parallax-tolerant Image Stitching,http://openaccess.thecvf.com/content_cvpr_2014/html/Zhang_Parallax-tolerant_Image_Stitching_2014_CVPR_paper.html,CVPR,2014,https://github.com/gain2217/Robust_Elastic_Warping,20,1/2/2019
+Decouple Learning for Parameterized Image Operators,http://openaccess.thecvf.com/content_ECCV_2018/html/Qingnan_Fan_Learning_to_Learn_ECCV_2018_paper.html,ECCV,2018,https://github.com/fqnchina/DecoupleLearning,12,1/2/2019
+Local Spectral Graph Convolution for Point Set Feature Learning,http://openaccess.thecvf.com/content_ECCV_2018/html/Chu_Wang_Local_Spectral_Graph_ECCV_2018_paper.html,ECCV,2018,https://github.com/fate3439/LocalSpecGCN,21,1/2/2019
+Low-Shot Learning With Large-Scale Diffusion,http://openaccess.thecvf.com/content_cvpr_2018/papers/Douze_Low-Shot_Learning_With_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/facebookresearch/low-shot-with-diffusion,19,1/2/2019
+Glimpse Clouds: Human Activity Recognition From Unstructured Feature Points,http://openaccess.thecvf.com/content_cvpr_2018/papers/Baradel_Glimpse_Clouds_Human_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/fabienbaradel/glimpse_clouds,18,1/2/2019
+Learning and Using the Arrow of Time,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wei_Learning_and_Using_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/donglaiw/AoT_TCAM,14,1/2/2019
+Nonparametric Part Transfer for Fine-grained Recognition,http://openaccess.thecvf.com/content_cvpr_2014/html/Goring_Nonparametric_Part_Transfer_2014_CVPR_paper.html,CVPR,2014,https://github.com/cvjena/finegrained-cvpr2014,13,1/2/2019
+Multigrid Neural Architectures,http://openaccess.thecvf.com/content_cvpr_2017/html/Ke_Multigrid_Neural_Architectures_CVPR_2017_paper.html,CVPR,2017,https://github.com/buttomnutstoast/Multigrid-Neural-Architectures,12,1/2/2019
+Attributes2Classname: A Discriminative Model for Attribute-Based Unsupervised Zero-Shot Learning,http://openaccess.thecvf.com/content_iccv_2017/html/Demirel_Attributes2Classname_A_Discriminative_ICCV_2017_paper.html,ICCV,2017,https://github.com/berkandemirel/attributes2classname,14,1/2/2019
+Gesture Recognition: Focus on the Hands,http://openaccess.thecvf.com/content_cvpr_2018/papers/Narayana_Gesture_Recognition_Focus_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/beckabec/HandDetection,12,1/2/2019
+IM2CAD,http://openaccess.thecvf.com/content_cvpr_2017/html/Izadinia_IM2CAD_CVPR_2017_paper.html,CVPR,2017,https://github.com/yyong119/IM2CAD,11,1/2/2019
+Deep Spatial-Semantic Attention for Fine-Grained Sketch-Based Image Retrieval,http://openaccess.thecvf.com/content_iccv_2017/html/Song_Deep_Spatial-Semantic_Attention_ICCV_2017_paper.html,ICCV,2017,https://github.com/yuchuochuo1023/Deep_SBIR_tf,16,1/2/2019
+Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace,http://proceedings.mlr.press/v80/lee18a.html,ICML,2018,https://github.com/yoonholee/MT-net,13,1/2/2019
+Min-Entropy Latent Model for Weakly Supervised Object Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wan_Min-Entropy_Latent_Model_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Winfrand/MELM,13,1/2/2019
+Joint Learning of Object and Action Detectors,http://openaccess.thecvf.com/content_iccv_2017/html/Kalogeiton_Joint_Learning_of_ICCV_2017_paper.html,ICCV,2017,https://github.com/vkalogeiton/joint-object-action-learning,13,1/2/2019
+Generalized Deep Image to Image Regression,http://openaccess.thecvf.com/content_cvpr_2017/html/Santhanam_Generalized_Deep_Image_CVPR_2017_paper.html,CVPR,2017,https://github.com/venkai/RBDN,11,1/2/2019
+HashGAN: Deep Learning to Hash With Pair Conditional Wasserstein GAN,http://openaccess.thecvf.com/content_cvpr_2018/papers/Cao_HashGAN_Deep_Learning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/thuml/HashGAN,22,1/2/2019
+Future Person Localization in First-Person Videos,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yagi_Future_Person_Localization_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/takumayagi/fpl,12,1/2/2019
+Sliced Wasserstein Distance for Learning Gaussian Mixture Models,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kolouri_Sliced_Wasserstein_Distance_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/skolouri/swgmm,17,1/2/2019
+Light Field Blind Motion Deblurring,http://openaccess.thecvf.com/content_cvpr_2017/html/Srinivasan_Light_Field_Blind_CVPR_2017_paper.html,CVPR,2017,https://github.com/pratulsrinivasan/Light_Field_Blind_Motion_Deblurring,13,1/2/2019
+Hierarchical Multi-Label Classification Networks,http://proceedings.mlr.press/v80/wehrmann18a.html,ICML,2018,https://github.com/omoju/receiptdID,11,1/2/2019
+Neural Sign Language Translation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Camgoz_Neural_Sign_Language_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/neccam/nslt,15,1/2/2019
+Scalable Multitask Representation Learning for Scene Classification,http://openaccess.thecvf.com/content_cvpr_2014/html/Lapin_Scalable_Multitask_Representation_2014_CVPR_paper.html,CVPR,2014,https://github.com/mlapin/cvpr14mtl,11,1/2/2019
+Asynchronous Stochastic Gradient Descent with Delay Compensation,http://proceedings.mlr.press/v70/zheng17b.html,ICML,2017,https://github.com/Microsoft/Delayed-Compensation-Asynchronous-Stochastic-Gradient-Descent-for-Multiverso,13,1/2/2019
+Learning Rich Features for Image Manipulation Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhou_Learning_Rich_Features_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/LarryJiang134/Image_manipulation_detection,27,1/2/2019
+Hierarchical Novelty Detection for Visual Object Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lee_Hierarchical_Novelty_Detection_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kibok90/cvpr2018-hnd,17,1/2/2019
+Maximizing Subset Accuracy with Recurrent Neural Networks in Multi-label Classification,http://papers.nips.cc/paper/7125-maximizing-subset-accuracy-with-recurrent-neural-networks-in-multi-label-classification.pdf,NIPS,2017,https://github.com/JinseokNam/mlc2seq,12,1/2/2019
+Differential Angular Imaging for Material Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Xue_Differential_Angular_Imaging_CVPR_2017_paper.html,CVPR,2017,https://github.com/jiaxue1993/DAIN,12,1/2/2019
+Where to Buy It: Matching Street Clothing Photos in Online Shops,http://openaccess.thecvf.com/content_iccv_2015/html/Kiapour_Where_to_Buy_ICCV_2015_paper.html,ICCV,2015,https://github.com/jfuentescpp/where_to_buy_it,14,1/2/2019
+On Fairness and Calibration,http://papers.nips.cc/paper/7151-on-fairness-and-calibration.pdf,NIPS,2017,https://github.com/gpleiss/equalized_odds_and_calibration,11,1/2/2019
+Learning to Forecast and Refine Residual Motion for Image-to-Video Generation,http://openaccess.thecvf.com/content_ECCV_2018/html/Long_Zhao_Learning_to_Forecast_ECCV_2018_paper.html,ECCV,2018,https://github.com/garyzhao/FRGAN,14,1/2/2019
+Convolutional Image Captioning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Aneja_Convolutional_Image_Captioning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/eladhoffer/captionGeneration.torch,11,1/2/2019
+Deep Expander Networks: Efficient Deep Networks from Graph Theory,http://openaccess.thecvf.com/content_ECCV_2018/html/Ameya_Prabhu_Deep_Expander_Networks_ECCV_2018_paper.html,ECCV,2018,https://github.com/DrImpossible/Deep-Expander-Networks,19,1/2/2019
+From Motion Blur to Motion Flow: A Deep Learning Solution for Removing Heterogeneous Motion Blur,http://openaccess.thecvf.com/content_cvpr_2017/html/Gong_From_Motion_Blur_CVPR_2017_paper.html,CVPR,2017,https://github.com/donggong1/motion-flow-syn,20,1/2/2019
+Face Aging With Identity-Preserved Conditional Generative Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Face_Aging_With_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/dawei6875797/Face-Aging-with-Identity-Preserved-Conditional-Generative-Adversarial-Networks,23,1/2/2019
+Similarity Learning With Spatial Constraints for Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2016/html/Chen_Similarity_Learning_With_CVPR_2016_paper.html,CVPR,2016,https://github.com/dapengchen123/SCSP,11,1/2/2019
+Joint Optimization Framework for Learning With Noisy Labels,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tanaka_Joint_Optimization_Framework_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/DaikiTanaka-UT/JointOptimization,12,1/2/2019
+Predictive State Recurrent Neural Networks,http://papers.nips.cc/paper/7186-predictive-state-recurrent-neural-networks.pdf,NIPS,2017,https://github.com/cmdowney/psrnn,13,1/2/2019
+A Large-Scale Car Dataset for Fine-Grained Categorization and Verification,http://openaccess.thecvf.com/content_cvpr_2015/html/Yang_A_Large-Scale_Car_2015_CVPR_paper.html,CVPR,2015,https://github.com/bogger/caffe-multigpu,11,1/2/2019
+Dynamic Multimodal Instance Segmentation Guided by Natural Language Queries,http://openaccess.thecvf.com/content_ECCV_2018/html/Edgar_Margffoy-Tuay_Dynamic_Multimodal_Instance_ECCV_2018_paper.html,ECCV,2018,https://github.com/BCV-Uniandes/query-objseg,25,1/2/2019
+Learning Transferable Architectures for Scalable Image Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/aussetg/nasnet.pytorch,12,1/2/2019
+Learning Conditioned Graph Structures for Interpretable Visual Question Answering,,NIPS,2018,https://github.com/aimbrain/vqa-project,57,1/2/2019
+Learning Diverse Image Colorization,http://openaccess.thecvf.com/content_cvpr_2017/html/Deshpande_Learning_Diverse_Image_CVPR_2017_paper.html,CVPR,2017,https://github.com/aditya12agd5/divcolor,15,1/2/2019
+Open Set Domain Adaptation by Backpropagation,http://openaccess.thecvf.com/content_ECCV_2018/html/Kuniaki_Saito_Adversarial_Open_Set_ECCV_2018_paper.html,ECCV,2018,https://github.com/YU1ut/openset-DA,15,1/2/2019
+Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks,https://arxiv.org/abs/1802.04034,NIPS,2018,https://github.com/ytsmiling/lmt,16,1/2/2019
+Mix and Match Networks: Encoder-Decoder Alignment for Zero-Pair Image Translation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Mix_and_Match_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yaxingwang/Mix-and-match-networks,12,1/2/2019
+Learning by Asking Questions,http://openaccess.thecvf.com/content_cvpr_2018/papers/Misra_Learning_by_Asking_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/yanghoonkim/question_generation,13,1/2/2019
+DESIRE: Distant Future Prediction in Dynamic Scenes With Interacting Agents,http://openaccess.thecvf.com/content_cvpr_2017/html/Lee_DESIRE_Distant_Future_CVPR_2017_paper.html,CVPR,2017,https://github.com/yadrimz/DESIRE,11,1/2/2019
+Densely Connected Attention Propagation for Reading Comprehension,https://nips.cc/Conferences/2018/Schedule?showEvent=11481,NIPS,2018,https://github.com/vanzytay/NIPS2018_DECAPROP,30,1/2/2019
+VegFru: A Domain-Specific Dataset for Fine-Grained Visual Categorization,http://openaccess.thecvf.com/content_iccv_2017/html/Hou_VegFru_A_Domain-Specific_ICCV_2017_paper.html,ICCV,2017,https://github.com/ustc-vim/vegfru,12,1/2/2019
+Generalized Earley Parser: Bridging Symbolic Grammars and Sequence Data for Future Prediction,http://proceedings.mlr.press/v80/qi18a.html,ICML,2018,https://github.com/SiyuanQi/generalized-earley-parser,12,1/2/2019
+Multimodal Explanations: Justifying Decisions and Pointing to the Evidence,http://openaccess.thecvf.com/content_cvpr_2018/papers/Park_Multimodal_Explanations_Justifying_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Seth-Park/MultimodalExplanations,11,1/2/2019
+Pose Proposal Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Sekii_Pose_Proposal_Networks_ECCV_2018_paper.html,ECCV,2018,https://github.com/salihkaragoz/MultiPerson-pose-estimation,15,1/2/2019
+Meta-Learning by Adjusting Priors Based on Extended PAC-Bayes Theory,http://proceedings.mlr.press/v80/amit18a.html,ICML,2018,https://github.com/ron-amit/meta-learning-adjusting-priors,11,1/2/2019
+f-GANs in an Information Geometric Nutshell,http://papers.nips.cc/paper/6649-f-gans-in-an-information-geometric-nutshell.pdf,NIPS,2017,https://github.com/qulizhen/fgan_info_geometric,10,1/2/2019
+Attend and Predict: Understanding Gene Regulation by Selective Attention on Chromatin,http://papers.nips.cc/paper/7255-attend-and-predict-understanding-gene-regulation-by-selective-attention-on-chromatin.pdf,NIPS,2017,https://github.com/QData/AttentiveChrome,12,1/2/2019
+Adversarial Time-to-Event Modeling,http://proceedings.mlr.press/v80/chapfuwa18a.html,ICML,2018,https://github.com/paidamoyo/adversarial_time_to_event,12,1/2/2019
+Anonymous Walk Embeddings,http://proceedings.mlr.press/v80/ivanov18a.html,ICML,2018,https://github.com/nd7141/AWE,22,1/2/2019
+Learning Type-Aware Embeddings for Fashion Compatibility,http://openaccess.thecvf.com/content_ECCV_2018/html/Mariya_Vasileva_Learning_Type-Aware_Embeddings_ECCV_2018_paper.html,ECCV,2018,https://github.com/mvasil/fashion-compatibility,17,1/2/2019
+Learning to Understand Image Blur,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Learning_to_Understand_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Lotuslisa/Understand_Image_Blur,14,1/2/2019
+Scalable Log Determinants for Gaussian Process Kernel Learning,http://papers.nips.cc/paper/7212-scalable-log-determinants-for-gaussian-process-kernel-learning.pdf,NIPS,2017,https://github.com/kd383/GPML_SLD,9,1/2/2019
+Personalizing Human Video Pose Estimation,http://openaccess.thecvf.com/content_cvpr_2016/html/Charles_Personalizing_Human_Video_CVPR_2016_paper.html,CVPR,2016,https://github.com/jjcharles/personalized_pose,10,1/2/2019
+High-Order Attention Models for Visual Question Answering,http://papers.nips.cc/paper/6957-high-order-attention-models-for-visual-question-answering.pdf,NIPS,2017,https://github.com/idansc/HighOrderAtten,11,1/2/2019
+Learned Contextual Feature Reweighting for Image Geo-Localization,http://openaccess.thecvf.com/content_cvpr_2017/html/Kim_Learned_Contextual_Feature_CVPR_2017_paper.html,CVPR,2017,https://github.com/hyojinie/crn,14,1/2/2019
+AON: Towards Arbitrarily-Oriented Text Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Cheng_AON_Towards_Arbitrarily-Oriented_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/huizhang0110/AON,26,1/2/2019
+Joint Pose and Expression Modeling for Facial Expression Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Joint_Pose_and_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/FFZhang1231/Facial-expression-recognition,15,1/2/2019
+Accelerating Natural Gradient with Higher-Order Invariance,http://proceedings.mlr.press/v80/song18a.html,ICML,2018,https://github.com/ermongroup/higher_order_invariance,11,1/2/2019
+Fully-Convolutional Point Networks for Large-Scale Point Clouds,http://openaccess.thecvf.com/content_ECCV_2018/html/Dario_Rethage_Fully-Convolutional_Point_Networks_ECCV_2018_paper.html,ECCV,2018,https://github.com/drethage/fully-convolutional-point-network,20,1/2/2019
+Learning Cross-Modal Deep Representations for Robust Pedestrian Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Xu_Learning_Cross-Modal_Deep_CVPR_2017_paper.html,CVPR,2017,https://github.com/danxuhk/CMT-CNN,10,1/2/2019
+Adversarial Image Perturbation for Privacy Protection -- A Game Theory Perspective,http://openaccess.thecvf.com/content_iccv_2017/html/Oh_Adversarial_Image_Perturbation_ICCV_2017_paper.html,ICCV,2017,https://github.com/coallaoh/AIP,11,1/2/2019
+Finding Influential Training Samples for Gradient Boosted Decision Trees,http://proceedings.mlr.press/v80/sharchilev18a.html,ICML,2018,https://github.com/bsharchilev/influence_boosting,13,1/2/2019
+Non-Local Deep Features for Salient Object Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Luo_Non-Local_Deep_Features_CVPR_2017_paper.html,CVPR,2017,https://github.com/AceCoooool/NLFD-pytorch,15,1/2/2019
+Max-value Entropy Search for Efficient Bayesian Optimization,http://proceedings.mlr.press/v70/wang17e.html,ICML,2017,https://github.com/zi-w/Max-value-Entropy-Search,11,1/2/2019
+CVAE-GAN: Fine-Grained Image Generation Through Asymmetric Training,http://openaccess.thecvf.com/content_iccv_2017/html/Bao_CVAE-GAN_Fine-Grained_Image_ICCV_2017_paper.html,ICCV,2017,https://github.com/yanzhicong/VAE-GAN,14,1/2/2019
+Removing Rain From Single Images via a Deep Detail Network,http://openaccess.thecvf.com/content_cvpr_2017/html/Fu_Removing_Rain_From_CVPR_2017_paper.html,CVPR,2017,https://github.com/XMU-smartdsp/Removing_Rain,12,1/2/2019
+Learning Superpixels With Segmentation-Aware Affinity Loss,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tu_Learning_Superpixels_With_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/wctu/SEAL,20,1/2/2019
+Surface Normals in the Wild,http://openaccess.thecvf.com/content_iccv_2017/html/Chen_Surface_Normals_in_ICCV_2017_paper.html,ICCV,2017,https://github.com/umich-vl/surface_normals,15,1/2/2019
+Appearance-Based Gaze Estimation in the Wild,http://openaccess.thecvf.com/content_cvpr_2015/html/Zhang_Appearance-Based_Gaze_Estimation_2015_CVPR_paper.html,CVPR,2015,https://github.com/trakaros/MPIIGaze,10,1/2/2019
+Fisher GAN,http://papers.nips.cc/paper/6845-fisher-gan.pdf,NIPS,2017,https://github.com/tomsercu/FisherGAN,11,1/2/2019
+Practical Data-Dependent Metric Compression with Provable Guarantees,http://papers.nips.cc/paper/6855-practical-data-dependent-metric-compression-with-provable-guarantees.pdf,NIPS,2017,https://github.com/talwagner/quadsketch,9,1/2/2019
+High Quality Structure From Small Motion for Rolling Shutter Cameras,http://openaccess.thecvf.com/content_iccv_2015/html/Im_High_Quality_Structure_ICCV_2015_paper.html,ICCV,2015,https://github.com/sunghoonim/SfSM,9,1/2/2019
+Deep Diffeomorphic Transformer Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Detlefsen_Deep_Diffeomorphic_Transformer_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/SkafteNicki/ddtn,13,1/2/2019
+Predicting Human Activities Using Stochastic Grammar,http://openaccess.thecvf.com/content_iccv_2017/html/Qi_Predicting_Human_Activities_ICCV_2017_paper.html,ICCV,2017,https://github.com/SiyuanQi/grammar-activity-prediction,11,1/2/2019
+Synthesizing Robust Adversarial Examples,http://proceedings.mlr.press/v80/athalye18b.html,ICML,2018,https://github.com/prabhant/synthesizing-robust-adversarial-examples,13,1/2/2019
+Learning Motion Patterns in Videos,http://openaccess.thecvf.com/content_cvpr_2017/html/Tokmakov_Learning_Motion_Patterns_CVPR_2017_paper.html,CVPR,2017,https://github.com/pirahansiah/opencv,9,1/2/2019
+AMNet: Memorability Estimation With Attention,http://openaccess.thecvf.com/content_cvpr_2018/papers/Fajtl_AMNet_Memorability_Estimation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ok1zjf/AMNet,12,1/2/2019
+Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical Models,https://arxiv.org/abs/1808.04768,NIPS,2018,https://github.com/neitzal/adaptive-skip-intervals,12,1/2/2019
+Learning a Discriminative Feature Network for Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yu_Learning_a_Discriminative_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/lxtGH/dfn_seg,26,1/2/2019
+Gradient descent GAN optimization is locally stable,http://papers.nips.cc/paper/7142-gradient-descent-gan-optimization-is-locally-stable.pdf,NIPS,2017,https://github.com/locuslab/gradient_regularized_gan,12,1/2/2019
+Hashing as Tie-Aware Learning to Rank,http://openaccess.thecvf.com/content_cvpr_2018/papers/He_Hashing_as_Tie-Aware_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kunhe/TALR,15,1/2/2019
+Visually Indicated Sounds,http://openaccess.thecvf.com/content_cvpr_2016/html/Owens_Visually_Indicated_Sounds_CVPR_2016_paper.html,CVPR,2016,https://github.com/kanchen-usc/VIG,9,1/2/2019
+Attentional Correlation Filter Network for Adaptive Visual Tracking,http://openaccess.thecvf.com/content_cvpr_2017/html/Choi_Attentional_Correlation_Filter_CVPR_2017_paper.html,CVPR,2017,https://github.com/jongwon20000/ACFN,10,1/2/2019
+Automatic Content-Aware Color and Tone Stylization,http://openaccess.thecvf.com/content_cvpr_2016/html/Lee_Automatic_Content-Aware_Color_CVPR_2016_paper.html,CVPR,2016,https://github.com/jinyu121/ACACTS,12,1/2/2019
+Attention in Convolutional LSTM for Gesture Recognition,https://nips.cc/Conferences/2018/Schedule?showEvent=11207,NIPS,2018,https://github.com/GuangmingZhu/AttentionConvLSTM,32,1/2/2019
+Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization,http://papers.nips.cc/paper/6611-breaking-the-nonsmooth-barrier-a-scalable-parallel-method-for-composite-optimization.pdf,NIPS,2017,https://github.com/fabianp/ProxASAGA,9,1/2/2019
+Rethinking the Form of Latent States in Image Captioning,http://openaccess.thecvf.com/content_ECCV_2018/html/Bo_Dai_Rethinking_the_Form_ECCV_2018_paper.html,ECCV,2018,https://github.com/doubledaibo/2dcaption_eccv2018,15,1/2/2019
+Higher-Order Integration of Hierarchical Convolutional Activations for Fine-Grained Visual Categorization,http://openaccess.thecvf.com/content_iccv_2017/html/Cai_Higher-Order_Integration_of_ICCV_2017_paper.html,ICCV,2017,https://github.com/cssjcai/hihca,11,1/2/2019
+Confident Multiple Choice Learning,http://proceedings.mlr.press/v70/lee17b.html,ICML,2017,https://github.com/chhwang/cmcl,10,1/2/2019
+Do Deep Neural Networks Suffer from Crowding?,http://papers.nips.cc/paper/7146-do-deep-neural-networks-suffer-from-crowding.pdf,NIPS,2017,https://github.com/CBMM/eccentricity,9,1/2/2019
+Robust Image Filtering Using Joint Static and Dynamic Guidance,http://openaccess.thecvf.com/content_cvpr_2015/html/Ham_Robust_Image_Filtering_2015_CVPR_paper.html,CVPR,2015,https://github.com/bsham/SDFilter,10,1/2/2019
+Learning Dynamics of Linear Denoising Autoencoders,http://proceedings.mlr.press/v80/pretorius18a.html,ICML,2018,https://github.com/arnupretorius/lindaedynamics_icml2018,9,1/2/2019
+Variational Autoencoders for Deforming 3D Mesh Models,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tan_Variational_Autoencoders_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/aldehydecho/Mesh-VAE,13,1/2/2019
+Region Ranking SVM for Image Classification,http://openaccess.thecvf.com/content_cvpr_2016/html/Wei_Region_Ranking_SVM_CVPR_2016_paper.html,CVPR,2016,https://github.com/zijunwei/Region-Ranking-SVM,8,1/2/2019
+Disentangled Representation Learning GAN for Pose-Invariant Face Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Tran_Disentangled_Representation_Learning_CVPR_2017_paper.html,CVPR,2017,https://github.com/zhangjunh/DR-GAN-by-pytorch,21,1/2/2019
+A Non-Convex Variational Approach to Photometric Stereo Under Inaccurate Lighting,http://openaccess.thecvf.com/content_cvpr_2017/html/Queau_A_Non-Convex_Variational_CVPR_2017_paper.html,CVPR,2017,https://github.com/yqueau/robust_ps,9,1/2/2019
+Online multiclass boosting,http://papers.nips.cc/paper/6693-online-multiclass-boosting.pdf,NIPS,2017,https://github.com/yhjung88/OnlineBoostingWithVFDT,8,1/2/2019
+A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation,https://arxiv.org/abs/1809.01361,NIPS,2018,https://github.com/XenderLiu/UFDN,51,1/2/2019
+Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering,http://openaccess.thecvf.com/content_cvpr_2018/papers/Anderson_Bottom-Up_and_Top-Down_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Wentong-DST/up-down-captioner,13,1/2/2019
+Salient Object Detection Driven by Fixation Prediction,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Salient_Object_Detection_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/wenguanwang/ASNet,9,1/2/2019
+Cost efficient gradient boosting,http://papers.nips.cc/paper/6753-cost-efficient-gradient-boosting.pdf,NIPS,2017,https://github.com/svenpeter42/LightGBM-CEGB,8,1/2/2019
+Excitation Backprop for RNNs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Bargal_Excitation_Backprop_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/sbargal/Caffe-ExcitationBP-RNNs,9,1/2/2019
+DeepNav: Learning to Navigate Large Cities,http://openaccess.thecvf.com/content_cvpr_2017/html/Brahmbhatt_DeepNav_Learning_to_CVPR_2017_paper.html,CVPR,2017,https://github.com/samarth-robo/deepnav_cvpr17,8,1/2/2019
+Fast Information-theoretic Bayesian Optimisation,http://proceedings.mlr.press/v80/ru18a.html,ICML,2018,https://github.com/rubinxin/FITBO,8,1/2/2019
+DeepPermNet: Visual Permutation Learning,http://openaccess.thecvf.com/content_cvpr_2017/html/Santa_Cruz_DeepPermNet_Visual_Permutation_CVPR_2017_paper.html,CVPR,2017,https://github.com/rfsantacruz/deep-perm-net,10,1/2/2019
+Curriculum Dropout,http://openaccess.thecvf.com/content_iccv_2017/html/Morerio_Curriculum_Dropout_ICCV_2017_paper.html,ICCV,2017,https://github.com/pmorerio/curriculum-dropout,9,1/2/2019
+Input Switched Affine Networks: An RNN Architecture Designed for Interpretability,http://proceedings.mlr.press/v70/foerster17a.html,ICML,2017,https://github.com/philipperemy/tensorflow-isan-rnn,8,1/2/2019
+Deep Variational Reinforcement Learning for POMDPs,http://proceedings.mlr.press/v80/igl18a.html,ICML,2018,https://github.com/oxwhirl/Deep-Variational-Reinforcement-Learning,8,9/16/2018
+Gaze Embeddings for Zero-Shot Image Classification,http://openaccess.thecvf.com/content_cvpr_2017/html/Karessli_Gaze_Embeddings_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/Noura-kr/CVPR17,8,1/2/2019
+Formal Guarantees on the Robustness of a Classifier against Adversarial Manipulation,http://papers.nips.cc/paper/6821-formal-guarantees-on-the-robustness-of-a-classifier-against-adversarial-manipulation.pdf,NIPS,2017,https://github.com/max-andr/cross-lipschitz,11,1/2/2019
+Boosting Domain Adaptation by Discovering Latent Domains,http://openaccess.thecvf.com/content_cvpr_2018/papers/Mancini_Boosting_Domain_Adaptation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/mancinimassimiliano/latent_domains_DA,11,1/2/2019
+Affinity Clustering: Hierarchical Clustering at Scale,http://papers.nips.cc/paper/7262-affinity-clustering-hierarchical-clustering-at-scale.pdf,NIPS,2017,https://github.com/MahsaDerakhshan/AffinityClustering,8,1/2/2019
+Revisiting IM2GPS in the Deep Learning Era,http://openaccess.thecvf.com/content_iccv_2017/html/Vo_Revisiting_IM2GPS_in_ICCV_2017_paper.html,ICCV,2017,https://github.com/lugiavn/revisiting-im2gps,10,1/2/2019
+Partial Person Re-Identification,http://openaccess.thecvf.com/content_iccv_2015/html/Zheng_Partial_Person_Re-Identification_ICCV_2015_paper.html,ICCV,2015,https://github.com/lingxiao-he/Deep-Spatial-Feature-Reconstruction-for-Partial-Person-Re-identification,9,1/2/2019
+Benchmarking Denoising Algorithms With Real Photographs,http://openaccess.thecvf.com/content_cvpr_2017/html/Plotz_Benchmarking_Denoising_Algorithms_CVPR_2017_paper.html,CVPR,2017,https://github.com/lbasek/image-denoising-benchmark,14,1/2/2019
+Cross-View Image Synthesis Using Conditional GANs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Regmi_Cross-View_Image_Synthesis_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kregmi/cross-view-image-synthesis,12,1/2/2019
+Boosting Object Proposals: From Pascal to COCO,http://openaccess.thecvf.com/content_iccv_2015/html/Pont-Tuset_Boosting_Object_Proposals_ICCV_2015_paper.html,ICCV,2015,https://github.com/jponttuset/BOP,8,1/2/2019
+Neural Aggregation Network for Video Face Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Yang_Neural_Aggregation_Network_CVPR_2017_paper.html,CVPR,2017,https://github.com/jinyanxu/Neural-Aggregation-Network-for-Video-Face-Recognition,14,1/2/2019
+Unsupervised Learning From Narrated Instruction Videos,http://openaccess.thecvf.com/content_cvpr_2016/html/Alayrac_Unsupervised_Learning_From_CVPR_2016_paper.html,CVPR,2016,https://github.com/jalayrac/instructionVideos,7,1/2/2019
+Introspective Neural Networks for Generative Modeling,http://openaccess.thecvf.com/content_iccv_2017/html/Lazarow_Introspective_Neural_Networks_ICCV_2017_paper.html,ICCV,2017,https://github.com/intermilan/inng,8,1/2/2019
+A Hierarchical Approach for Generating Descriptive Image Paragraphs,http://openaccess.thecvf.com/content_cvpr_2017/html/Krause_A_Hierarchical_Approach_CVPR_2017_paper.html,CVPR,2017,https://github.com/InnerPeace-Wu/im2p-tensorflow,9,1/2/2019
+Learning a Discriminative Filter Bank Within a CNN for Fine-Grained Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Learning_a_Discriminative_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/hubeihubei/DFL-CNN-pytorch,13,1/2/2019
+Recovering 3D Planes from a Single Image via Convolutional Neural Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Fengting_Yang_Recovering_3D_Planes_ECCV_2018_paper.html,ECCV,2018,https://github.com/fuy34/planerecover,16,1/2/2019
+Analyzing Uncertainty in Neural Machine Translation,http://proceedings.mlr.press/v80/ott18a.html,ICML,2018,https://github.com/facebookresearch/analyzing-uncertainty-nmt,9,1/2/2019
+A Multilayer-Based Framework for Online Background Subtraction With Freely Moving Cameras,http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_A_Multilayer-Based_Framework_ICCV_2017_paper.html,ICCV,2017,https://github.com/EthanZhu90/MultilayerBSMC_ICCV17,11,1/2/2019
+"Plan, Attend, Generate: Planning for Sequence-to-Sequence Models",http://papers.nips.cc/paper/7131-plan-attend-generate-planning-for-sequence-to-sequence-models.pdf,NIPS,2017,https://github.com/Dutil/PAG,8,1/2/2019
+Unsupervised Learning of Visual Representations Using Videos,http://openaccess.thecvf.com/content_iccv_2015/html/Wang_Unsupervised_Learning_of_ICCV_2015_paper.html,ICCV,2015,https://github.com/coreylynch/unsupervised-triplet-embedding,8,1/2/2019
+Convolutional Channel Features,http://openaccess.thecvf.com/content_iccv_2015/html/Yang_Convolutional_Channel_Features_ICCV_2015_paper.html,ICCV,2015,https://github.com/byangderek/CCF,8,1/2/2019
+Online Detection and Classification of Dynamic Hand Gestures With Recurrent 3D Convolutional Neural Network,http://openaccess.thecvf.com/content_cvpr_2016/html/Molchanov_Online_Detection_and_CVPR_2016_paper.html,CVPR,2016,https://github.com/breadbread1984/R3DCNN,16,1/2/2019
+Pairwise Matching Through Max-Weight Bipartite Belief Propagation,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhang_Pairwise_Matching_Through_CVPR_2016_paper.html,CVPR,2016,https://github.com/zzhang1987/HungarianBP,8,1/2/2019
+Detecting and Correcting for Label Shift with Black Box Predictors,http://proceedings.mlr.press/v80/lipton18a.html,ICML,2018,https://github.com/zackchase/label-shift,7,1/2/2019
+Attention-Aware Face Hallucination via Deep Reinforcement Learning,http://openaccess.thecvf.com/content_cvpr_2017/html/Cao_Attention-Aware_Face_Hallucination_CVPR_2017_paper.html,CVPR,2017,https://github.com/ykshi/facehallucination,8,1/2/2019
+Conditional Prior Networks for Optical Flow,http://openaccess.thecvf.com/content_ECCV_2018/html/Yanchao_Yang_Conditional_Prior_Networks_ECCV_2018_paper.html,ECCV,2018,https://github.com/YanchaoYang/Conditional-Prior-Networks,7,1/2/2019
+Fine-Grained Visual Categorization using Meta-Learning Optimization with Sample Selection of Auxiliary Data,http://openaccess.thecvf.com/content_ECCV_2018/html/Yabin_Zhang_Fine-Grained_Visual_Categorization_ECCV_2018_paper.html,ECCV,2018,https://github.com/YabinZhang1994/MetaFGNet,13,1/2/2019
+Diverse Image Annotation,http://openaccess.thecvf.com/content_cvpr_2017/html/Wu_Diverse_Image_Annotation_CVPR_2017_paper.html,CVPR,2017,https://github.com/wubaoyuan/DIA,6,1/2/2019
+Towards a Visual Privacy Advisor: Understanding and Predicting Privacy Risks in Images,http://openaccess.thecvf.com/content_iccv_2017/html/Orekondy_Towards_a_Visual_ICCV_2017_paper.html,ICCV,2017,https://github.com/tribhuvanesh/vpa,8,1/2/2019
+Live Repetition Counting,http://openaccess.thecvf.com/content_iccv_2015/html/Levy_Live_Repetition_Counting_ICCV_2015_paper.html,ICCV,2015,https://github.com/tomrunia/DeepRepICCV2015,8,1/2/2019
+Reflectance Adaptive Filtering Improves Intrinsic Image Estimation,http://openaccess.thecvf.com/content_cvpr_2017/html/Nestmeyer_Reflectance_Adaptive_Filtering_CVPR_2017_paper.html,CVPR,2017,https://github.com/tnestmeyer/reflectance-filtering,8,1/2/2019
+Weakly Supervised Learning of Deep Metrics for Stereo Reconstruction,http://openaccess.thecvf.com/content_iccv_2017/html/Tulyakov_Weakly_Supervised_Learning_ICCV_2017_paper.html,ICCV,2017,https://github.com/tlkvstepan/mc-cnn-ws,7,1/2/2019
+Decoupled Parallel Backpropagation with Convergence Guarantee,http://proceedings.mlr.press/v80/huo18a.html,ICML,2018,https://github.com/slowbull/DDG,9,1/2/2019
+Generative Adversarial Learning Towards Fast Weakly Supervised Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Shen_Generative_Adversarial_Learning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/shenyunhang/GAL-fWSD,7,1/2/2019
+A Memory Network Approach for Story-Based Temporal Summarization of 360° Videos,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lee_A_Memory_Network_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/sangho-vision/PFMN,6,1/2/2019
+oi-VAE: Output Interpretable VAEs for Nonlinear Group Factor Analysis,http://proceedings.mlr.press/v80/ainsworth18a.html,ICML,2018,https://github.com/samuela/oi-vae,9,1/2/2019
+Model-Powered Conditional Independence Test,http://papers.nips.cc/paper/6888-model-powered-conditional-independence-test.pdf,NIPS,2017,https://github.com/rajatsen91/CCIT,8,1/2/2019
+Generative Probabilistic Novelty Detection with Adversarial Autoencoders,http://arxiv.org/abs/1807.02588v1,NIPS,2018,https://github.com/podgorskiy/GPND,16,1/2/2019
+Clipped Action Policy Gradient,http://proceedings.mlr.press/v80/fujita18a.html,ICML,2018,https://github.com/pfnet-research/capg,12,1/2/2019
+Learning to Explain: An Information-Theoretic Perspective on Model Interpretation,http://proceedings.mlr.press/v80/chen18j.html,ICML,2018,https://github.com/nickvosk/acl2015-dataset-learning-to-explain-entity-relationships,7,1/2/2019
+Deep Hand: How to Train a CNN on 1 Million Hand Images When Your Data Is Continuous and Weakly Labelled,http://openaccess.thecvf.com/content_cvpr_2016/html/Koller_Deep_Hand_How_CVPR_2016_paper.html,CVPR,2016,https://github.com/neccam/TF-DeepHand,8,1/2/2019
+A Two-Step Disentanglement Method,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hadad_A_Two-Step_Disentanglement_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/naamahadad/A-Two-Step-Disentanglement-Method,7,1/2/2019
+Lost Relatives of the Gumbel Trick,http://proceedings.mlr.press/v70/balog17a.html,ICML,2017,https://github.com/matejbalog/gumbel-relatives,7,1/2/2019
+Where to Look: Focus Regions for Visual Question Answering,http://openaccess.thecvf.com/content_cvpr_2016/html/Shih_Where_to_Look_CVPR_2016_paper.html,CVPR,2016,https://github.com/kevjshih/wtl_vqa,7,1/2/2019
+Detecting Migrating Birds at Night,http://openaccess.thecvf.com/content_cvpr_2016/html/Huang_Detecting_Migrating_Birds_CVPR_2016_paper.html,CVPR,2016,https://github.com/jbhuang0604/BirdDetection,7,1/2/2019
+Cross-Domain Self-Supervised Multi-Task Feature Learning Using Synthetic Imagery,http://openaccess.thecvf.com/content_cvpr_2018/papers/Ren_Cross-Domain_Self-Supervised_Multi-Task_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jason718/game-feature-learning,19,1/2/2019
+Supervised Discrete Hashing,http://openaccess.thecvf.com/content_cvpr_2015/html/Shen_Supervised_Discrete_Hashing_2015_CVPR_paper.html,CVPR,2015,https://github.com/goukoutaki/FSDH,7,1/2/2019
+PacGAN: The power of two samples in generative adversarial networks,http://arxiv.org/abs/1712.04086v2,NIPS,2018,https://github.com/fjxmlzn/PacGAN,10,1/2/2019
+Optimized Pre-Processing for Discrimination Prevention,http://papers.nips.cc/paper/6988-optimized-pre-processing-for-discrimination-prevention.pdf,NIPS,2017,https://github.com/fair-preprocessing/nips2017,9,1/2/2019
+Five-Point Fundamental Matrix Estimation for Uncalibrated Cameras,http://openaccess.thecvf.com/content_cvpr_2018/papers/Barath_Five-Point_Fundamental_Matrix_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/danini/five-point-fundamental,8,1/2/2019
+Semantic Video Segmentation by Gated Recurrent Flow Propagation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Nilsson_Semantic_Video_Segmentation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/D-Nilsson/GRFP,9,1/2/2019
+RPAN: An End-To-End Recurrent Pose-Attention Network for Action Recognition in Videos,http://openaccess.thecvf.com/content_iccv_2017/html/Du_RPAN_An_End-To-End_ICCV_2017_paper.html,ICCV,2017,https://github.com/agethen/RPAN,17,1/2/2019
+Geometry-Aware Scene Text Detection With Instance Transformation Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Geometry-Aware_Scene_Text_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zlmzju/itn,22,1/2/2019
+Investigating Haze-relevant Features in A Learning Framework for Image Dehazing,http://openaccess.thecvf.com/content_cvpr_2014/html/Tang_Investigating_Haze-relevant_Features_2014_CVPR_paper.html,CVPR,2014,https://github.com/zlinker/haze_2014,7,1/2/2019
+Progressive Attention Guided Recurrent Network for Salient Object Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Progressive_Attention_Guided_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zhangxiaoning666/PAGR,7,1/2/2019
+Recurrent Attentional Networks for Saliency Detection,http://openaccess.thecvf.com/content_cvpr_2016/html/Kuen_Recurrent_Attentional_Networks_CVPR_2016_paper.html,CVPR,2016,https://github.com/zhangxiaoning666/PAGR,7,1/2/2019
+Practical Hash Functions for Similarity Estimation and Dimensionality Reduction,http://papers.nips.cc/paper/7239-practical-hash-functions-for-similarity-estimation-and-dimensionality-reduction.pdf,NIPS,2017,https://github.com/zera/Nips_MT,6,1/2/2019
+Low-Shot Learning With Imprinted Weights,http://openaccess.thecvf.com/content_cvpr_2018/papers/Qi_Low-Shot_Learning_With_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/YU1ut/imprinted-weights,19,1/2/2019
+Reconstructing PASCAL VOC,http://openaccess.thecvf.com/content_cvpr_2014/html/Vicente_Reconstructing_PASCAL_VOC_2014_CVPR_paper.html,CVPR,2014,https://github.com/yihui-he/reconstructing-pascal-voc,6,1/2/2019
+SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters,http://openaccess.thecvf.com/content_ECCV_2018/html/Yifan_Xu_SpiderCNN_Deep_Learning_ECCV_2018_paper.html,ECCV,2018,https://github.com/xyf513/SpiderCNN,15,1/2/2019
+Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kuen_Stochastic_Downsampling_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/xternalz/SDPoint,7,1/2/2019
+Scalable Planning with Tensorflow for Hybrid Nonlinear Domains,http://papers.nips.cc/paper/7207-scalable-planning-with-tensorflow-for-hybrid-nonlinear-domains.pdf,NIPS,2017,https://github.com/wuga214/TOOLBOX-Learning-and-Planning-through-Backpropagation,6,1/2/2019
+AttnGAN: Fine-Grained Text to Image Generation With Attentional Generative Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Xu_AttnGAN_Fine-Grained_Text_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Wentong-DST/attn-gan,7,1/2/2019
+Deep Crisp Boundaries,http://openaccess.thecvf.com/content_cvpr_2017/html/Wang_Deep_Crisp_Boundaries_CVPR_2017_paper.html,CVPR,2017,https://github.com/Wangyupei/CED,9,1/2/2019
+Pooled Motion Features for First-Person Videos,http://openaccess.thecvf.com/content_cvpr_2015/html/Ryoo_Pooled_Motion_Features_2015_CVPR_paper.html,CVPR,2015,https://github.com/USCDataScience/hadoop-pot,6,1/2/2019
+Efficient and Robust Color Consistency for Community Photo Collections,http://openaccess.thecvf.com/content_cvpr_2016/html/Park_Efficient_and_Robust_CVPR_2016_paper.html,CVPR,2016,https://github.com/syncle/photo_consistency,7,1/2/2019
+Tensor Biclustering,http://papers.nips.cc/paper/6730-tensor-biclustering.pdf,NIPS,2017,https://github.com/SoheilFeizi/Tensor-Biclustering,6,1/2/2019
+Generalizing to Unseen Domains via Adversarial Data Augmentation,http://arxiv.org/abs/1805.12018v1,NIPS,2018,https://github.com/ricvolpi/generalize-unseen-domains,36,1/2/2019
+Unsupervised Pixel-Level Domain Adaptation With Generative Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Bousmalis_Unsupervised_Pixel-Level_Domain_CVPR_2017_paper.html,CVPR,2017,https://github.com/rhythm92/Unsupervised-Pixel-Level-Domain-Adaptation-with-GAN,6,1/2/2019
+Following Gaze in Video,http://openaccess.thecvf.com/content_iccv_2017/html/Recasens_Following_Gaze_in_ICCV_2017_paper.html,ICCV,2017,https://github.com/recasens/Gaze-Following,8,1/2/2019
+Object Contour Detection With a Fully Convolutional Encoder-Decoder Network,http://openaccess.thecvf.com/content_cvpr_2016/html/Yang_Object_Contour_Detection_CVPR_2016_paper.html,CVPR,2016,https://github.com/Raj-08/tensorflow-object-contour-detection,14,1/2/2019
+Simpler Non-Parametric Methods Provide as Good or Better Results to Multiple-Instance Learning,http://openaccess.thecvf.com/content_iccv_2015/html/Venkatesan_Simpler_Non-Parametric_Methods_ICCV_2015_paper.html,ICCV,2015,https://github.com/ragavvenkatesan/np-mil,7,1/2/2019
+3D Shape Attributes,http://openaccess.thecvf.com/content_cvpr_2016/html/Fouhey_3D_Shape_Attributes_CVPR_2016_paper.html,CVPR,2016,https://github.com/petermalcolm/estimate3DStep,6,1/2/2019
+Finding Distractors In Images,http://openaccess.thecvf.com/content_cvpr_2015/html/Fried_Finding_Distractors_In_2015_CVPR_paper.html,CVPR,2015,https://github.com/ohadf/distractors,7,1/2/2019
+ShapeStacks: Learning Vision-Based Physical Intuition for Generalised Object Stacking,http://openaccess.thecvf.com/content_ECCV_2018/html/Oliver_Groth_ShapeStacks_Learning_Vision-Based_ECCV_2018_paper.html,ECCV,2018,https://github.com/ogroth/shapestacks,11,1/2/2019
+Riemannian approach to batch normalization,http://papers.nips.cc/paper/7107-riemannian-approach-to-batch-normalization.pdf,NIPS,2017,https://github.com/MinhyungCho/riemannian-batch-normalization,6,1/2/2019
+End-To-End Learning of Geometry and Context for Deep Stereo Regression,http://openaccess.thecvf.com/content_iccv_2017/html/Kendall_End-To-End_Learning_of_ICCV_2017_paper.html,ICCV,2017,https://github.com/liuruijin17/RickLiuGC,9,1/2/2019
+Improving Training of Deep Neural Networks via Singular Value Bounding,http://openaccess.thecvf.com/content_cvpr_2017/html/Jia_Improving_Training_of_CVPR_2017_paper.html,CVPR,2017,https://github.com/kui-jia/svb,6,1/2/2019
+Bayesian inference on random simple graphs with power law degree distributions,http://proceedings.mlr.press/v70/lee17a.html,ICML,2017,https://github.com/juho-lee/powerlawgraph,6,1/2/2019
+Reasoning About Fine-Grained Attribute Phrases Using Reference Games,http://openaccess.thecvf.com/content_iccv_2017/html/Su_Reasoning_About_Fine-Grained_ICCV_2017_paper.html,ICCV,2017,https://github.com/jongchyisu/attribute_phrases,7,1/2/2019
+Deep Learning Under Privileged Information Using Heteroscedastic Dropout,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lambert_Deep_Learning_Under_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/johnwlambert/dlupi-heteroscedastic-dropout,14,1/2/2019
+Multi-Label Image Recognition by Recurrently Discovering Attentional Regions,http://openaccess.thecvf.com/content_iccv_2017/html/Wang_Multi-Label_Image_Recognition_ICCV_2017_paper.html,ICCV,2017,https://github.com/James-Yip/AttentionImageClass,20,1/2/2019
+Centered Weight Normalization in Accelerating Training of Deep Neural Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Huang_Centered_Weight_Normalization_ICCV_2017_paper.html,ICCV,2017,https://github.com/huangleiBuaa/CenteredWN,6,1/2/2019
+Adversarial Learning with Local Coordinate Coding,http://proceedings.mlr.press/v80/cao18a.html,ICML,2018,https://github.com/guoyongcs/LCCGAN,7,1/2/2019
+On GANs and GMMs,http://arxiv.org/abs/1805.12462v1,NIPS,2018,https://github.com/eitanrich/gans-n-gmms,10,1/2/2019
+Building a Regular Decision Boundary With Deep Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Oyallon_Building_a_Regular_CVPR_2017_paper.html,CVPR,2017,https://github.com/edouardoyallon/deep_separation_contraction,6,1/2/2019
+Learning a Descriptor-Specific 3D Keypoint Detector,http://openaccess.thecvf.com/content_iccv_2015/html/Salti_Learning_a_Descriptor-Specific_ICCV_2015_paper.html,ICCV,2015,https://github.com/CVLAB-Unibo/Keypoint-Learning,10,1/2/2019
+Towards Open-Set Identity Preserving Face Synthesis,http://openaccess.thecvf.com/content_cvpr_2018/papers/Bao_Towards_Open-Set_Identity_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/chloeguoqing/Towards-Open-Set-Identity-Preserving-Face-Synthesis,9,1/2/2019
+Patch-Based Convolutional Neural Network for Whole Slide Tissue Image Classification,http://openaccess.thecvf.com/content_cvpr_2016/html/Hou_Patch-Based_Convolutional_Neural_CVPR_2016_paper.html,CVPR,2016,https://github.com/cheersyouran/cancer-detector,9,1/2/2019
+Piecewise Flat Embedding for Image Segmentation,http://openaccess.thecvf.com/content_iccv_2015/html/Yu_Piecewise_Flat_Embedding_ICCV_2015_paper.html,ICCV,2015,https://github.com/chaoweifang/PFE,7,1/2/2019
+Analyzing Hidden Representations in End-to-End Automatic Speech Recognition Systems,http://papers.nips.cc/paper/6838-analyzing-hidden-representations-in-end-to-end-automatic-speech-recognition-systems.pdf,NIPS,2017,https://github.com/boknilev/asr-repr-analysis,6,1/2/2019
+A generic decentralized trust management framework,http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2012/MSC/MSC-2012-22.pdf,SPE,2013,https://github.com/amitport/graphpack,6,1/2/2019
+Personalized Image Aesthetics,http://openaccess.thecvf.com/content_iccv_2017/html/Ren_Personalized_Image_Aesthetics_ICCV_2017_paper.html,ICCV,2017,https://github.com/alanspike/personalizedImageAesthetics,7,1/2/2019
+Banach Wasserstein GAN,http://arxiv.org/abs/1806.06621v1,NIPS,2018,https://github.com/adler-j/bwgan,7,1/2/2019
+Towards Open World Recognition,http://openaccess.thecvf.com/content_cvpr_2015/html/Bendale_Towards_Open_World_2015_CVPR_paper.html,CVPR,2015,https://github.com/abhijitbendale/OWR,6,1/2/2019
+Collaborative Hashing,http://openaccess.thecvf.com/content_cvpr_2014/html/Liu_Collaborative_Hashing_2014_CVPR_paper.html,CVPR,2014,https://github.com/27359794/lsh-collab-filtering,6,1/2/2019
+Learning Facial Action Units From Web Images With Scalable Weakly Supervised Clustering,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhao_Learning_Facial_Action_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zkl20061823/WSC,8,1/2/2019
+AutoLoc: Weakly-supervised Temporal Action Localization in Untrimmed Videos,http://openaccess.thecvf.com/content_ECCV_2018/html/Zheng_Shou_AutoLoc_Weakly-supervised_Temporal_ECCV_2018_paper.html,ECCV,2018,https://github.com/zhengshou/AutoLoc,12,1/2/2019
+Dynamic Conditional Networks for Few-Shot Learning,http://openaccess.thecvf.com/content_ECCV_2018/html/Fang_Zhao_Dynamic_Conditional_Networks_ECCV_2018_paper.html,ECCV,2018,https://github.com/ZhaoJ9014/Dynamic-Conditional-Networks-for-Few-Shot-Learning.pytorch,8,1/2/2019
+Mining Semantic Affordances of Visual Object Categories,http://openaccess.thecvf.com/content_cvpr_2015/html/Chao_Mining_Semantic_Affordances_2015_CVPR_paper.html,CVPR,2015,https://github.com/ywchao/semantic_affordance,5,1/2/2019
+Unsupervised Monocular Depth Estimation With Left-Right Consistency,http://openaccess.thecvf.com/content_cvpr_2017/html/Godard_Unsupervised_Monocular_Depth_CVPR_2017_paper.html,CVPR,2017,https://github.com/yukitsuji/monodepth_chainer,7,1/2/2019
+Viraliency: Pooling Local Virality,http://openaccess.thecvf.com/content_cvpr_2017/html/Alameda-Pineda_Viraliency_Pooling_Local_CVPR_2017_paper.html,CVPR,2017,https://github.com/xavirema/lena_pooling,5,1/2/2019
+Specular-to-Diffuse Translation for Multi-View Reconstruction,http://openaccess.thecvf.com/content_ECCV_2018/html/Shihao_Wu_Specular-to-Diffuse_Translation_for_ECCV_2018_paper.html,ECCV,2018,https://github.com/wsh312/S2Dnet,8,1/2/2019
+Learning Algorithms for Active Learning,http://proceedings.mlr.press/v70/bachman17a.html,ICML,2017,https://github.com/vtphan/Code4Brownies,5,1/2/2019
+Deep TextSpotter: An End-To-End Trainable Scene Text Localization and Recognition Framework,http://openaccess.thecvf.com/content_iccv_2017/html/Busta_Deep_TextSpotter_An_ICCV_2017_paper.html,ICCV,2017,https://github.com/VeitL/OCR,13,1/2/2019
+Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition,http://papers.nips.cc/paper/6713-learning-koopman-invariant-subspaces-for-dynamic-mode-decomposition.pdf,NIPS,2017,https://github.com/thetak11/learning-kis,7,1/2/2019
+"High-Quality Prediction Intervals for Deep Learning: A Distribution-Free, Ensembled Approach",http://proceedings.mlr.press/v80/pearce18a.html,ICML,2018,https://github.com/TeaPearce/Deep_Learning_Prediction_Intervals,11,1/2/2019
+Sparse convolutional coding for neuronal assembly detection,http://papers.nips.cc/paper/6958-sparse-convolutional-coding-for-neuronal-assembly-detection.pdf,NIPS,2017,https://github.com/sccfnad/Sparse-convolutional-coding-for-neuronal-assembly-detection,6,1/2/2019
+Point to Set Similarity Based Deep Feature Learning for Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhou_Point_to_Set_CVPR_2017_paper.html,CVPR,2017,https://github.com/samaonline/Point-to-Set-Similarity-Based-Deep-Feature-Learning-for-Person-Re-identification,5,1/2/2019
+Self-Organized Text Detection With Minimal Post-Processing via Border Learning,http://openaccess.thecvf.com/content_iccv_2017/html/Wu_Self-Organized_Text_Detection_ICCV_2017_paper.html,ICCV,2017,https://github.com/saicoco/tf-sotd,12,1/2/2019
+Click Here: Human-Localized Keypoints as Guidance for Viewpoint Estimation,http://openaccess.thecvf.com/content_iccv_2017/html/Szeto_Click_Here_Human-Localized_ICCV_2017_paper.html,ICCV,2017,https://github.com/rszeto/click-here-cnn,5,1/2/2019
+Regret Minimization in MDPs with Options without Prior Knowledge,http://papers.nips.cc/paper/6909-regret-minimization-in-mdps-with-options-without-prior-knowledge.pdf,NIPS,2017,https://github.com/RonanFR/UCRL,8,1/2/2019
+Learning to Separate Object Sounds by Watching Unlabeled Video,http://openaccess.thecvf.com/content_ECCV_2018/html/Ruohan_Gao_Learning_to_Separate_ECCV_2018_paper.html,ECCV,2018,https://github.com/rhgao/separating-object-sounds,23,1/2/2019
+Ultra Large-Scale Feature Selection using Count-Sketches,http://proceedings.mlr.press/v80/aghazadeh18a.html,ICML,2018,https://github.com/rdspring1/MISSION,6,1/2/2019
+Transfer Learning via Learning to Transfer,http://proceedings.mlr.press/v80/wei18a.html,ICML,2018,https://github.com/QuebecAI/webcam-transfer-learning-v1,5,1/2/2019
+The World of Fast Moving Objects,http://openaccess.thecvf.com/content_cvpr_2017/html/Rozumnyi_The_World_of_CVPR_2017_paper.html,CVPR,2017,https://github.com/qixuanHou/Mapping-My-Break,5,1/2/2019
+What Makes an Object Memorable?,http://openaccess.thecvf.com/content_iccv_2015/html/Dubey_What_Makes_an_ICCV_2015_paper.html,ICCV,2015,https://github.com/qixuanHou/Mapping-My-Break,5,1/2/2019
+Bilevel Programming for Hyperparameter Optimization and Meta-Learning,http://proceedings.mlr.press/v80/franceschi18a.html,ICML,2018,https://github.com/prolearner/hyper-representation,6,1/2/2019
+Attention Clusters: Purely Attention Based Local Feature Integration for Video Classification,http://openaccess.thecvf.com/content_cvpr_2018/papers/Long_Attention_Clusters_Purely_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/pomonam/AttentionCluster,10,1/2/2019
+Inner Space Preserving Generative Pose Machine,http://openaccess.thecvf.com/content_ECCV_2018/html/Shuangjun_Liu_Inner_Space_Preserving_ECCV_2018_paper.html,ECCV,2018,https://github.com/ostadabbas/isp-gpm,6,1/2/2019
+Blind Justice: Fairness with Encrypted Sensitive Attributes,http://proceedings.mlr.press/v80/kilbertus18a.html,ICML,2018,https://github.com/nikikilbertus/blind-justice,5,1/2/2019
+Human Pose Estimation With Parsing Induced Learner,http://openaccess.thecvf.com/content_cvpr_2018/papers/Nie_Human_Pose_Estimation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/NieXC/pytorch-pil,11,1/2/2019
+SubUNets: End-To-End Hand Shape and Continuous Sign Language Recognition,http://openaccess.thecvf.com/content_iccv_2017/html/Camgoz_SubUNets_End-To-End_Hand_ICCV_2017_paper.html,ICCV,2017,https://github.com/neccam/SubUNets,7,1/2/2019
+Assessing Generative Models via Precision and Recall,http://arxiv.org/abs/1806.00035v1,NIPS,2018,https://github.com/msmsajjadi/precision-recall-distributions,13,1/2/2019
+Multimodal Generative Models for Scalable Weakly-Supervised Learning,http://arxiv.org/abs/1802.05335v2,NIPS,2018,https://github.com/mhw32/multimodal-vae-public,4,1/2/2019
+Tell Me What You See and I will Show You Where It Is,http://openaccess.thecvf.com/content_cvpr_2014/html/Xu_Tell_Me_What_2014_CVPR_paper.html,CVPR,2014,https://github.com/MarkipTheMudkip/in-class-project-2,6,1/2/2019
+Long-Term Correlation Tracking,http://openaccess.thecvf.com/content_cvpr_2015/html/Ma_Long-Term_Correlation_Tracking_2015_CVPR_paper.html,CVPR,2015,https://github.com/malreddysid/long-term-correlation-tracking,6,1/2/2019
+Learning a Discriminative Null Space for Person Re-Identification,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhang_Learning_a_Discriminative_CVPR_2016_paper.html,CVPR,2016,https://github.com/lzrobots/NullSpace_ReID,8,1/2/2019
+Cross-Modality Binary Code Learning via Fusion Similarity Hashing,http://openaccess.thecvf.com/content_cvpr_2017/html/Liu_Cross-Modality_Binary_Code_CVPR_2017_paper.html,CVPR,2017,https://github.com/LynnHongLiu/FSH,5,1/2/2019
+Dynamic-Structured Semantic Propagation Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liang_Dynamic-Structured_Semantic_Propagation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/limberc/DSSPN,5,10/1/2018
+The Description Length of Deep Learning models,https://arxiv.org/abs/1802.07044,NIPS,2018,https://github.com/leonardblier/descriptionlengthdeeplearning,5,1/2/2019
+Visual Tracking Using Attention-Modulated Disintegration and Integration,http://openaccess.thecvf.com/content_cvpr_2016/html/Choi_Visual_Tracking_Using_CVPR_2016_paper.html,CVPR,2016,https://github.com/jongwon20000/SCT,5,1/2/2019
+Gradually Updated Neural Networks for Large-Scale Image Recognition,http://proceedings.mlr.press/v80/qiao18b.html,ICML,2018,https://github.com/joe-siyuan-qiao/GUNN,7,1/2/2019
+HiDDeN: Hiding Data with Deep Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Jiren_Zhu_HiDDeN_Hiding_Data_ECCV_2018_paper.html,ECCV,2018,https://github.com/jirenz/HiDDeN,21,1/2/2019
+Robust Adversarial Reinforcement Learning,http://proceedings.mlr.press/v70/pinto17a.html,ICML,2017,https://github.com/Jekyll1021/RARL,6,1/2/2019
+K-Medoids For K-Means Seeding,http://papers.nips.cc/paper/7104-k-medoids-for-k-means-seeding.pdf,NIPS,2017,https://github.com/idiap/zentas,6,1/2/2019
+Orthogonally Decoupled Variational Gaussian Processes,http://arxiv.org/abs/1809.08820v1,NIPS,2018,https://github.com/hughsalimbeni/orth_decoupled_var_gps,6,1/2/2019
+Unsupervised holistic image generation from key local patches,http://openaccess.thecvf.com/content_ECCV_2018/html/Donghoon_Lee_Unsupervised_holistic_image_ECCV_2018_paper.html,ECCV,2018,https://github.com/hellbell/KeyPatchGan,6,1/2/2019
+Testing and Learning on Distributions with Symmetric Noise Invariance,http://papers.nips.cc/paper/6733-testing-and-learning-on-distributions-with-symmetric-noise-invariance.pdf,NIPS,2017,https://github.com/hcllaw/phase_learn,5,1/2/2019
+Dense Semantic Correspondence Where Every Pixel is a Classifier,http://openaccess.thecvf.com/content_iccv_2015/html/Bristow_Dense_Semantic_Correspondence_ICCV_2015_paper.html,ICCV,2015,https://github.com/hbristow/epic,5,1/2/2019
+Learning Steady-States of Iterative Algorithms over Graphs,http://proceedings.mlr.press/v80/dai18a.html,ICML,2018,https://github.com/Hanjun-Dai/steady_state_embedding,7,1/2/2019
+"Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference",http://papers.nips.cc/paper/7268-sticking-the-landing-simple-lower-variance-gradient-estimators-for-variational-inference.pdf,NIPS,2017,https://github.com/geoffroeder/iwae,5,1/2/2019
+Beyond Local Search: Tracking Objects Everywhere With Instance-Specific Proposals,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhu_Beyond_Local_Search_CVPR_2016_paper.html,CVPR,2016,https://github.com/GaoCode/EBT,5,1/2/2019
+NeuralFDR: Learning Discovery Thresholds from Hypothesis Features,http://papers.nips.cc/paper/6752-neuralfdr-learning-discovery-thresholds-from-hypothesis-features.pdf,NIPS,2017,https://github.com/fxia22/NeuralFDR,5,1/2/2019
+Inter and Intra Topic Structure Learning with Word Embeddings,http://proceedings.mlr.press/v80/zhao18a.html,ICML,2018,https://github.com/ethanhezhao/WEDTM,5,1/2/2019
+Modeling Sparse Deviations for Compressed Sensing using Generative Models,http://proceedings.mlr.press/v80/dhar18a.html,ICML,2018,https://github.com/ermongroup/sparse_gen,9,1/2/2019
+Diving into the shallows: a computational perspective on large-scale shallow learning,http://papers.nips.cc/paper/6968-diving-into-the-shallows-a-computational-perspective-on-large-scale-shallow-learning.pdf,NIPS,2017,https://github.com/EigenPro/EigenPro-tensorflow,5,1/2/2019
+Rotation Equivariant Vector Field Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Marcos_Rotation_Equivariant_Vector_ICCV_2017_paper.html,ICCV,2017,https://github.com/dmarcosg/RotEqNet,5,1/2/2019
+Neural Architecture Optimization,http://arxiv.org/abs/1808.07233v3,NIPS,2018,https://github.com/dicarlolab/archconvnets,5,1/2/2019
+"Pixels, Voxels, and Views: A Study of Shape Representations for Single View 3D Object Shape Prediction",http://openaccess.thecvf.com/content_cvpr_2018/papers/Shin_Pixels_Voxels_and_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/daeyun/object-shapes-cvpr18,9,1/2/2019
+Weakly-supervised Video Summarization using Variational Encoder-Decoder and Web Prior,http://openaccess.thecvf.com/content_ECCV_2018/html/Sijia_Cai_Weakly-supervised_Video_Summarization_ECCV_2018_paper.html,ECCV,2018,https://github.com/cssjcai/vesd,5,1/2/2019
+Recursive Sampling for the Nystrom Method,http://papers.nips.cc/paper/6973-recursive-sampling-for-the-nystrom-method.pdf,NIPS,2017,https://github.com/cnmusco/recursive-nystrom,5,1/2/2019
+Learning K-way D-dimensional Discrete Codes for Compact Embedding Representations,http://proceedings.mlr.press/v80/chen18g.html,ICML,2018,https://github.com/chentingpc/kdcode-lm,8,1/2/2019
+Constraint-Aware Deep Neural Network Compression,http://openaccess.thecvf.com/content_ECCV_2018/html/Changan_Chen_Constraints_Matter_in_ECCV_2018_paper.html,ECCV,2018,https://github.com/ChanganVR/ConstraintAwareCompression,9,1/2/2019
+Functional Faces: Groupwise Dense Correspondence Using Functional Maps,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhang_Functional_Faces_Groupwise_CVPR_2016_paper.html,CVPR,2016,https://github.com/cazhang/funcFaces,5,1/2/2019
+The Mirage of Action-Dependent Baselines in Reinforcement Learning,http://proceedings.mlr.press/v80/tucker18a.html,ICML,2018,https://github.com/brain-research/mirage-rl,7,1/2/2019
+Learning From Video and Text via Large-Scale Discriminative Clustering,http://openaccess.thecvf.com/content_iccv_2017/html/Miech_Learning_From_Video_ICCV_2017_paper.html,ICCV,2017,https://github.com/antoine77340/iccv17learning,5,1/2/2019
+Don’t Just Assume Look and Answer: Overcoming Priors for Visual Question Answering,http://openaccess.thecvf.com/content_cvpr_2018/papers/Agrawal_Dont_Just_Assume_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/AishwaryaAgrawal/GVQA,7,1/2/2019
+Cognitive Mapping and Planning for Visual Navigation,http://openaccess.thecvf.com/content_cvpr_2017/html/Gupta_Cognitive_Mapping_and_CVPR_2017_paper.html,CVPR,2017,https://github.com/agiantwhale/cognitive-mapping-agent,9,1/2/2019
+Forecasting Human Dynamics From Static Images,http://openaccess.thecvf.com/content_cvpr_2017/html/Chao_Forecasting_Human_Dynamics_CVPR_2017_paper.html,CVPR,2017,https://github.com/ywchao/skeleton2d3d,6,1/2/2019
+Improving Human Action Recognition by Non-Action Classification,http://openaccess.thecvf.com/content_cvpr_2016/html/Wang_Improving_Human_Action_CVPR_2016_paper.html,CVPR,2016,https://github.com/yangwangx/NonActionShot,4,1/2/2019
+Zero-Shot Recognition Using Dual Visual-Semantic Mapping Paths,http://openaccess.thecvf.com/content_cvpr_2017/html/Li_Zero-Shot_Recognition_Using_CVPR_2017_paper.html,CVPR,2017,https://github.com/YanaLee/Zero-Shot-Recognition-using-Dual-Visual-Semantic-Mapping-Paths,4,1/2/2019
+Low-Rank Matrix Factorization Under General Mixture Noise Distributions,http://openaccess.thecvf.com/content_iccv_2015/html/Cao_Low-Rank_Matrix_Factorization_ICCV_2015_paper.html,ICCV,2015,https://github.com/xiangyongcao/PMoEP,4,1/2/2019
+Efficient Minimal-Surface Regularization of Perspective Depth Maps in Variational Stereo,http://openaccess.thecvf.com/content_cvpr_2015/html/Graber_Efficient_Minimal-Surface_Regularization_2015_CVPR_paper.html,CVPR,2015,https://github.com/VLOGroup/surface-area-regularization,4,1/2/2019
+Transferable Adversarial Perturbations,http://openaccess.thecvf.com/content_ECCV_2018/html/Bruce_Hou_Transferable_Adversarial_Perturbations_ECCV_2018_paper.html,ECCV,2018,https://github.com/vinayprabhu/Gainsboro-box-attacks-,4,1/2/2019
+Pose-Aware Person Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Kumar_Pose-Aware_Person_Recognition_CVPR_2017_paper.html,CVPR,2017,https://github.com/vijaykumar01/person_recognition,4,1/2/2019
+Connecting Pixels to Privacy and Utility: Automatic Redaction of Private Information in Images,http://openaccess.thecvf.com/content_cvpr_2018/papers/Orekondy_Connecting_Pixels_to_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/tribhuvanesh/visual_redactions,4,1/2/2019
+Joint Representation and Truncated Inference Learning for Correlation Filter based Tracking,http://openaccess.thecvf.com/content_ECCV_2018/html/Yingjie_Yao_Joint_Representation_and_ECCV_2018_paper.html,ECCV,2018,https://github.com/tourmaline612/RTINet,4,1/2/2019
+Predicting Salient Face in Multiple-Face Videos,http://openaccess.thecvf.com/content_cvpr_2017/html/Liu_Predicting_Salient_Face_CVPR_2017_paper.html,CVPR,2017,https://github.com/tonysy/salient-face-in-MUVFET,4,1/2/2019
+Geolocation Estimation of Photos using a Hierarchical Model and Scene Classification,http://openaccess.thecvf.com/content_ECCV_2018/html/Eric_Muller-Budack_Geolocation_Estimation_of_ECCV_2018_paper.html,ECCV,2018,https://github.com/TIBHannover/GeoEstimation,4,1/2/2019
+Superdifferential Cuts for Binary Energies,http://openaccess.thecvf.com/content_cvpr_2015/html/Taniai_Superdifferential_Cuts_for_2015_CVPR_paper.html,CVPR,2015,https://github.com/t-taniai/SDC_CVPR2015,4,1/2/2019
+Global optimization of Lipschitz functions,http://proceedings.mlr.press/v70/malherbe17a.html,ICML,2017,https://github.com/Sycor4x/lipo,5,1/2/2019
+Pose Induction for Novel Object Categories,http://openaccess.thecvf.com/content_iccv_2015/html/Tulsiani_Pose_Induction_for_ICCV_2015_paper.html,ICCV,2015,https://github.com/shubhtuls/poseInduction,4,1/2/2019
+Multi-View Convolutional Neural Networks for 3D Shape Recognition,http://openaccess.thecvf.com/content_iccv_2015/html/Su_Multi-View_Convolutional_Neural_ICCV_2015_paper.html,ICCV,2015,https://github.com/shawnxu1318/MVCNN-Multi-View-Convolutional-Neural-Networks,7,1/2/2019
+Learning Cooperative Visual Dialog Agents With Deep Reinforcement Learning,http://openaccess.thecvf.com/content_iccv_2017/html/Das_Learning_Cooperative_Visual_ICCV_2017_paper.html,ICCV,2017,https://github.com/schopra8/Cooperative_Vis_Diag_RL,4,1/2/2019
+Estimating the Success of Unsupervised Image to Image Translation,http://openaccess.thecvf.com/content_ECCV_2018/html/Lior_Wolf_Estimating_the_Success_ECCV_2018_paper.html,ECCV,2018,https://github.com/sagiebenaim/gan_bound,5,1/2/2019
+Bottleneck Conditional Density Estimation,http://proceedings.mlr.press/v70/shu17a.html,ICML,2017,https://github.com/RuiShu/bcde,4,1/2/2019
+Quadrature-based features for kernel approximation,http://arxiv.org/abs/1802.03832v3,NIPS,2018,https://github.com/quffka/quffka,4,1/2/2019
+Towards Realistic Predictors,http://openaccess.thecvf.com/content_ECCV_2018/html/Pei_Wang_Towards_Realistic_Predictors_ECCV_2018_paper.html,ECCV,2018,https://github.com/peiwang062/towards-realistic-predictors,7,1/2/2019
+ROAM: A Rich Object Appearance Model With Application to Rotoscoping,http://openaccess.thecvf.com/content_cvpr_2017/html/Miksik_ROAM_A_Rich_CVPR_2017_paper.html,CVPR,2017,https://github.com/omiksik/roam,5,1/2/2019
+Tracking Emerges by Colorizing Videos,http://openaccess.thecvf.com/content_ECCV_2018/html/Carl_Vondrick_Self-supervised_Tracking_by_ECCV_2018_paper.html,ECCV,2018,https://github.com/Oh-Yoojin/Tracking-Emerges-by-Colorizing-Videos,4,1/2/2019
+Multi-way Interacting Regression via Factorization Machines,http://papers.nips.cc/paper/6853-multi-way-interacting-regression-via-factorization-machines.pdf,NIPS,2017,https://github.com/moonfolk/MiFM,4,1/2/2019
+Conic Scan-and-Cover algorithms for nonparametric topic modeling,http://papers.nips.cc/paper/6977-conic-scan-and-cover-algorithms-for-nonparametric-topic-modeling.pdf,NIPS,2017,https://github.com/moonfolk/Geometric-Topic-Modeling,5,1/2/2019
+Active Decision Boundary Annotation With Deep Generative Models,http://openaccess.thecvf.com/content_iccv_2017/html/Huijser_Active_Decision_Boundary_ICCV_2017_paper.html,ICCV,2017,https://github.com/MiriamHu/ActiveBoundary,5,1/2/2019
+Differentially Private Database Release via Kernel Mean Embeddings,http://proceedings.mlr.press/v80/balog18a.html,ICML,2018,https://github.com/matejbalog/RKHS-private-database,4,1/2/2019
+Mutual Information Neural Estimation,http://proceedings.mlr.press/v80/belghazi18a.html,ICML,2018,https://github.com/MasanoriYamada/Mine_pytorch,39,1/2/2019
+Simultaneous Deep Transfer Across Domains and Tasks,http://openaccess.thecvf.com/content_iccv_2015/html/Tzeng_Simultaneous_Deep_Transfer_ICCV_2015_paper.html,ICCV,2015,https://github.com/mahfujau/domain_adaptation_iccv15,6,1/2/2019
+Inference Suboptimality in Variational Autoencoders,http://proceedings.mlr.press/v80/cremer18a.html,ICML,2018,https://github.com/lxuechen/inference-suboptimality,4,1/2/2019
+Classification from Pairwise Similarity and Unlabeled Data,http://proceedings.mlr.press/v80/bao18a.html,ICML,2018,https://github.com/levelfour/SU_Classification,9,1/2/2019
+Globally Optimal Manhattan Frame Estimation in Real-Time,http://openaccess.thecvf.com/content_cvpr_2016/html/Joo_Globally_Optimal_Manhattan_CVPR_2016_paper.html,CVPR,2016,https://github.com/Kyungdon/mf_estimation,7,1/2/2019
+DVQA: Understanding Data Visualizations via Question Answering,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kafle_DVQA_Understanding_Data_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kushalkafle/DVQA_dataset,7,1/2/2019
+Prior-Less Compressible Structure From Motion,http://openaccess.thecvf.com/content_cvpr_2016/html/Kong_Prior-Less_Compressible_Structure_CVPR_2016_paper.html,CVPR,2016,https://github.com/kongchen1992/compressible-sfm,4,1/2/2019
+Statistically-motivated Second-order Pooling,http://openaccess.thecvf.com/content_ECCV_2018/html/Kaicheng_Yu_Statistically-motivated_Second-order_Pooling_ECCV_2018_paper.html,ECCV,2018,https://github.com/kcyu2014/smsop,9,1/2/2019
+Object Co-Skeletonization With Co-Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/html/Jerripothula_Object_Co-Skeletonization_With_CVPR_2017_paper.html,CVPR,2017,https://github.com/jkoteswarrao/Object-Co-skeletonization-with-Co-segmentation,5,1/2/2019
+Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lyu_Multi-Oriented_Scene_Text_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/JK-Rao/Corner_Segmentation_TextDetection,10,1/2/2019
+Salient Region Detection via High-Dimensional Color Transform,http://openaccess.thecvf.com/content_cvpr_2014/html/Kim_Salient_Region_Detection_2014_CVPR_paper.html,CVPR,2014,https://github.com/jhkim89/Saliency-HDCT,6,1/2/2019
+Joint Discovery of Object States and Manipulation Actions,http://openaccess.thecvf.com/content_iccv_2017/html/Alayrac_Joint_Discovery_of_ICCV_2017_paper.html,ICCV,2017,https://github.com/jalayrac/object-states-action,4,1/2/2019
+From Red Wine to Red Tomato: Composition With Context,http://openaccess.thecvf.com/content_cvpr_2017/html/Misra_From_Red_Wine_CVPR_2017_paper.html,CVPR,2017,https://github.com/imisra/composing_cvpr17,4,1/2/2019
+Light Structure from Pin Motion: Simple and Accurate Point Light Calibration for Physics-based Modeling,http://openaccess.thecvf.com/content_ECCV_2018/html/Hiroaki_Santo_Light_Structure_from_ECCV_2018_paper.html,ECCV,2018,https://github.com/hiroaki-santo/light-structure-from-pin-motion,7,1/2/2019
+Cross-Stitch Networks for Multi-Task Learning,http://openaccess.thecvf.com/content_cvpr_2016/html/Misra_Cross-Stitch_Networks_for_CVPR_2016_paper.html,CVPR,2016,https://github.com/helloyide/Cross-stitch-Networks-for-Multi-task-Learning,8,1/2/2019
+Discover and Learn New Objects From Documentaries,http://openaccess.thecvf.com/content_cvpr_2017/html/Chen_Discover_and_Learn_CVPR_2017_paper.html,CVPR,2017,https://github.com/hellock/documentary-learning,5,1/2/2019
+From Bayesian Sparsity to Gated Recurrent Nets,http://papers.nips.cc/paper/7139-from-bayesian-sparsity-to-gated-recurrent-nets.pdf,NIPS,2017,https://github.com/hehaodele/SBL-LSTM-Net,8,1/2/2019
+Efficient Deep Learning for Stereo Matching,http://openaccess.thecvf.com/content_cvpr_2016/html/Luo_Efficient_Deep_Learning_CVPR_2016_paper.html,CVPR,2016,https://github.com/haojeng-wang/dl_stereo_matching,7,1/2/2019
+End-to-End Incremental Learning,http://openaccess.thecvf.com/content_ECCV_2018/html/Francisco_M._Castro_End-to-End_Incremental_Learning_ECCV_2018_paper.html,ECCV,2018,https://github.com/fmcp/EndToEndIncrementalLearning,10,1/2/2019
+Breaking the Activation Function Bottleneck through Adaptive Parameterization,https://arxiv.org/abs/1805.08574,NIPS,2018,https://github.com/flennerhag/alstm,6,1/2/2019
+Robust Physical-World Attacks on Deep Learning Visual Classification,http://openaccess.thecvf.com/content_cvpr_2018/papers/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/evtimovi/robust_physical_perturbations,11,1/2/2019
+Understanding Black-box Predictions via Influence Functions,http://proceedings.mlr.press/v70/koh17a.html,ICML,2017,https://github.com/eolecvk/InfluenceFunctions,5,1/2/2019
+"Decoupling ""when to update"" from ""how to update""",http://papers.nips.cc/paper/6697-decoupling-when-to-update-from-how-to-update.pdf,NIPS,2017,https://github.com/emalach/UpdateByDisagreement,5,1/2/2019
+Deep Recurrent Neural Network-Based Identification of Precursor microRNAs,http://papers.nips.cc/paper/6882-deep-recurrent-neural-network-based-identification-of-precursor-micrornas.pdf,NIPS,2017,https://github.com/eleventh83/deepMiRGene,4,1/2/2019
+Differentially private Bayesian learning on distributed data,http://papers.nips.cc/paper/6915-differentially-private-bayesian-learning-on-distributed-data.pdf,NIPS,2017,https://github.com/DPBayes/dca-nips2017,5,1/2/2019
+Grad-CAM: Visual Explanations From Deep Networks via Gradient-Based Localization,http://openaccess.thecvf.com/content_iccv_2017/html/Selvaraju_Grad-CAM_Visual_Explanations_ICCV_2017_paper.html,ICCV,2017,https://github.com/cydonia999/Grad-CAM-in-TensorFlow,5,1/2/2019
+Guarantees for Greedy Maximization of Non-submodular Functions with Applications,http://proceedings.mlr.press/v70/bian17a.html,ICML,2017,https://github.com/bianan/non-submodular-max,4,1/2/2019
+Zoom and Learn: Generalizing Deep Stereo Matching to Novel Domains,http://openaccess.thecvf.com/content_cvpr_2018/papers/Pang_Zoom_and_Learn_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Artifineuro/zole,6,1/2/2019
+Question Asking as Program Generation,http://papers.nips.cc/paper/6705-question-asking-as-program-generation.pdf,NIPS,2017,https://github.com/anselmrothe/question_dataset,5,1/2/2019
+Logo Synthesis and Manipulation With Clustered Generative Adversarial Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sage_Logo_Synthesis_and_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/alex-sage/logo-gen,10,1/2/2019
+Learning Face Age Progression: A Pyramid Architecture of GANs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_Learning_Face_Age_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ajithvallabai/Pyramid-Architecture-of-GANs,11,1/2/2019
+BourGAN: Generative Networks with Metric Embeddings,https://arxiv.org/abs/1805.07674,NIPS,2018,https://github.com/a554b554/BourGAN,8,1/2/2019
+Statistical Recurrent Models on Manifold valued Data,http://arxiv.org/abs/1805.11204v1,NIPS,2018,https://github.com/zhenxingjian/SPD-SRU,3,1/2/2019
+Stabilizing Gradients for Deep Neural Networks via Efficient SVD Parameterization,http://proceedings.mlr.press/v80/zhang18g.html,ICML,2018,https://github.com/zhangjiong724/spectral-RNN,3,1/2/2019
+Stereo Vision-based Semantic 3D Object and Ego-motion Tracking for Autonomous Driving,http://openaccess.thecvf.com/content_ECCV_2018/html/Peiliang_LI_Stereo_Vision-based_Semantic_ECCV_2018_paper.html,ECCV,2018,https://github.com/zhanghanduo/stereo_semantic_mapping,5,1/2/2019
+A Unified View of Multi-Label Performance Measures,http://proceedings.mlr.press/v70/wu17a.html,ICML,2017,https://github.com/YuriWu/LIMO,2,1/2/2019
+Robust Saliency Detection via Regularized Random Walks Ranking,http://openaccess.thecvf.com/content_cvpr_2015/html/Li_Robust_Saliency_Detection_2015_CVPR_paper.html,CVPR,2015,https://github.com/yuanyc06/rr,3,1/2/2019
+A Joint Sequence Fusion Model for Video Question Answering and Retrieval,http://openaccess.thecvf.com/content_ECCV_2018/html/Youngjae_Yu_A_Joint_Sequence_ECCV_2018_paper.html,ECCV,2018,https://github.com/yj-yu/lsmdc,11,1/2/2019
+SegStereo: Exploiting Semantic Information for Disparity Estimation,http://openaccess.thecvf.com/content_ECCV_2018/html/Guorun_Yang_SegStereo_Exploiting_Semantic_ECCV_2018_paper.html,ECCV,2018,https://github.com/yangguorun/SegStereo,16,1/2/2019
+Gaze Prediction in Dynamic 360° Immersive Videos,http://openaccess.thecvf.com/content_cvpr_2018/papers/Xu_Gaze_Prediction_in_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/xuyanyu-shh/VR-EyeTracking,3,1/2/2019
+Saliency Detection in 360° Videos,http://openaccess.thecvf.com/content_ECCV_2018/html/Ziheng_Zhang_Saliency_Detection_in_ECCV_2018_paper.html,ECCV,2018,https://github.com/xuyanyu-shh/Saliency-detection-in-360-video,9,1/2/2019
+Image Super-Resolution via Dual-State Recurrent Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Han_Image_Super-Resolution_via_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/WeiHan3/dsrn,1,1/2/2019
+Ring Loss: Convex Feature Normalization for Face Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zheng_Ring_Loss_Convex_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/vsatyakumar/Ring-Loss-Keras,3,1/2/2019
+Multi-Label Cross-Modal Retrieval,http://openaccess.thecvf.com/content_iccv_2015/html/Ranjan_Multi-Label_Cross-Modal_Retrieval_ICCV_2015_paper.html,ICCV,2015,https://github.com/Viresh-R/ml-CCA,4,1/2/2019
+Feedback-Prop: Convolutional Neural Network Inference Under Partial Evidence,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Feedback-Prop_Convolutional_Neural_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/uvavision/feedbackprop,4,1/2/2019
+Rolling-Shutter-Aware Differential SfM and Image Rectification,http://openaccess.thecvf.com/content_iccv_2017/html/Zhuang_Rolling-Shutter-Aware_Differential_SfM_ICCV_2017_paper.html,ICCV,2017,https://github.com/ThomasZiegler/RS-aware-differential-SfM,5,1/2/2019
+Learning to Branch,http://proceedings.mlr.press/v80/balcan18a.html,ICML,2018,https://github.com/StoneyJackson/github-workflow-activity,3,1/2/2019
+Sidekick Policy Learning for Active Visual Exploration,http://openaccess.thecvf.com/content_ECCV_2018/html/Santhosh_Kumar_Ramakrishnan_Sidekick_Policy_Learning_ECCV_2018_paper.html,ECCV,2018,https://github.com/srama2512/sidekicks,5,1/2/2019
+Spatially-Adaptive Filter Units for Deep Neural Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Tabernik_Spatially-Adaptive_Filter_Units_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/skokec/DAU-ConvNet,3,1/2/2019
+Near-Optimal Edge Evaluation in Explicit Generalized Binomial Graphs,http://papers.nips.cc/paper/7049-near-optimal-edge-evaluation-in-explicit-generalized-binomial-graphs.pdf,NIPS,2017,https://github.com/sanjibac/matlab_learning_collision_checking,3,1/2/2019
+Large Margin Object Tracking With Circulant Feature Maps,http://openaccess.thecvf.com/content_cvpr_2017/html/Wang_Large_Margin_Object_CVPR_2017_paper.html,CVPR,2017,https://github.com/sallymmx/LMCF,3,1/2/2019
+Adversarial Surrogate Losses for Ordinal Regression,http://papers.nips.cc/paper/6659-adversarial-surrogate-losses-for-ordinal-regression.pdf,NIPS,2017,https://github.com/rizalzaf/adversarial-ordinal,3,1/2/2019
+DenseCap: Fully Convolutional Localization Networks for Dense Captioning,http://openaccess.thecvf.com/content_cvpr_2016/html/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.html,CVPR,2016,https://github.com/rampage644/densecap-tensorflow,4,1/2/2019
+Encoder Based Lifelong Learning,http://openaccess.thecvf.com/content_iccv_2017/html/Rannen_Encoder_Based_Lifelong_ICCV_2017_paper.html,ICCV,2017,https://github.com/rahafaljundi/Encoder-Based-Lifelong-learning,4,1/2/2019
+Counting Everyday Objects in Everyday Scenes,http://openaccess.thecvf.com/content_cvpr_2017/html/Chattopadhyay_Counting_Everyday_Objects_CVPR_2017_paper.html,CVPR,2017,https://github.com/prithv1/cvpr2017_counting,3,1/2/2019
+Toward Goal-Driven Neural Network Models for the Rodent Whisker-Trigeminal System,http://papers.nips.cc/paper/6849-toward-goal-driven-neural-network-models-for-the-rodent-whisker-trigeminal-system.pdf,NIPS,2017,https://github.com/neuroailab/whisker_model,3,1/2/2019
+Alternating Direction Graph Matching,http://openaccess.thecvf.com/content_cvpr_2017/html/Le-Huu_Alternating_Direction_Graph_CVPR_2017_paper.html,CVPR,2017,https://github.com/netw0rkf10w/adgm,4,1/2/2019
+Deep Burst Denoising,http://openaccess.thecvf.com/content_ECCV_2018/html/Clement_Godard_Deep_Burst_Denoising_ECCV_2018_paper.html,ECCV,2018,https://github.com/mrharicot/deep_burst_denoising,3,1/2/2019
+Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC,http://proceedings.mlr.press/v70/cong17a.html,ICML,2017,https://github.com/mingyuanzhou/DeepLDA_TLASGR_MCMC,3,1/2/2019
+Diverse and Coherent Paragraph Generation from Images,http://openaccess.thecvf.com/content_ECCV_2018/html/Moitreya_Chatterjee_Diverse_and_Coherent_ECCV_2018_paper.html,ECCV,2018,https://github.com/metro-smiles/CapG_RevG_Code,5,1/2/2019
+Lip Reading Sentences in the Wild,http://openaccess.thecvf.com/content_cvpr_2017/html/Chung_Lip_Reading_Sentences_CVPR_2017_paper.html,CVPR,2017,https://github.com/lsrock1/WLSNet_pytorch,5,1/2/2019
+Unsupervised Generation of a Viewpoint Annotated Car Dataset From Videos,http://openaccess.thecvf.com/content_iccv_2015/html/Sedaghat_Unsupervised_Generation_of_ICCV_2015_paper.html,ICCV,2015,https://github.com/lmb-freiburg/unsup-car-dataset,5,1/2/2019
+Expectation Propagation with Stochastic Kinetic Model in Complex Interaction Systems,http://papers.nips.cc/paper/6798-expectation-propagation-with-stochastic-kinetic-model-in-complex-interaction-systems.pdf,NIPS,2017,https://github.com/lefangcs/Expectation-Propagation-with-Stochastic-Kinetic-Model-in-Complex-Interaction-Systems,3,1/2/2019
+Simultaneous Video Defogging and Stereo Reconstruction,http://openaccess.thecvf.com/content_cvpr_2015/html/Li_Simultaneous_Video_Defogging_2015_CVPR_paper.html,CVPR,2015,https://github.com/Lashuk1729/DIP-Project-Video-Dehazing,3,1/2/2019
+Hyperspectral Super-Resolution by Coupled Spectral Unmixing,http://openaccess.thecvf.com/content_iccv_2015/html/Lanaras_Hyperspectral_Super-Resolution_by_ICCV_2015_paper.html,ICCV,2015,https://github.com/lanha/SupResPALM,3,1/2/2019
+Aesthetic Critiques Generation for Photos,http://openaccess.thecvf.com/content_iccv_2017/html/Chang_Aesthetic_Critiques_Generation_ICCV_2017_paper.html,ICCV,2017,https://github.com/kunghunglu/DeepPhotoCritic-ICCV17,3,1/2/2019
+Force From Motion: Decoding Physical Sensation in a First Person Video,http://openaccess.thecvf.com/content_cvpr_2016/html/Park_Force_From_Motion_CVPR_2016_paper.html,CVPR,2016,https://github.com/jyhjinghwang/Force_from_Motion_Gravity_Models,3,1/2/2019
+CLEAR: Cumulative LEARning for One-Shot One-Class Image Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Kozerawski_CLEAR_Cumulative_LEARning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/JKozerawski/CLEAR-osoc,3,1/2/2019
+Loss Max-Pooling for Semantic Image Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/html/Bulo_Loss_Max-Pooling_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/jjkke88/LMP,3,1/2/2019
+Deepcode: Feedback Codes via Deep Learning,http://arxiv.org/abs/1807.00801v1,NIPS,2018,https://github.com/hyejikim1/Deepcode,4,1/2/2019
+Disentangling Factors of Variation by Mixing Them,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Disentangling_Factors_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/HuQyang/Disentangling-Factors-of-Variation-by-Mixing-Them,5,1/2/2019
+Fast Randomized Singular Value Thresholding for Nuclear Norm Minimization,http://openaccess.thecvf.com/content_cvpr_2015/html/Oh_Fast_Randomized_Singular_2015_CVPR_paper.html,CVPR,2015,https://github.com/HlG4399/FRSVT,5,1/2/2019
+Learning Answer Embeddings for Visual Question Answering,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hu_Learning_Answer_Embeddings_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/hexiang-hu/answer_embedding,3,1/2/2019
+Context-Aware Gaussian Fields for Non-Rigid Point Set Registration,http://openaccess.thecvf.com/content_cvpr_2016/html/Wang_Context-Aware_Gaussian_Fields_CVPR_2016_paper.html,CVPR,2016,https://github.com/gwang-cv/CA-LapGF-Demo,3,1/2/2019
+Making Deep Neural Networks Robust to Label Noise: A Loss Correction Approach,http://openaccess.thecvf.com/content_cvpr_2017/html/Patrini_Making_Deep_Neural_CVPR_2017_paper.html,CVPR,2017,https://github.com/GarrettLee/label_noise_correction,5,1/2/2019
+Oriented Object Proposals,http://openaccess.thecvf.com/content_iccv_2015/html/He_Oriented_Object_Proposals_ICCV_2015_paper.html,ICCV,2015,https://github.com/frutuozo29/WebServiceRESTFul,3,1/2/2019
+Segment Graph Based Image Filtering: Fast Structure-Preserving Smoothing,http://openaccess.thecvf.com/content_iccv_2015/html/Zhang_Segment_Graph_Based_ICCV_2015_paper.html,ICCV,2015,https://github.com/feihuzhang/SGF,5,1/2/2019
+A framework for Multi-A(rmed)/B(andit) Testing with Online FDR Control,http://papers.nips.cc/paper/7177-a-framework-for-multi-armedbandit-testing-with-online-fdr-control.pdf,NIPS,2017,https://github.com/fanny-yang/MABFDR,3,1/2/2019
+kNN Hashing With Factorized Neighborhood Representation,http://openaccess.thecvf.com/content_iccv_2015/html/Ding_kNN_Hashing_With_ICCV_2015_paper.html,ICCV,2015,https://github.com/dooook/kNN-hashing,3,1/2/2019
+Not to Cry Wolf: Distantly Supervised Multitask Learning in Critical Care,http://proceedings.mlr.press/v80/schwab18a.html,ICML,2018,https://github.com/d909b/DSMT-Nets,3,1/2/2019
+Minimum Barrier Salient Object Detection at 80 FPS,http://openaccess.thecvf.com/content_iccv_2015/html/Zhang_Minimum_Barrier_Salient_ICCV_2015_paper.html,ICCV,2015,https://github.com/coderSkyChen/MBS_Cplus_c-,3,1/2/2019
+Unifying PAC and Regret: Uniform PAC Bounds for Episodic Reinforcement Learning,http://papers.nips.cc/paper/7154-unifying-pac-and-regret-uniform-pac-bounds-for-episodic-reinforcement-learning.pdf,NIPS,2017,https://github.com/chrodan/FiniteEpisodicRL.jl,3,1/2/2019
+High-Resolution Image Synthesis and Semantic Manipulation With Conditional GANs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_High-Resolution_Image_Synthesis_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/chenxli/High-Resolution-Image-Synthesis-and-Semantic-Manipulation-with-Conditional-GANsl-,8,1/2/2019
+Parallel Bayesian Network Structure Learning,http://proceedings.mlr.press/v80/gao18b.html,ICML,2018,https://github.com/bign8/PyStruct,3,1/2/2019
+Non-monotone Continuous DR-submodular Maximization: Structure and Algorithms,http://papers.nips.cc/paper/6652-continuous-dr-submodular-maximization-structure-and-algorithms.pdf,NIPS,2017,https://github.com/bianan,3,9/16/2018
+On Structured Prediction Theory with Calibrated Convex Surrogate Losses,http://papers.nips.cc/paper/6634-on-structured-prediction-theory-with-calibrated-convex-surrogate-losses.pdf,NIPS,2017,https://github.com/aosokin/consistentSurrogates_derivations,4,1/2/2019
+Unsupervised Learning of Object Landmarks by Factorized Spatial Embeddings,http://openaccess.thecvf.com/content_iccv_2017/html/Thewlis_Unsupervised_Learning_of_ICCV_2017_paper.html,ICCV,2017,https://github.com/alldbi/Factorized-Spatial-Embeddings,6,1/2/2019
+Compatible Reward Inverse Reinforcement Learning,http://papers.nips.cc/paper/6800-compatible-reward-inverse-reinforcement-learning.pdf,NIPS,2017,https://github.com/albertometelli/crirl,3,1/2/2019
+Tensor Belief Propagation,http://proceedings.mlr.press/v70/wrigley17a.html,ICML,2017,https://github.com/akxlr/tbp,6,1/2/2019
+Convergent Tree Backup and Retrace with Function Approximation,http://proceedings.mlr.press/v80/touati18a.html,ICML,2018,https://github.com/ahmed-touati/convergent-off-policy,3,1/2/2019
+Efficient Globally Optimal 2D-To-3D Deformable Shape Matching,http://openaccess.thecvf.com/content_cvpr_2016/html/Lahner_Efficient_Globally_Optimal_CVPR_2016_paper.html,CVPR,2016,https://github.com/zorah/Elastic2D3D,2,1/2/2019
+Batched High-dimensional Bayesian Optimization via Structural Kernel Learning,http://proceedings.mlr.press/v70/wang17h.html,ICML,2017,https://github.com/zi-w/Structural-Kernel-Learning-for-HDBBO,2,1/2/2019
+Dynamic Scene Deblurring Using Spatially Variant Recurrent Neural Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Dynamic_Scene_Deblurring_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zhjwustc/cvpr18_rnn_deblur_matcaffe,6,1/2/2019
+Learning Fully Convolutional Networks for Iterative Non-Blind Deconvolution,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Learning_Fully_Convolutional_CVPR_2017_paper.html,CVPR,2017,https://github.com/zhjwustc/cvpr17_iter_deblur_testing_matconvnet,2,1/2/2019
+End-to-End Flow Correlation Tracking With Spatial-Temporal Attention,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhu_End-to-End_Flow_Correlation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/zhengzhugithub/FlowTrack,3,1/2/2019
+Discriminative Bimodal Networks for Visual Localization and Detection With Natural Language Queries,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Discriminative_Bimodal_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/YutingZhang/dbnet-caffe-matlab,3,1/2/2019
+Permutation-based Causal Inference Algorithms with Interventions,http://papers.nips.cc/paper/7164-permutation-based-causal-inference-algorithms-with-interventions.pdf,NIPS,2017,https://github.com/yuhaow/sp-intervention,2,1/2/2019
+An Egocentric Look at Video Photographer Identity,http://openaccess.thecvf.com/content_cvpr_2016/html/Hoshen_An_Egocentric_Look_CVPR_2016_paper.html,CVPR,2016,https://github.com/Yedid/ego,2,1/2/2019
+Learning to Super-Resolve Blurry Face and Text Images,http://openaccess.thecvf.com/content_iccv_2017/html/Xu_Learning_to_Super-Resolve_ICCV_2017_paper.html,ICCV,2017,https://github.com/xuxy09/joint_SR_Deblur,2,1/2/2019
+Joint Person Segmentation and Identification in Synchronized First- and Third-person Videos,http://openaccess.thecvf.com/content_ECCV_2018/html/Mingze_Xu_Joint_Person_Segmentation_ECCV_2018_paper.html,ECCV,2018,https://github.com/xumingze0308/firstthird-eccv2018,2,1/2/2019
+Learning Non-Maximum Suppression,http://openaccess.thecvf.com/content_cvpr_2017/html/Hosang_Learning_Non-Maximum_Suppression_CVPR_2017_paper.html,CVPR,2017,https://github.com/XingchenYu/pedestrian_detection_iosapp,3,1/2/2019
+Inferring Forces and Learning Human Utilities From Videos,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhu_Inferring_Forces_and_CVPR_2016_paper.html,CVPR,2016,https://github.com/xiaozhuchacha/ChairPerson,2,1/2/2019
+Weakly Supervised Object Localization With Progressive Domain Adaptation,http://openaccess.thecvf.com/content_cvpr_2016/html/Li_Weakly_Supervised_Object_CVPR_2016_paper.html,CVPR,2016,https://github.com/wupeng78/Weakly-Supervised-Object-Localization-with-Progressive-Domain-Adaptation-CVPR-2016-,2,1/2/2019
+AOD-Net: All-In-One Dehazing Network,http://openaccess.thecvf.com/content_iccv_2017/html/Li_AOD-Net_All-In-One_Dehazing_ICCV_2017_paper.html,ICCV,2017,https://github.com/weber0522bb/AODnet-by-pytorch,6,1/2/2019
+CIDEr: Consensus-Based Image Description Evaluation,http://openaccess.thecvf.com/content_cvpr_2015/html/Vedantam_CIDEr_Consensus-Based_Image_2015_CVPR_paper.html,CVPR,2015,https://github.com/vrama91/cider-matlab,2,1/2/2019
+A Weighted Sparse Sampling and Smoothing Frame Transition Approach for Semantic Fast-Forward First-Person Videos,http://openaccess.thecvf.com/content_cvpr_2018/papers/Silva_A_Weighted_Sparse_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/verlab/SemanticFastForward_CVPR_2018,2,1/2/2019
+Black Box FDR,http://proceedings.mlr.press/v80/tansey18a.html,ICML,2018,https://github.com/tansey/bb-fdr,4,1/2/2019
+Joint Recovery of Dense Correspondence and Cosegmentation in Two Images,http://openaccess.thecvf.com/content_cvpr_2016/html/Taniai_Joint_Recovery_of_CVPR_2016_paper.html,CVPR,2016,https://github.com/t-taniai/TSS_CVPR2016_Demo,2,1/2/2019
+Conditional Neural Processes,http://proceedings.mlr.press/v80/garnelo18a.html,ICML,2018,https://github.com/suyashnigam/ConditionalNeuralProcesses,2,1/2/2019
+Diverse Conditional Image Generation by Stochastic Regression with Latent Drop-Out Codes,http://openaccess.thecvf.com/content_ECCV_2018/html/Yang_He_Diverse_Conditional_Image_ECCV_2018_paper.html,ECCV,2018,https://github.com/SSAW14/Image_Generation_with_Latent_Code,4,1/2/2019
+Subspace Clustering for Sequential Data,http://openaccess.thecvf.com/content_cvpr_2014/html/Tierney_Subspace_Clustering_for_2014_CVPR_paper.html,CVPR,2014,https://github.com/sjtrny/OSC,2,1/2/2019
+Structural Sparse Tracking,http://openaccess.thecvf.com/content_cvpr_2015/html/Zhang_Structural_Sparse_Tracking_2015_CVPR_paper.html,CVPR,2015,https://github.com/shenjianbing/Visual-tracking-using-strong-classifier-and-structural-local-sparse-descriptors-,2,1/2/2019
+Extreme Clicking for Efficient Object Annotation,http://openaccess.thecvf.com/content_iccv_2017/html/Papadopoulos_Extreme_Clicking_for_ICCV_2017_paper.html,ICCV,2017,https://github.com/serycjon/extreme_clicking,2,1/2/2019
+Less Is More: Zero-Shot Learning From Online Textual Documents With Noise Suppression,http://openaccess.thecvf.com/content_cvpr_2016/html/Qiao_Less_Is_More_CVPR_2016_paper.html,CVPR,2016,https://github.com/rqiao/zsl_noise_suppression,2,1/2/2019
+Information Constraints on Auto-Encoding Variational Bayes,http://arxiv.org/abs/1805.08672v2,NIPS,2018,https://github.com/romain-lopez/HCV,3,1/2/2019
+Composite Functional Gradient Learning of Generative Adversarial Models,http://proceedings.mlr.press/v80/johnson18a.html,ICML,2018,https://github.com/riejohnson/cfg-gan,2,1/2/2019
+Learning for Active 3D Mapping,http://openaccess.thecvf.com/content_iccv_2017/html/Zimmermann_Learning_for_Active_ICCV_2017_paper.html,ICCV,2017,https://github.com/RheoDesign/AAVS-Beijing,2,1/2/2019
+Efficient Algorithms for Moral Lineage Tracing,http://openaccess.thecvf.com/content_iccv_2017/html/Rempfler_Efficient_Algorithms_for_ICCV_2017_paper.html,ICCV,2017,https://github.com/rempfler/efficient-mlt,2,1/2/2019
+AIDE: An algorithm for measuring the accuracy of probabilistic inference algorithms,http://papers.nips.cc/paper/6893-aide-an-algorithm-for-measuring-the-accuracy-of-probabilistic-inference-algorithms.pdf,NIPS,2017,https://github.com/probcomp/nips2017-aide-experiments,2,1/2/2019
+Scalable Levy Process Priors for Spectral Kernel Learning,http://papers.nips.cc/paper/6983-scalable-levy-process-priors-for-spectral-kernel-learning.pdf,NIPS,2017,https://github.com/pjang23/levy-spectral-kernel-learning,2,1/2/2019
+DeLS-3D: Deep Localization and Segmentation With a 3D Semantic Map,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_DeLS-3D_Deep_Localization_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/pengwangucla/DeLS-3D,4,1/2/2019
+Simultaneous Stereo Video Deblurring and Scene Flow Estimation,http://openaccess.thecvf.com/content_cvpr_2017/html/Pan_Simultaneous_Stereo_Video_CVPR_2017_paper.html,CVPR,2017,https://github.com/panpanfei/data-Simultaneous-Stereo-Video-Deblurring-and-Scene-Flow-Estimation,2,1/2/2019
+A Simple yet Effective Baseline for 3D Human Pose Estimation,http://openaccess.thecvf.com/content_iccv_2017/html/Martinez_A_Simple_yet_ICCV_2017_paper.html,ICCV,2017,https://github.com/nulledge/bilinear,4,1/2/2019
+Towards Effective Low-Bitwidth Convolutional Neural Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhuang_Towards_Effective_Low-Bitwidth_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/nowgood/QuantizeCNNModel,5,1/2/2019
+Recognizing Human Actions as the Evolution of Pose Estimation Maps,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Recognizing_Human_Actions_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/nkliuyifang/Skeleton-based-Human-Action-Recognition,4,1/2/2019
+Moral Lineage Tracing,http://openaccess.thecvf.com/content_cvpr_2016/html/Jug_Moral_Lineage_Tracing_CVPR_2016_paper.html,CVPR,2016,https://github.com/mpi-inf-cia/moral-lineage-tracing,2,1/2/2019
+Interpolation on the Manifold of K Component GMMs,http://openaccess.thecvf.com/content_iccv_2015/html/Kim_Interpolation_on_the_ICCV_2015_paper.html,ICCV,2015,https://github.com/MLman/kgmm_interpolation,2,1/2/2019
+Teaching Categories to Human Learners With Visual Explanations,http://openaccess.thecvf.com/content_cvpr_2018/papers/Aodha_Teaching_Categories_to_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/macaodha/explain_teach,3,1/2/2019
+A Framework for Evaluating 6-DOF Object Trackers,http://openaccess.thecvf.com/content_ECCV_2018/html/Mathieu_Garon_A_Framework_for_ECCV_2018_paper.html,ECCV,2018,https://github.com/lvsn/6DOF_tracking_evaluation,4,1/2/2019
+Contour Knowledge Transfer for Salient Object Detection,http://openaccess.thecvf.com/content_ECCV_2018/html/Xin_Li_Contour_Knowledge_Transfer_ECCV_2018_paper.html,ECCV,2018,https://github.com/lixin666/C2SNet,5,1/2/2019
+Multi-Layered Gradient Boosting Decision Trees,,NIPS,2018,https://github.com/limberc/ML-GBDT,2,1/2/2019
+Learning Background-Aware Correlation Filters for Visual Tracking,http://openaccess.thecvf.com/content_iccv_2017/html/Galoogahi_Learning_Background-Aware_Correlation_ICCV_2017_paper.html,ICCV,2017,https://github.com/LCAR979/BACF,2,1/2/2019
+Count-Based Exploration with Neural Density Models,http://proceedings.mlr.press/v70/ostrovski17a.html,ICML,2017,https://github.com/kristychoi/pixel_exploration,2,1/2/2019
+Using Locally Corresponding CAD Models for Dense 3D Reconstructions From a Single Image,http://openaccess.thecvf.com/content_cvpr_2017/html/Kong_Using_Locally_Corresponding_CVPR_2017_paper.html,CVPR,2017,https://github.com/kongchen1992/LDCgraph,2,1/2/2019
+Compositional Learning for Human Object Interaction,http://openaccess.thecvf.com/content_ECCV_2018/html/Keizo_Kato_Compositional_Learning_of_ECCV_2018_paper.html,ECCV,2018,https://github.com/kkatocmu/Compositional_Learning,2,1/2/2019
+CoVeR: Learning Covariate-Specific Vector Representations with Tensor Decompositions,http://proceedings.mlr.press/v80/tian18a.html,ICML,2018,https://github.com/kjtian/CoVeR,2,1/2/2019
+Optical Flow Guided Feature: A Fast and Robust Motion Representation for Video Action Recognition,http://openaccess.thecvf.com/content_cvpr_2018/papers/Sun_Optical_Flow_Guided_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/kitsune999/Optical-Flow-Guided-Feature,6,1/2/2019
+Adaptive As-Natural-As-Possible Image Stitching,http://openaccess.thecvf.com/content_cvpr_2015/html/Lin_Adaptive_As-Natural-As-Possible_Image_2015_CVPR_paper.html,CVPR,2015,https://github.com/KANU51/ANAP,2,1/2/2019
+"Look, Listen and Learn",http://openaccess.thecvf.com/content_iccv_2017/html/Arandjelovic_Look_Listen_and_ICCV_2017_paper.html,ICCV,2017,https://github.com/Kajiyu/LLLNet,8,1/2/2019
+Learning and Memorization,http://proceedings.mlr.press/v80/chatterjee18a.html,ICML,2018,https://github.com/jre2/AnkiRPG,2,1/2/2019
+Convex Global 3D Registration With Lagrangian Duality,http://openaccess.thecvf.com/content_cvpr_2017/html/Briales_Convex_Global_3D_CVPR_2017_paper.html,CVPR,2017,https://github.com/jbriales/CVPR17,6,1/2/2019
+Device Placement Optimization with Reinforcement Learning,http://proceedings.mlr.press/v70/mirhoseini17a.html,ICML,2017,https://github.com/indrajeet95/Device-Placement-Optimization-with-Reinforcement-Learning,4,1/2/2019
+Lifelong Learning via Progressive Distillation and Retrospection,http://openaccess.thecvf.com/content_ECCV_2018/html/Saihui_Hou_Progressive_Lifelong_Learning_ECCV_2018_paper.html,ECCV,2018,https://github.com/hshustc/ECCV18_Lifelong_Learning,3,1/2/2019
+Fitting Low-Rank Tensors in Constant Time,http://papers.nips.cc/paper/6841-fitting-low-rank-tensors-in-constant-time.pdf,NIPS,2017,https://github.com/hayasick/CTFT,2,1/2/2019
+Asynchronous Distributed Variational Gaussian Processes for Regression,,ICML,2017,https://github.com/hao-peng/ADVGP,3,1/2/2019
+Hide-And-Seek: Forcing a Network to Be Meticulous for Weakly-Supervised Object and Action Localization,http://openaccess.thecvf.com/content_iccv_2017/html/Singh_Hide-And-Seek_Forcing_a_ICCV_2017_paper.html,ICCV,2017,https://github.com/goddoe/hide-and-seek,2,1/2/2019
+"Fast, Sample-Efficient Algorithms for Structured Phase Retrieval",http://papers.nips.cc/paper/7077-fast-sample-efficient-algorithms-for-structured-phase-retrieval.pdf,NIPS,2017,https://github.com/GauriJagatap/model-copram,2,1/2/2019
+Reversible Recurrent Neural Networks,,NIPS,2018,https://github.com/gan3sh500/revrnn,12,1/2/2019
+Deep View Morphing,http://openaccess.thecvf.com/content_cvpr_2017/html/Ji_Deep_View_Morphing_CVPR_2017_paper.html,CVPR,2017,https://github.com/Gamrix/cs231n_proj,2,1/2/2019
+Learning Dual Convolutional Neural Networks for Low-Level Vision,http://openaccess.thecvf.com/content_cvpr_2018/papers/Pan_Learning_Dual_Convolutional_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/galad-loth/DualCNN-TF,7,1/2/2019
+Leveraging Node Attributes for Incomplete Relational Data,http://proceedings.mlr.press/v70/zhao17a.html,ICML,2017,https://github.com/ethanhezhao/NARM,2,1/2/2019
+Learning Spatial Regularization With Image-Level Supervisions for Multi-Label Image Classification,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhu_Learning_Spatial_Regularization_CVPR_2017_paper.html,CVPR,2017,https://github.com/Enjia/Spatial-Regularization-Network-in-Tensorflow,6,1/2/2019
+Generative Hierarchical Learning of Sparse FRAME Models,http://openaccess.thecvf.com/content_cvpr_2017/html/Xie_Generative_Hierarchical_Learning_CVPR_2017_paper.html,CVPR,2017,https://github.com/enijkamp/HS-FRAME,2,1/2/2019
+Low-Dimensionality Calibration Through Local Anisotropic Scaling for Robust Hand Model Personalization,http://openaccess.thecvf.com/content_iccv_2017/html/Remelli_Low-Dimensionality_Calibration_Through_ICCV_2017_paper.html,ICCV,2017,https://github.com/edoRemelli/hadjust,2,1/2/2019
+Image Retrieval Using Scene Graphs,http://openaccess.thecvf.com/content_cvpr_2015/html/Johnson_Image_Retrieval_Using_2015_CVPR_paper.html,CVPR,2015,https://github.com/econser/py_irsg_orig,2,1/2/2019
+Stochastic Gradient Monomial Gamma Sampler,http://proceedings.mlr.press/v70/zhang17a.html,ICML,2017,https://github.com/dreasysnail/SGMGT,2,1/2/2019
+Generalized Semantic Preserving Hashing for N-Label Cross-Modal Retrieval,http://openaccess.thecvf.com/content_cvpr_2017/html/Mandal_Generalized_Semantic_Preserving_CVPR_2017_paper.html,CVPR,2017,https://github.com/devraj89/Generalized-Semantic-Preserving-Hashing-for-N-Label-Cross-Modal-Retrieval,4,1/2/2019
+AdaNet: Adaptive Structural Learning of Artificial Neural Networks,http://proceedings.mlr.press/v70/cortes17a.html,ICML,2017,https://github.com/davidabek1/adanet,3,1/2/2019
+Sub-sampled Cubic Regularization for Non-convex Optimization,http://proceedings.mlr.press/v70/kohler17a.html,ICML,2017,https://github.com/dalab/subsampled_cubic_regularization,4,1/2/2019
+HybridNet: Classification and Reconstruction Cooperation for Semi-Supervised Learning,http://openaccess.thecvf.com/content_ECCV_2018/html/Thomas_Robert_HybridNet_Classification_and_ECCV_2018_paper.html,ECCV,2018,https://github.com/dakshitagrawal97/HybridNet,5,1/2/2019
+Online Sketching Hashing,http://openaccess.thecvf.com/content_cvpr_2015/html/Leng_Online_Sketching_Hashing_2015_CVPR_paper.html,CVPR,2015,https://github.com/cvpr2015-submission/online-sketching-hashing,2,1/2/2019
+Patch Group Based Nonlocal Self-Similarity Prior Learning for Image Denoising,http://openaccess.thecvf.com/content_iccv_2015/html/Xu_Patch_Group_Based_ICCV_2015_paper.html,ICCV,2015,https://github.com/csjunxu/PGPD-ICCV2015,2,1/2/2019
+Single Image Water Hazard Detection using FCN with Reflection Attention Units,http://openaccess.thecvf.com/content_ECCV_2018/html/Xiaofeng_Han_Single_Image_Water_ECCV_2018_paper.html,ECCV,2018,https://github.com/Cow911/SingleImageWaterHazardDetectionWithRAU,4,1/2/2019
+Dropout Inference in Bayesian Neural Networks with Alpha-divergences,http://proceedings.mlr.press/v70/li17a.html,ICML,2017,https://github.com/cosmozhang/BBalpha_pytorch,2,1/2/2019
+LaVAN: Localized and Visible Adversarial Noise,http://proceedings.mlr.press/v80/karmon18a.html,ICML,2018,https://github.com/ChesterAiGo/LaVAN_python-tf-,2,1/2/2019
+Generalized Max Pooling,http://openaccess.thecvf.com/content_cvpr_2014/html/Murray_Generalized_Max_Pooling_2014_CVPR_paper.html,CVPR,2014,https://github.com/celisun/Generalized-pooling-functions-CNN,2,1/2/2019
+Tensor Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Tensors via Convex Optimization,http://openaccess.thecvf.com/content_cvpr_2016/html/Lu_Tensor_Robust_Principal_CVPR_2016_paper.html,CVPR,2016,https://github.com/canyilu/Tensor-Robust-Principal-Component-Analysis-TRPCA,4,1/2/2019
+A Wavefront Marching Method for Solving the Eikonal Equation on Cartesian Grids,http://openaccess.thecvf.com/content_iccv_2015/html/Cancela_A_Wavefront_Marching_ICCV_2015_paper.html,ICCV,2015,https://github.com/braisCB/WMM,2,1/2/2019
+From Patches to Images: A Nonparametric Generative Model,http://proceedings.mlr.press/v70/ji17a.html,ICML,2017,https://github.com/bnpy/hdp-grid-image-restoration,2,1/2/2019
+Learning Longer-term Dependencies in RNNs with Auxiliary Losses,http://proceedings.mlr.press/v80/trinh18a.html,ICML,2018,https://github.com/belepi93/rnn-auxiliary-loss,5,1/2/2019
+Learning to Localize Sound Source in Visual Scenes,http://openaccess.thecvf.com/content_cvpr_2018/papers/Senocak_Learning_to_Localize_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ardasnck/learning_to_localize_sound,5,1/2/2019
+Multi-Task Learning for Contextual Bandits,http://papers.nips.cc/paper/7070-multi-task-learning-for-contextual-bandits.pdf,NIPS,2017,https://github.com/aniketde/MultiTaskLearningContextualBandits,2,1/2/2019
+Importance Weighted Transfer of Samples in Reinforcement Learning,http://proceedings.mlr.press/v80/tirinzoni18a.html,ICML,2018,https://github.com/AndreaTirinzoni/iw-transfer-rl,3,1/2/2019
+Configurable Markov Decision Processes,http://proceedings.mlr.press/v80/metelli18a.html,ICML,2018,https://github.com/albertometelli/Configurable-Markov-Decision-Processes-ICML-2018,4,1/2/2019
+Batch Bayesian Optimization via Multi-objective Acquisition Ensemble for Automated Analog Circuit Design,http://proceedings.mlr.press/v80/lyu18a.html,ICML,2018,https://github.com/Alaya-in-Matrix/MACE,6,1/2/2019
+High Order Tensor Formulation for Convolutional Sparse Coding,http://openaccess.thecvf.com/content_iccv_2017/html/Bibi_High_Order_Tensor_ICCV_2017_paper.html,ICCV,2017,https://github.com/adelbibi/Tensor_CSC,2,1/2/2019
+Beyond Filters: Compact Feature Map for Portable Deep Model,http://proceedings.mlr.press/v70/wang17m.html,ICML,2017,https://github.com/a4338324/ICML-2017,2,1/2/2019
+Minimum Delay Moving Object Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Lao_Minimum_Delay_Moving_CVPR_2017_paper.html,CVPR,2017,https://github.com/zsameem/realtime-mdmod,1,1/2/2019
+Saliency Pattern Detection by Ranking Structured Trees,http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Saliency_Pattern_Detection_ICCV_2017_paper.html,ICCV,2017,https://github.com/zhulei2016/RST-saliency,3,1/2/2019
+A Modulation Module for Multi-task Learning with Applications in Image Retrieval,http://openaccess.thecvf.com/content_ECCV_2018/html/Xiangyun_Zhao_A_Modulation_Module_ECCV_2018_paper.html,ECCV,2018,https://github.com/Zhaoxiangyun/Multi-Task-Modulation-Module,6,1/2/2019
+Unrolling the Shutter: CNN to Correct Motion Distortions,http://openaccess.thecvf.com/content_cvpr_2017/html/Rengarajan_Unrolling_the_Shutter_CVPR_2017_paper.html,CVPR,2017,https://github.com/yogeshbalaji/CVPR17_Unrolling_the_shutter,2,1/2/2019
+Self-Occlusions and Disocclusions in Causal Video Object Segmentation,http://openaccess.thecvf.com/content_iccv_2015/html/Yang_Self-Occlusions_and_Disocclusions_ICCV_2015_paper.html,ICCV,2015,https://github.com/ycyang12/SODVS,1,1/2/2019
+Stochastic Video Generation with a Learned Prior,http://proceedings.mlr.press/v80/denton18a.html,ICML,2018,https://github.com/yamata2/stochastic-video-generation,2,1/2/2019
+DSLR-Quality Photos on Mobile Devices With Deep Convolutional Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Ignatov_DSLR-Quality_Photos_on_ICCV_2017_paper.html,ICCV,2017,https://github.com/wuyx/CNN---DSLR-Quality-Photos-on-Mobile-Devices-with-Deep-Convolutional-Networks,1,1/2/2019
+Discovering Potential Correlations via Hypercontractivity,http://papers.nips.cc/paper/7044-discovering-potential-correlations-via-hypercontractivity.pdf,NIPS,2017,https://github.com/wgao9/hypercontractivity,1,1/2/2019
+Primary Object Segmentation in Videos via Alternate Convex Optimization of Foreground and Background Distributions,http://openaccess.thecvf.com/content_cvpr_2016/html/Jang_Primary_Object_Segmentation_CVPR_2016_paper.html,CVPR,2016,https://github.com/wdjang/ACO,1,1/2/2019
+Contour Box: Rejecting Object Proposals Without Explicit Closed Contours,http://openaccess.thecvf.com/content_iccv_2015/html/Lu_Contour_Box_Rejecting_ICCV_2015_paper.html,ICCV,2015,https://github.com/WangHong-yang/contour-box,1,1/2/2019
+Learning Object Interactions and Descriptions for Semantic Image Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/html/Wang_Learning_Object_Interactions_CVPR_2017_paper.html,CVPR,2017,https://github.com/wanggrun/IDW-CNN-V2,2,1/2/2019
+Gradient Descent for Spiking Neural Networks,http://arxiv.org/abs/1706.04698v2,NIPS,2018,https://github.com/vikram-mm/Spiking-Neural-Network---Theano-Framework,2,1/2/2019
+DICOD: Distributed Convolutional Coordinate Descent for Convolutional Sparse Coding,http://proceedings.mlr.press/v80/moreau18a.html,ICML,2018,https://github.com/tomMoral/Dicod,3,1/2/2019
+Adaptive Batch Size for Safe Policy Gradients,http://papers.nips.cc/paper/6950-adaptive-batch-size-for-safe-policy-gradients.pdf,NIPS,2017,https://github.com/T3p/adaptive-batch-size,1,1/2/2019
+Deep Affordance-Grounded Sensorimotor Object Recognition,http://openaccess.thecvf.com/content_cvpr_2017/html/Thermos_Deep_Affordance-Grounded_Sensorimotor_CVPR_2017_paper.html,CVPR,2017,https://github.com/spthermo/Sensorimotor,1,1/2/2019
+On clustering network-valued data,http://papers.nips.cc/paper/7282-on-clustering-network-valued-data.pdf,NIPS,2017,https://github.com/soumendu041/clustering-network-valued-data,1,1/2/2019
+Computing the Stereo Matching Cost With a Convolutional Neural Network,http://openaccess.thecvf.com/content_cvpr_2015/html/Zbontar_Computing_the_Stereo_2015_CVPR_paper.html,CVPR,2015,https://github.com/soonyk/mc-cnn,1,1/2/2019
+A Projection Free Method for Generalized Eigenvalue Problem With a Nonsmooth Regularizer,http://openaccess.thecvf.com/content_iccv_2015/html/Hwang_A_Projection_Free_ICCV_2015_paper.html,ICCV,2015,https://github.com/shwang54/iccv2015_sjh,1,1/2/2019
+Stochastic Wasserstein Barycenters,http://proceedings.mlr.press/v80/claici18a.html,ICML,2018,https://github.com/sebastian-claici/StochasticWassersteinBarycenters,1,1/2/2019
+Collaborative Deep Learning in Fixed Topology Networks,http://papers.nips.cc/paper/7172-collaborative-deep-learning-in-fixed-topology-networks.pdf,NIPS,2017,https://github.com/SCSLabISU/CDSGD,1,1/2/2019
+Weakly Supervised Dense Video Captioning,http://openaccess.thecvf.com/content_cvpr_2017/html/Shen_Weakly_Supervised_Dense_CVPR_2017_paper.html,CVPR,2017,https://github.com/SCLinDennis/Weakly-Supervised-Dense-Video-Captioning,2,1/2/2019
+Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation,,NIPS,2018,https://github.com/rwenqi/NBD-GLRA,7,1/2/2019
+Deep Visual-Semantic Alignments for Generating Image Descriptions,http://openaccess.thecvf.com/content_cvpr_2015/html/Karpathy_Deep_Visual-Semantic_Alignments_2015_CVPR_paper.html,CVPR,2015,https://github.com/rszeto/eecs-692-replication-project,1,1/2/2019
+Efficient and Consistent Adversarial Bipartite Matching,http://proceedings.mlr.press/v80/fathony18a.html,ICML,2018,https://github.com/rizalzaf/bipartite-mat,1,1/2/2019
+Gated Feedback Refinement Network for Dense Image Labeling,http://openaccess.thecvf.com/content_cvpr_2017/html/Islam_Gated_Feedback_Refinement_CVPR_2017_paper.html,CVPR,2017,https://github.com/rezaulnkarim/RefinementTest,1,1/2/2019
+Coupled End-to-End Transfer Learning With Generalized Fisher Information,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Coupled_End-to-End_Transfer_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/RankingCNN/Coupled-End-to-End-Transfer-Learning-With-Generalized-Fisher-Information,1,1/2/2019
+Expert Gate: Lifelong Learning With a Network of Experts,http://openaccess.thecvf.com/content_cvpr_2017/html/Aljundi_Expert_Gate_Lifelong_CVPR_2017_paper.html,CVPR,2017,https://github.com/rahafaljundi/Expert-Gate,4,1/2/2019
+Task-driven Webpage Saliency,http://openaccess.thecvf.com/content_ECCV_2018/html/Quanlong_Zheng_Task-driven_Webpage_Saliency_ECCV_2018_paper.html,ECCV,2018,https://github.com/quanlzheng/Task-driven-Webpage-Saliency,2,1/2/2019
+A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks,,NIPS,2018,https://github.com/pokaxpoka/deep_Mahalanobis_detector,32,1/2/2019
+Follow the Moving Leader in Deep Learning,http://proceedings.mlr.press/v70/zheng17a.html,ICML,2017,https://github.com/patniharshit/Follow-the-Moving-Leader-in-Deep-Learning,1,1/2/2019
+Unsupervised Semantic Parsing of Video Collections,http://openaccess.thecvf.com/content_iccv_2015/html/Sener_Unsupervised_Semantic_Parsing_ICCV_2015_paper.html,ICCV,2015,https://github.com/ozansener/ICCV2015,1,1/2/2019
+Feature Selective Networks for Object Detection,http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhai_Feature_Selective_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/noido/feature_selective_networks,1,1/2/2019
+Generative Local Metric Learning for Kernel Regression,http://papers.nips.cc/paper/6839-generative-local-metric-learning-for-kernel-regression.pdf,NIPS,2017,https://github.com/nohyung/Nadaraya-Watson-Regression-Metric,1,1/2/2019
+Functional Map of the World,http://openaccess.thecvf.com/content_cvpr_2018/papers/Christie_Functional_Map_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/nichochar/zapmap,1,1/2/2019
+Distributionally Robust Graphical Models,,NIPS,2018,https://github.com/Narendhar123/Linear-Regression-Algoritham-,1,10/14/2018
+Robust Budget Allocation via Continuous Submodular Functions,http://proceedings.mlr.press/v70/staib17a.html,ICML,2017,https://github.com/mstaib/robust-budget-allocation-code,1,1/2/2019
+Differentially Private Clustering in High-Dimensional Euclidean Spaces,http://proceedings.mlr.press/v70/balcan17a.html,ICML,2017,https://github.com/mouwenlong/dp-clustering-icml17,1,1/2/2019
+Unsupervised Image-to-Image Translation with Stacked Cycle-Consistent Adversarial Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Minjun_Li_Unsupervised_Image-to-Image_Translation_ECCV_2018_paper.html,ECCV,2018,https://github.com/minjunli/SCAN,1,10/14/2018
+CartoonGAN: Generative Adversarial Networks for Photo Cartoonization,http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_CartoonGAN_Generative_Adversarial_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/MingtaoGuo/CartoonGAN-tensorflow,2,1/2/2019
+Model evidence from nonequilibrium simulations,http://papers.nips.cc/paper/6772-model-evidence-from-nonequilibrium-simulations.pdf,NIPS,2017,https://github.com/michaelhabeck/paths,1,1/2/2019
+On Calibration of Modern Neural Networks,http://proceedings.mlr.press/v70/guo17a.html,ICML,2017,https://github.com/markdtw/temperature-scaling-tensorflow,1,1/2/2019
+CapProNet: Deep Feature Learning via Orthogonal Projections onto Capsule Subspaces,,NIPS,2018,https://github.com/maple-research-lab/CapProNet,3,1/2/2019
+Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees,http://papers.nips.cc/paper/6679-greedy-algorithms-for-cone-constrained-optimization-with-convergence-guarantees.pdf,NIPS,2017,https://github.com/locatelf/cone-greedy,1,1/2/2019
+Defense Against Universal Adversarial Perturbations,http://openaccess.thecvf.com/content_cvpr_2018/papers/Akhtar_Defense_Against_Universal_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/liujianee/Pertrubation_Rectifying_Network,1,1/2/2019
+Inhomogeneous Hypergraph Clustering with Applications,http://papers.nips.cc/paper/6825-inhomogeneous-hypergraph-clustering-with-applications.pdf,NIPS,2017,https://github.com/lipan00123/InHclustering,2,1/2/2019
+SPFTN: A Self-Paced Fine-Tuning Network for Segmenting Objects in Weakly Labelled Videos,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_SPFTN_A_Self-Paced_CVPR_2017_paper.html,CVPR,2017,https://github.com/LeYangNwpu/SPFTN,1,1/2/2019
+Maximum Causal Tsallis Entropy Imitation Learning,http://arxiv.org/abs/1805.08336v2,NIPS,2018,https://github.com/kyungjaelee/MCTEIL,1,10/14/2018
+Matrix Norm Estimation from a Few Entries,http://papers.nips.cc/paper/7221-matrix-norm-estimation-from-a-few-entries.pdf,NIPS,2017,https://github.com/khetan2/Schatten_norm_estimation,1,1/2/2019
+Learning to Group Objects,http://openaccess.thecvf.com/content_cvpr_2014/html/Yanulevskaya_Learning_to_Group_2014_CVPR_paper.html,CVPR,2014,https://github.com/KamilWo/PHP_OOP,1,1/2/2019
+Latent Trees for Estimating Intensity of Facial Action Units,http://openaccess.thecvf.com/content_cvpr_2015/html/Kaltwang_Latent_Trees_for_2015_CVPR_paper.html,CVPR,2015,https://github.com/kaltwang/2015latent,1,1/2/2019
+Laplacian Patch-Based Image Synthesis,http://openaccess.thecvf.com/content_cvpr_2016/html/Lee_Laplacian_Patch-Based_Image_CVPR_2016_paper.html,CVPR,2016,https://github.com/KAIST-VCLAB/laplacianinpainting,1,1/2/2019
+Bidirectional Retrieval Made Simple,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wehrmann_Bidirectional_Retrieval_Made_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/jwehrmann/chain-vse,3,1/2/2019
+"Online Detection of Action Start in Untrimmed, Streaming Videos",http://openaccess.thecvf.com/content_ECCV_2018/html/Zheng_Shou_Online_Detection_of_ECCV_2018_paper.html,ECCV,2018,https://github.com/junting/odas,2,1/2/2019
+MarioQA: Answering Questions by Watching Gameplay Videos,http://openaccess.thecvf.com/content_iccv_2017/html/Mun_MarioQA_Answering_Questions_ICCV_2017_paper.html,ICCV,2017,https://github.com/JonghwanMun/MarioQA,5,1/2/2019
+ScaleNet: Guiding Object Proposal Generation in Supermarkets and Beyond,http://openaccess.thecvf.com/content_iccv_2017/html/Qiao_ScaleNet_Guiding_Object_ICCV_2017_paper.html,ICCV,2017,https://github.com/joe-siyuan-qiao/ScaleNet,1,1/2/2019
+Video-Story Composition via Plot Analysis,http://openaccess.thecvf.com/content_cvpr_2016/html/Choi_Video-Story_Composition_via_CVPR_2016_paper.html,CVPR,2016,https://github.com/jinsc37/Video-Story-CVPR16,1,1/2/2019
+Objects2action: Classifying and Localizing Actions Without Any Video Example,http://openaccess.thecvf.com/content_iccv_2015/html/Jain_Objects2action_Classifying_and_ICCV_2015_paper.html,ICCV,2015,https://github.com/JingPG2014/objects2action,1,1/2/2019
+Goodness-of-fit Testing for Discrete Distributions via Stein Discrepancy,http://proceedings.mlr.press/v80/yang18c.html,ICML,2018,https://github.com/jiaseny/kdsd,1,9/16/2018
+Video Paragraph Captioning Using Hierarchical Recurrent Neural Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Yu_Video_Paragraph_Captioning_CVPR_2016_paper.html,CVPR,2016,https://github.com/JaywongWang/Video-Paragraph-Captioning,1,1/2/2019
+Fast Algorithms for Convolutional Neural Networks,http://openaccess.thecvf.com/content_cvpr_2016/html/Lavin_Fast_Algorithms_for_CVPR_2016_paper.html,CVPR,2016,https://github.com/istoony/winograd-convolutional-nn,3,1/2/2019
+Is Robustness the Cost of Accuracy? -- A Comprehensive Study on the Robustness of 18 Deep Image Classification Models,http://openaccess.thecvf.com/content_ECCV_2018/html/Dong_Su_Is_Robustness_the_ECCV_2018_paper.html,ECCV,2018,https://github.com/IBM/ImageNet-Robustness,1,1/2/2019
+Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives,,NIPS,2018,https://github.com/IBM/Contrastive-Explanation-Method,3,1/2/2019
+DRACO: Byzantine-resilient Distributed Training via Redundant Gradients,http://proceedings.mlr.press/v80/chen18l.html,ICML,2018,https://github.com/hwang595/Draco,5,1/2/2019
+Learning Spatiotemporal Features With 3D Convolutional Networks,http://openaccess.thecvf.com/content_iccv_2015/html/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.html,ICCV,2015,https://github.com/hunter-87/read-c3d-features-numpy,1,1/2/2019
+Priv’IT: Private and Sample Efficient Identity Testing,http://proceedings.mlr.press/v70/cai17a.html,ICML,2017,https://github.com/hoonose/privit,1,1/2/2019
+Deep Adaptive Image Clustering,http://openaccess.thecvf.com/content_iccv_2017/html/Chang_Deep_Adaptive_Image_ICCV_2017_paper.html,ICCV,2017,https://github.com/HongtaoYang/DAC-tensorflow,6,1/2/2019
+Directionally Convolutional Networks for 3D Shape Segmentation,http://openaccess.thecvf.com/content_iccv_2017/html/Xu_Directionally_Convolutional_Networks_ICCV_2017_paper.html,ICCV,2017,https://github.com/HaotianMXu/3D-Shape-Segmentation-with-Deep-Neural-Networks,1,1/2/2019
+Fast and Effective L0 Gradient Minimization by Region Fusion,http://openaccess.thecvf.com/content_iccv_2015/html/Nguyen_Fast_and_Effective_ICCV_2015_paper.html,ICCV,2015,https://github.com/guqifeng/L0_norm,2,1/2/2019
+Context-Aware Synthesis for Video Frame Interpolation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Niklaus_Context-Aware_Synthesis_for_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/GeorgeBohw/interpolation,1,1/2/2019
+Geodesic Distance Descriptors,http://openaccess.thecvf.com/content_cvpr_2017/html/Shamai_Geodesic_Distance_Descriptors_CVPR_2017_paper.html,CVPR,2017,https://github.com/fuyangliu/3D-Model-Descriptor,1,1/2/2019
+Generative Modeling of Audible Shapes for Object Perception,http://openaccess.thecvf.com/content_iccv_2017/html/Zhang_Generative_Modeling_of_ICCV_2017_paper.html,ICCV,2017,https://github.com/FredHuangBia/Sound_ICCV,1,1/2/2019
+Multilingual Anchoring: Interactive Topic Modeling and Alignment Across Languages,,NIPS,2018,https://github.com/forest-snow/mtanchor_demo,3,1/2/2019
+Online control of the false discovery rate with decaying memory,http://papers.nips.cc/paper/7148-online-control-of-the-false-discovery-rate-with-decaying-memory.pdf,NIPS,2017,https://github.com/fanny-yang/OnlineFDRCode,1,1/2/2019
+COLA: Decentralized Linear Learning,,NIPS,2018,https://github.com/epfml/cola,5,1/2/2019
+Structured Uncertainty Prediction Networks,http://openaccess.thecvf.com/content_cvpr_2018/papers/Dorta_Structured_Uncertainty_Prediction_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/EhtashamBillah/Acute-Lymphoblastic-Leukemia-cell-classification-using-Bayesian-Convolutional-Neural-Networks,1,1/2/2019
+S3Pool: Pooling With Stochastic Spatial Sampling,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhai_S3Pool_Pooling_With_CVPR_2017_paper.html,CVPR,2017,https://github.com/edgarmedina1801/S3Pool,1,1/2/2019
+Playing hard exploration games by watching YouTube,http://arxiv.org/abs/1805.11592v1,NIPS,2018,https://github.com/dnddnjs/learning-from-youtube,1,10/14/2018
+Highly-Economized Multi-View Binary Compression for Scalable Image Clustering,http://openaccess.thecvf.com/content_ECCV_2018/html/Zheng_Zhang_Highly-Economized_Multi-View_Binary_ECCV_2018_paper.html,ECCV,2018,https://github.com/DarrenZhangZ/HSIC,1,10/1/2018
+Adversarial PoseNet: A Structure-Aware Convolutional Network for Human Pose Estimation,http://openaccess.thecvf.com/content_iccv_2017/html/Chen_Adversarial_PoseNet_A_ICCV_2017_paper.html,ICCV,2017,https://github.com/danache/Adversarial-PoseNet,1,1/2/2019
+Fast Zero-Shot Image Tagging,http://openaccess.thecvf.com/content_cvpr_2016/html/Zhang_Fast_Zero-Shot_Image_CVPR_2016_paper.html,CVPR,2016,https://github.com/csueb-research/fast-zero-shot-image-tagging,1,1/2/2019
+MEC: Memory-efficient Convolution for Deep Neural Network,http://proceedings.mlr.press/v70/cho17a.html,ICML,2017,https://github.com/CSshengxy/MEC,4,1/2/2019
+A Hybrid l1-l0 Layer Decomposition Model for Tone Mapping,http://openaccess.thecvf.com/content_cvpr_2018/papers/Liang_A_Hybrid_l1-l0_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/csjunxu/L1L0_TM-CVPR2018,3,1/2/2019
+Multispectral Image Intrinsic Decomposition via Subspace Constraint,http://openaccess.thecvf.com/content_cvpr_2018/papers/Huang_Multispectral_Image_Intrinsic_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/cianhwang/MIID,2,1/2/2019
+Chi-square Generative Adversarial Network,http://proceedings.mlr.press/v80/tao18b.html,ICML,2018,https://github.com/chenyang-tao/chi2gan,2,1/2/2019
+Co-teaching: Robust Training Deep Neural Networks with Extremely Noisy Labels,,NIPS,2018,https://github.com/char256/co-teaching_bohan_et.al,1,1/2/2019
+Linearly constrained Gaussian processes,http://papers.nips.cc/paper/6721-linearly-constrained-gaussian-processes.pdf,NIPS,2017,https://github.com/carji475/linearly-constrained-gaussian-processes,1,1/2/2019
+A Joint Intrinsic-Extrinsic Prior Model for Retinex,http://openaccess.thecvf.com/content_iccv_2017/html/Cai_A_Joint_Intrinsic-Extrinsic_ICCV_2017_paper.html,ICCV,2017,https://github.com/caibolun/JieP,2,1/2/2019
+Learning unknown ODE models with Gaussian processes,http://proceedings.mlr.press/v80/heinonen18a.html,ICML,2018,https://github.com/cagatayyildiz/npode,1,1/2/2019
+The committee machine: Computational to statistical gaps in learning a two-layers neural network,,NIPS,2018,https://github.com/benjaminaubin/TheCommitteeMachine,1,1/2/2019
+The Expxorcist: Nonparametric Graphical Models Via Conditional Exponential Densities,http://papers.nips.cc/paper/7031-the-expxorcist-nonparametric-graphical-models-via-conditional-exponential-densities.pdf,NIPS,2017,https://github.com/arunsais/Expxorcist,1,1/2/2019
+Found Graph Data and Planted Vertex Covers,http://arxiv.org/abs/1805.01209v1,NIPS,2018,https://github.com/arbenson/FGDnPVC,1,1/2/2019
+Closed-form Marginal Likelihood in Gamma-Poisson Matrix Factorization,http://proceedings.mlr.press/v80/filstroff18a.html,ICML,2018,https://github.com/alumbreras/MMLE-GaP,1,1/2/2019
+Robust Optimization for Deep Regression,http://openaccess.thecvf.com/content_iccv_2015/html/Belagiannis_Robust_Optimization_for_ICCV_2015_paper.html,ICCV,2015,https://github.com/AIHGF/matconvnet-deepReg,1,1/2/2019
+Unsupervised Hard Example Mining from Videos for Improved Object Detection,http://openaccess.thecvf.com/content_ECCV_2018/html/SouYoung_Jin_Unsupervised_Hard-Negative_Mining_ECCV_2018_paper.html,ECCV,2018,https://github.com/adiprasad/unsup-hard-negative-mining-mscoco,1,1/2/2019
+3D Part-Based Sparse Tracker With Automatic Synchronization and Registration,http://openaccess.thecvf.com/content_cvpr_2016/html/Bibi_3D_Part-Based_Sparse_CVPR_2016_paper.html,CVPR,2016,https://github.com/adelbibi/3D-Part-Based-Sparse-Tracker-with-Automatic-Synchronization-and-Registration,1,1/2/2019
+Video Acceleration Magnification,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Video_Acceleration_Magnification_CVPR_2017_paper.html,CVPR,2017,https://github.com/acceleration-magnification/acceleration-magnification.github.io,1,1/2/2019
+Video Representation Learning Using Discriminative Pooling,http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Video_Representation_Learning_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/3xWangDot/SVMP,2,1/2/2019
+Learning Discriminative Video Representations Using Adversarial Perturbations,http://openaccess.thecvf.com/content_ECCV_2018/html/Jue_Wang_Learning_Discriminative_Video_ECCV_2018_paper.html,ECCV,2018,https://github.com/3xWangDot/DSP,2,1/2/2019
+"Multi-Evidence Filtering and Fusion for Multi-Label Classification, Object Detection and Semantic Segmentation Based on Weakly Supervised Learning",http://openaccess.thecvf.com/content_cvpr_2018/papers/Ge_Multi-Evidence_Filtering_and_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/ZYYSzj/Multi-Evidence-Filtering-and-Fusion-WSL,0,1/2/2019
+Stein Points,http://proceedings.mlr.press/v80/chen18f.html,ICML,2018,https://github.com/ZloyChert/Romash.ISO.SteinerPoints,0,1/2/2019
+Deep Defense: Training DNNs with Improved Adversarial Robustness,http://arxiv.org/abs/1803.00404v2,NIPS,2018,https://github.com/ZiangYan/deepdefense.pytorch,8,1/2/2019
+Supervision by Fusion: Towards Unsupervised Learning of Deep Salient Object Detector,http://openaccess.thecvf.com/content_iccv_2017/html/Zhang_Supervision_by_Fusion_ICCV_2017_paper.html,ICCV,2017,https://github.com/zhangyuygss/caffe-modified,0,1/2/2019
+Active Learning with Logged Data,http://proceedings.mlr.press/v80/yan18a.html,ICML,2018,https://github.com/yyysbysb/al_log_icml18,0,1/2/2019
+Long-Term Recurrent Convolutional Networks for Visual Recognition and Description,http://openaccess.thecvf.com/content_cvpr_2015/html/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.html,CVPR,2015,https://github.com/yurisan/Long-term-Recurrent-Convolutional-Networks-for-Visual-Recognition-and-Description,0,1/2/2019
+The Weighted Kendall and High-order Kernels for Permutations,http://proceedings.mlr.press/v80/jiao18a.html,ICML,2018,https://github.com/YunlongJiao/weightedkendall,0,1/2/2019
+On Word Embedding Dimensionality,,NIPS,2018,https://github.com/yukubo/sample_word2vec_skipgram,0,1/2/2019
+DeepPINK: reproducible feature selection in deep neural networks,http://arxiv.org/abs/1809.01185v2,NIPS,2018,https://github.com/younglululu/DeepPINK,0,1/2/2019
+Ego-Surfing First-Person Videos,http://openaccess.thecvf.com/content_cvpr_2015/html/Yonetani_Ego-Surfing_First-Person_Videos_2015_CVPR_paper.html,CVPR,2015,https://github.com/yonetaniryo/corrsearch,0,1/2/2019
+Multiresolution Kernel Approximation for Gaussian Process Regression,http://papers.nips.cc/paper/6964-multiresolution-kernel-approximation-for-gaussian-process-regression.pdf,NIPS,2017,https://github.com/yiding2012/MKA,0,1/2/2019
+Accurate Inference for Adaptive Linear Models,http://proceedings.mlr.press/v80/deshpande18a.html,ICML,2018,https://github.com/yash-deshpande/decorrelating-linear-models,1,1/2/2019
+Modular Generative Adversarial Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Bo_Zhao_Modular_Generative_Adversarial_ECCV_2018_paper.html,ECCV,2018,https://github.com/xjdeng/EasyGAN,0,1/2/2019
+Weighted-Entropy-Based Quantization for Deep Neural Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Park_Weighted-Entropy-Based_Quantization_for_CVPR_2017_paper.html,CVPR,2017,https://github.com/xiaoweiChen/Weighted-Entropy-based-Quantization-for-Deep-Neural-Networks,0,1/2/2019
+End-To-End People Detection in Crowded Scenes,http://openaccess.thecvf.com/content_cvpr_2016/html/Stewart_End-To-End_People_Detection_CVPR_2016_paper.html,CVPR,2016,https://github.com/wuyx/End-to-end-people-detection-in-crowded-scenes,0,1/2/2019
+Towards End-To-End Text Spotting With Convolutional Recurrent Neural Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Li_Towards_End-To-End_Text_ICCV_2017_paper.html,ICCV,2017,https://github.com/wuyenan/-Towards-End-to-end-Text-Spotting-with-Convolutional-Recurrent-Neural-Networks,0,1/2/2019
+A Theoretical Explanation for Perplexing Behaviors of Backpropagation-based Visualizations,http://proceedings.mlr.press/v80/nie18a.html,ICML,2018,https://github.com/weilinie/BackpropVis,1,1/2/2019
+What If We Do Not Have Multiple Videos of the Same Action? -- Video Action Localization Using Web Images,http://openaccess.thecvf.com/content_cvpr_2016/html/Sultani_What_If_We_CVPR_2016_paper.html,CVPR,2016,https://github.com/WaqasSultani/ActionLocalization_CVPR16,0,1/2/2019
+"Cross-view Action Modeling, Learning and Recognition",http://openaccess.thecvf.com/content_cvpr_2014/html/Wang_Cross-view_Action_Modeling_2014_CVPR_paper.html,CVPR,2014,https://github.com/wangjiangb/crossviewActionRecognition,0,1/2/2019
+Deep Neural Networks with Box Convolutions,,NIPS,2018,https://github.com/vvoluom/Neural-Networks,0,10/1/2018
+ResNet with one-neuron hidden layers is a Universal Approximator,http://arxiv.org/abs/1806.10909v2,NIPS,2018,https://github.com/vinsis/points-in-2d,0,1/2/2019
+Guided Proofreading of Automatic Segmentations for Connectomics,http://openaccess.thecvf.com/content_cvpr_2018/papers/Haehn_Guided_Proofreading_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/VCG/guidedproofreading,0,1/2/2019
+Reducing Network Agnostophobia,,NIPS,2018,https://github.com/Vastlab/Reducing-Network-Agnostophobia,2,1/2/2019
+Gray-box Adversarial Training,http://openaccess.thecvf.com/content_ECCV_2018/html/Vivek_B_S_Gray_box_adversarial_ECCV_2018_paper.html,ECCV,2018,https://github.com/val-iisc/gat,0,1/2/2019
+What Value Do Explicit High Level Concepts Have in Vision to Language Problems?,http://openaccess.thecvf.com/content_cvpr_2016/html/Wu_What_Value_Do_CVPR_2016_paper.html,CVPR,2016,https://github.com/upccpu/-,0,1/2/2019
+Motion-Depth: RGB-D Depth Map Enhancement with Motion and Depth in Complement,http://openaccess.thecvf.com/content_cvpr_2014/html/Hui_Motion-Depth_RGB-D_Depth_2014_CVPR_paper.html,CVPR,2014,https://github.com/twhui/Motion-Depth,0,1/2/2019
+Efficient Point Process Inference for Large-Scale Object Detection,http://openaccess.thecvf.com/content_cvpr_2016/html/Pham_Efficient_Point_Process_CVPR_2016_paper.html,CVPR,2016,https://github.com/trungtpham/point_process_optimisation,0,1/2/2019
+"Real-World Repetition Estimation by Div, Grad and Curl",http://openaccess.thecvf.com/content_cvpr_2018/papers/Runia_Real-World_Repetition_Estimation_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/tomrunia/RepetitionEstimation,1,1/2/2019
+Efficient Intersection of Three Quadrics and Applications in Computer Vision,http://openaccess.thecvf.com/content_cvpr_2016/html/Kukelova_Efficient_Intersection_of_CVPR_2016_paper.html,CVPR,2016,https://github.com/tolgabirdal/e3q3,0,1/2/2019
+Adaptive Neural Networks for Efficient Inference,http://proceedings.mlr.press/v70/bolukbasi17a.html,ICML,2017,https://github.com/tolga-b/ann,0,1/2/2019
+A Laplacian Framework for Option Discovery in Reinforcement Learning,http://proceedings.mlr.press/v70/machado17a.html,ICML,2017,https://github.com/timguoqk/option_discovery,0,1/2/2019
+SAFFRON: an Adaptive Algorithm for Online Control of the False Discovery Rate,http://proceedings.mlr.press/v80/ramdas18a.html,ICML,2018,https://github.com/tijana-zrnic/SAFFRONcode,0,1/2/2019
+Product Split Trees,http://openaccess.thecvf.com/content_cvpr_2017/html/Babenko_Product_Split_Trees_CVPR_2017_paper.html,CVPR,2017,https://github.com/theherobrinehunter/Mod,1,1/2/2019
+Emotion Recognition in Context,http://openaccess.thecvf.com/content_cvpr_2017/html/Kosti_Emotion_Recognition_in_CVPR_2017_paper.html,CVPR,2017,https://github.com/Thanuja2812/Deep-Neural-Network,0,1/2/2019
+Hybrid Camera Pose Estimation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Camposeco_Hybrid_Camera_Pose_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/TeaganLi/A-Hybrid-3DoF-Pose-Estimation-Method-based-on-Camera-and-Lidar-Data,0,1/2/2019
+Multi-View Subspace Clustering,http://openaccess.thecvf.com/content_iccv_2015/html/Gao_Multi-View_Subspace_Clustering_ICCV_2015_paper.html,ICCV,2015,https://github.com/TaoZhou19/Dual-Shared-Specific-Multi-view-Subspace-Clustering,0,1/2/2019
+Comparison-Based Random Forests,http://proceedings.mlr.press/v80/haghiri18a.html,ICML,2018,https://github.com/SylwiaOliwia2/Decision-tree-random-forest-xgboost-comparison,0,1/2/2019
+Guided Perturbations: Self-Corrective Behavior in Convolutional Neural Networks,http://openaccess.thecvf.com/content_iccv_2017/html/Sankaranarayanan_Guided_Perturbations_Self-Corrective_ICCV_2017_paper.html,ICCV,2017,https://github.com/swamiviv/guided_perturbations,1,1/2/2019
+Non-Blind Deblurring: Handling Kernel Uncertainty With CNNs,http://openaccess.thecvf.com/content_cvpr_2018/papers/Vasu_Non-Blind_Deblurring_Handling_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/subeeshvasu/2018_subeesh_nbd_cvpr,0,1/2/2019
+Object-centered image stitching,http://openaccess.thecvf.com/content_ECCV_2018/html/Charles_Herrmann_Object-centered_image_stitching_ECCV_2018_paper.html,ECCV,2018,https://github.com/StewartNash/img_proc_7,0,1/2/2019
+Topological mixture estimation,http://proceedings.mlr.press/v80/huntsman18a.html,ICML,2018,https://github.com/SteveHuntsmanBAESystems/TopologicalMixtureEstimation,0,1/2/2019
+Non-metric Similarity Graphs for Maximum Inner Product Search,,NIPS,2018,https://github.com/stanis-morozov/ip-nsw,7,1/2/2019
+Gradient Boosted Decision Trees for High Dimensional Sparse Output,http://proceedings.mlr.press/v70/si17a.html,ICML,2017,https://github.com/springdaisy/GBDT,0,1/2/2019
+What Do Deep Networks Like to See?,http://openaccess.thecvf.com/content_cvpr_2018/papers/Palacio_What_Do_Deep_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/spalaciob/normnets,0,1/2/2019
+Analysis by Synthesis: 3D Object Recognition by Object Reconstruction,http://openaccess.thecvf.com/content_cvpr_2014/html/Hejrati_Analysis_by_Synthesis_2014_CVPR_paper.html,CVPR,2014,https://github.com/siqihao95/Musical-Analysis-by-Synthesis,0,1/2/2019
+Neural Network Encapsulation,http://openaccess.thecvf.com/content_ECCV_2018/html/Hongyang_Li_Neural_Network_Encapsulation_ECCV_2018_paper.html,ECCV,2018,https://github.com/sio2boss/k5-spec,0,1/2/2019
+From Source to Target and Back: Symmetric Bi-Directional Adaptive GAN,http://openaccess.thecvf.com/content_cvpr_2018/papers/Russo_From_Source_to_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/shubhampachori12110095/GAN,0,1/2/2019
+Algorithmic Assurance: An Active Approach to Algorithmic Testing using Bayesian Optimisation,,NIPS,2018,https://github.com/shivapratap/AlgorithmicAssurance_NIPS2018,0,1/2/2019
+Estimating Sparse Signals With Smooth Support via Convex Programming and Block Sparsity,http://openaccess.thecvf.com/content_cvpr_2016/html/Shah_Estimating_Sparse_Signals_CVPR_2016_paper.html,CVPR,2016,https://github.com/shahsohil/CoLaMP,0,1/2/2019
+Learning with Abandonment,http://proceedings.mlr.press/v80/schmit18a.html,ICML,2018,https://github.com/schmit/learning-abandonment,0,1/2/2019
+Infinite Feature Selection,http://openaccess.thecvf.com/content_iccv_2015/html/Roffo_Infinite_Feature_Selection_ICCV_2015_paper.html,ICCV,2015,https://github.com/Sadegh28/SINF,0,1/2/2019
+Gaussian Process Conditional Density Estimation,,NIPS,2018,https://github.com/richardbayes/bayes-treed-cde,0,1/2/2019
+Learning SMaLL Predictors,http://arxiv.org/abs/1803.02388v1,NIPS,2018,https://github.com/retropean/mspa-apps,0,1/2/2019
+Diversity-Enhanced Condensation Algorithm and Its Application for Robust and Accurate Endoscope Three-Dimensional Motion Tracking,http://openaccess.thecvf.com/content_cvpr_2014/html/Luo_Diversity-Enhanced_Condensation_Algorithm_2014_CVPR_paper.html,CVPR,2014,https://github.com/renzhe0009/Diversity-Enhanced-Condensation-Algorithm,0,1/2/2019
+Learning to Predict Saliency on Face Images,http://openaccess.thecvf.com/content_iccv_2015/html/Xu_Learning_to_Predict_ICCV_2015_paper.html,ICCV,2015,https://github.com/RenYun2016/Face,0,1/2/2019
+Clustering of Static-Adaptive Correspondences for Deformable Object Tracking,http://openaccess.thecvf.com/content_cvpr_2015/html/Nebehay_Clustering_of_Static-Adaptive_2015_CVPR_paper.html,CVPR,2015,https://github.com/rafaelvareto/CMT-Tracker,0,1/2/2019
+Streaming Principal Component Analysis in Noisy Setting,http://proceedings.mlr.press/v80/marinov18a.html,ICML,2018,https://github.com/r3831/NPCA,0,1/2/2019
+Local and Global Optimization Techniques in Graph-Based Clustering,http://openaccess.thecvf.com/content_cvpr_2018/papers/Ikami_Local_and_Global_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/qiao-/thesis_GPU_parallel_EuclideanMST_Multiple_2or3-opt_moves_for_graph_minimization-,0,1/2/2019
+Lyapunov Functions for First-Order Methods: Tight Automated Convergence Guarantees,http://proceedings.mlr.press/v80/taylor18a.html,ICML,2018,https://github.com/QCGroup/quad-lyap-first-order,0,1/2/2019
+Consistent Robust Regression,http://papers.nips.cc/paper/6806-consistent-robust-regression.pdf,NIPS,2017,https://github.com/purushottamkar/rreg,0,1/2/2019
+What Will Happen Next? Forecasting Player Moves in Sports Videos,http://openaccess.thecvf.com/content_iccv_2017/html/Felsen_What_Will_Happen_ICCV_2017_paper.html,ICCV,2017,https://github.com/pulkitag/sports-forecasting,0,1/2/2019
+Nearly Optimal Robust Subspace Tracking,http://proceedings.mlr.press/v80/narayanamurthy18a.html,ICML,2018,https://github.com/praneethmurthy/NORST,0,1/2/2019
+Laplacian Coordinates for Seeded Image Segmentation,http://openaccess.thecvf.com/content_cvpr_2014/html/Casaca_Laplacian_Coordinates_for_2014_CVPR_paper.html,CVPR,2014,https://github.com/pianoza/seproject,0,1/2/2019
+Unsupervised Correlation Analysis,http://openaccess.thecvf.com/content_cvpr_2018/papers/Hoshen_Unsupervised_Correlation_Analysis_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/pgyrya/customer_segments,0,1/2/2019
+Learning Abstract Options,,NIPS,2018,https://github.com/petterasla/IECCS,0,1/2/2019
+Smooth Representation Clustering,http://openaccess.thecvf.com/content_cvpr_2014/html/Hu_Smooth_Representation_Clustering_2014_CVPR_paper.html,CVPR,2014,https://github.com/PennStateStatGen/WaveletBasedFunctionalCluster,0,1/2/2019
+Complexity-Adaptive Distance Metric for Object Proposals Generation,http://openaccess.thecvf.com/content_cvpr_2015/html/Xiao_Complexity-Adaptive_Distance_Metric_2015_CVPR_paper.html,CVPR,2015,https://github.com/peacefulxy/CADM,0,1/2/2019
+Policy Optimization as Wasserstein Gradient Flows,http://proceedings.mlr.press/v80/zhang18a.html,ICML,2018,https://github.com/paper-review/ICML2018,0,1/2/2019
+Structured Set Matching Networks for One-Shot Part Labeling,http://openaccess.thecvf.com/content_cvpr_2018/papers/Choi_Structured_Set_Matching_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Oushesh/Structured-Set-Matching-Networks-for-One-Shot-Part-Labeling-readme,0,1/2/2019
+Efficient First-Order Algorithms for Adaptive Signal Denoising,http://proceedings.mlr.press/v80/ostrovskii18a.html,ICML,2018,https://github.com/ostrodmit/AlgoRec,0,1/2/2019
+Best of Both Worlds: Human-Machine Collaboration for Object Annotation,http://openaccess.thecvf.com/content_cvpr_2015/html/Russakovsky_Best_of_Both_2015_CVPR_paper.html,CVPR,2015,https://github.com/orussakovsky/best-of-both-worlds,0,1/2/2019
+Best Response Regression,http://papers.nips.cc/paper/6748-best-response-regression.pdf,NIPS,2017,https://github.com/omerbp/Best-Response-Regression,0,1/2/2019
+Truncating Wide Networks Using Binary Tree Architectures,http://openaccess.thecvf.com/content_iccv_2017/html/Zhang_Truncating_Wide_Networks_ICCV_2017_paper.html,ICCV,2017,https://github.com/nutszebra/wide_networks_using_binary_tree,0,1/2/2019
+Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,http://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html,ICCV,2015,https://github.com/nutszebra/prelu_net,2,1/2/2019
+Unified Embedding and Metric Learning for Zero-Exemplar Event Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Hussein_Unified_Embedding_and_CVPR_2017_paper.html,CVPR,2017,https://github.com/noureldien/unified_embedding,0,1/2/2019
+Mapping Images to Scene Graphs with Permutation-Invariant Structured Prediction,,NIPS,2018,https://github.com/nips2018axiomatic/Mapping-Images-to-Scene-Graphs-master,2,1/2/2019
+Unsupervised Learning of Depth and Ego-Motion From Monocular Video Using 3D Geometric Constraints,http://openaccess.thecvf.com/content_cvpr_2018/papers/Mahjourian_Unsupervised_Learning_of_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/Nick36/unsupervised-learning-depth-ego-motion,0,1/2/2019
+Unsupervised Learning of Depth and Ego-Motion From Video,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhou_Unsupervised_Learning_of_CVPR_2017_paper.html,CVPR,2017,https://github.com/Nick36/unsupervised-learning-depth-ego-motion,0,1/2/2019
+Dynamic Time-Of-Flight,http://openaccess.thecvf.com/content_cvpr_2017/html/Schober_Dynamic_Time-Of-Flight_CVPR_2017_paper.html,CVPR,2017,https://github.com/neiljones12/Whackathon2016,0,1/2/2019
+Predict and Constrain: Modeling Cardinality in Deep Structured Prediction,http://proceedings.mlr.press/v80/brukhim18a.html,ICML,2018,https://github.com/Natalybr/predict_and_constrain,1,1/2/2019
+Propagated Image Filtering,http://openaccess.thecvf.com/content_cvpr_2015/html/Chang_Propagated_Image_Filtering_2015_CVPR_paper.html,CVPR,2015,https://github.com/NASA-Planetary-Science/SALTAD,0,1/2/2019
+Processing of missing data by neural networks,http://arxiv.org/abs/1805.07405v2,NIPS,2018,https://github.com/mzkhan2000/TypeNeuralModel,0,1/2/2019
+Comparator Networks,http://openaccess.thecvf.com/content_ECCV_2018/html/Weidi_Xie_Comparator_Networks_ECCV_2018_paper.html,ECCV,2018,https://github.com/Morwenn/comparator-networks,0,1/2/2019
+Linear Ranking Analysis,http://openaccess.thecvf.com/content_cvpr_2014/html/Deng_Linear_Ranking_Analysis_2014_CVPR_paper.html,CVPR,2014,https://github.com/MickyDowns/mine_ncaa_rankings,0,1/2/2019
+Relationship Proposal Networks,http://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Relationship_Proposal_Networks_CVPR_2017_paper.html,CVPR,2017,https://github.com/mdxedia/Awsome-Cash,1,1/2/2019
+Semi-supervised Spectral Clustering for Image Set Classification,http://openaccess.thecvf.com/content_cvpr_2014/html/Mahmood_Semi-supervised_Spectral_Clustering_2014_CVPR_paper.html,CVPR,2014,https://github.com/Masoud-Fatemi/Pattern-Recognition,0,1/2/2019
+A Generative Model of People in Clothing,http://openaccess.thecvf.com/content_iccv_2017/html/Lassner_A_Generative_Model_ICCV_2017_paper.html,ICCV,2017,https://github.com/Masaokb/ClothesNet_PyTorch,0,1/2/2019
+SWIFT: Sparse Withdrawal of Inliers in a First Trial,http://openaccess.thecvf.com/content_cvpr_2015/html/Jaberi_SWIFT_Sparse_Withdrawal_2015_CVPR_paper.html,CVPR,2015,https://github.com/mary-jab/SWIFT,0,1/2/2019
+Adaptive Clustering through Semidefinite Programming,http://papers.nips.cc/paper/6776-adaptive-clustering-through-semidefinite-programming.pdf,NIPS,2017,https://github.com/martinroyer/pecok,0,1/2/2019
+Scalable Bayesian Rule Lists,http://proceedings.mlr.press/v70/yang17h.html,ICML,2017,https://github.com/margoseltzer/homebrew-sbrlmod,0,1/2/2019
+Efficient Multiple Instance Metric Learning Using Weakly Supervised Data,http://openaccess.thecvf.com/content_cvpr_2017/html/Law_Efficient_Multiple_Instance_CVPR_2017_paper.html,CVPR,2017,https://github.com/MarcTLaw/MIMLCA,0,1/2/2019
+Variational Bayesian Multiple Instance Learning With Gaussian Processes,http://openaccess.thecvf.com/content_cvpr_2017/html/Haussmann_Variational_Bayesian_Multiple_CVPR_2017_paper.html,CVPR,2017,https://github.com/manuelhaussmann/vgpmil,0,1/2/2019
+Learning Deep Representation for Imbalanced Classification,http://openaccess.thecvf.com/content_cvpr_2016/html/Huang_Learning_Deep_Representation_CVPR_2016_paper.html,CVPR,2016,https://github.com/Makundi/Machine-Learning-IPT-ParrotAI,1,1/2/2019
+Distributed Clustering via LSH Based Data Partitioning,http://proceedings.mlr.press/v80/bhaskara18a.html,ICML,2018,https://github.com/maheshakya/DistClust_via_LSH_L2,0,1/2/2019
+Delayed Impact of Fair Machine Learning,http://proceedings.mlr.press/v80/liu18c.html,ICML,2018,https://github.com/lydiatliu/delayedimpact,2,1/2/2019
+A High-Quality Denoising Dataset for Smartphone Cameras,http://openaccess.thecvf.com/content_cvpr_2018/papers/Abdelhamed_A_High-Quality_Denoising_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/luhannan/mean-fusion-to-denoise-image,0,1/2/2019
+Structured Regression Gradient Boosting,http://openaccess.thecvf.com/content_cvpr_2016/html/Diego_Structured_Regression_Gradient_CVPR_2016_paper.html,CVPR,2016,https://github.com/LJohanna/Project_Python_SpeedDatingData,0,1/2/2019
+Data-Efficient Hierarchical Reinforcement Learning,,NIPS,2018,https://github.com/lizhuoru/aaai17,0,1/2/2019
+Open Category Detection with PAC Guarantees,http://proceedings.mlr.press/v80/liu18e.html,ICML,2018,https://github.com/liusi2019/ocd,1,1/2/2019
+Using Spatial Order to Boost the Elimination of Incorrect Feature Matches,http://openaccess.thecvf.com/content_cvpr_2016/html/Talker_Using_Spatial_Order_CVPR_2016_paper.html,CVPR,2016,https://github.com/liortalker/SpatialOrder,3,1/2/2019
+Efficient Sliding Window Computation for NN-Based Template Matching,http://openaccess.thecvf.com/content_ECCV_2018/html/Lior_Talker_Efficient_Sliding_Window_ECCV_2018_paper.html,ECCV,2018,https://github.com/liortalker/DIWU,2,1/2/2019
+"A Sharp Error Analysis for the Fused Lasso, with Application to Approximate Changepoint Screening",http://papers.nips.cc/paper/7264-a-sharp-error-analysis-for-the-fused-lasso-with-application-to-approximate-changepoint-screening.pdf,NIPS,2017,https://github.com/linnylin92/fused_lasso,0,1/2/2019
+Deep Learning Strong Parts for Pedestrian Detection,http://openaccess.thecvf.com/content_iccv_2015/html/Tian_Deep_Learning_Strong_ICCV_2015_paper.html,ICCV,2015,https://github.com/lijinxi1314/Deep_learning_strong_parts,0,1/2/2019
+Boosted Sparse and Low-Rank Tensor Regression,,NIPS,2018,https://github.com/LifangHe/SURF,1,1/2/2019
+Dual Supervised Learning,http://proceedings.mlr.press/v70/xia17a.html,ICML,2017,https://github.com/LifangHe/SDM14_DuSK,0,1/2/2019
+Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior,,NIPS,2018,https://github.com/Learning-and-Intelligent-Systems/meta-bo,0,1/2/2019
+Understanding Classifier Errors by Examining Influential Neighbors,http://openaccess.thecvf.com/content_cvpr_2015/html/Kabra_Understanding_Classifier_Errors_2015_CVPR_paper.html,CVPR,2015,https://github.com/kristinbranson/InfluentialNeighbors,0,1/2/2019
+Co-Occurrence Filter,http://openaccess.thecvf.com/content_cvpr_2017/html/Jevnisek_Co-Occurrence_Filter_CVPR_2017_paper.html,CVPR,2017,https://github.com/kobybibas/CoOccurrenceFilter,0,1/2/2019
+Learning to Assign Orientations to Feature Points,http://openaccess.thecvf.com/content_cvpr_2016/html/Yi_Learning_to_Assign_CVPR_2016_paper.html,CVPR,2016,https://github.com/kmyid/benchmark-orientation,0,1/2/2019
+Multi-Instance Object Segmentation With Occlusion Handling,http://openaccess.thecvf.com/content_cvpr_2015/html/Chen_Multi-Instance_Object_Segmentation_2015_CVPR_paper.html,CVPR,2015,https://github.com/kasertim/ObjectSegmentationOcclusionHandling,0,1/2/2019
+Leveraging Motion Priors in Videos for Improving Human Segmentation,http://openaccess.thecvf.com/content_ECCV_2018/html/Yu-Ting_Chen_Leveraging_Motion_Priors_ECCV_2018_paper.html,ECCV,2018,https://github.com/Jwy-Leo/Leveraging-Motion-Priors-in-Videos-for-Improving-Human-Segmentation,0,1/2/2019
+What Is Around the Camera?,http://openaccess.thecvf.com/content_iccv_2017/html/Georgoulis_What_Is_Around_ICCV_2017_paper.html,ICCV,2017,https://github.com/julianchow/LocationTesting,0,1/2/2019
+Local Convergence Properties of SAGA/Prox-SVRG and Acceleration,http://proceedings.mlr.press/v80/poon18a.html,ICML,2018,https://github.com/jliang993/Local-VRSGD,0,1/2/2019
+Generation and Comprehension of Unambiguous Object Descriptions,http://openaccess.thecvf.com/content_cvpr_2016/html/Mao_Generation_and_Comprehension_CVPR_2016_paper.html,CVPR,2016,https://github.com/jeetp465/Unambiguous-Object-Description,0,1/2/2019
+Large-Scale Stochastic Sampling from the Probability Simplex,http://arxiv.org/abs/1806.07137v1,NIPS,2018,https://github.com/jbaker92/SCIR,1,1/2/2019
+On the Solvability of Viewing Graphs,http://openaccess.thecvf.com/content_ECCV_2018/html/Matthew_Trager_On_the_Solvability_ECCV_2018_paper.html,ECCV,2018,https://github.com/ismummy/Train-Tracker,0,1/2/2019
+Learning Region Features for Object Detection,http://openaccess.thecvf.com/content_ECCV_2018/html/Jiayuan_Gu_Learning_Region_Features_ECCV_2018_paper.html,ECCV,2018,https://github.com/ironmanmark23/opencv_project1,0,1/2/2019
+RGB-Infrared Cross-Modality Person Re-Identification,http://openaccess.thecvf.com/content_iccv_2017/html/Wu_RGB-Infrared_Cross-Modality_Person_ICCV_2017_paper.html,ICCV,2017,https://github.com/InnovArul/rgb_IR_personreid,2,1/2/2019
+Composable Planning with Attributes,http://proceedings.mlr.press/v80/zhang18k.html,ICML,2018,https://github.com/infocampuspvtin/-Web-Designing-training-bangalore,0,1/2/2019
+Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning,http://arxiv.org/abs/1807.03146v1,NIPS,2018,https://github.com/ihankyang/keypoint-network,0,1/2/2019
+Single Image 3D Without a Single 3D Image,http://openaccess.thecvf.com/content_iccv_2015/html/Fouhey_Single_Image_3D_ICCV_2015_paper.html,ICCV,2015,https://github.com/ihankyang/keypoint-network,0,1/2/2019
+Neural Voice Cloning with a Few Samples,http://arxiv.org/abs/1802.06006v2,NIPS,2018,https://github.com/IEEE-NITK/Neural-Voice-Cloning,0,1/2/2019
+ATOMO: Communication-efficient Learning via Atomic Sparsification,http://arxiv.org/abs/1806.04090v2,NIPS,2018,https://github.com/hwang595/ATOMO,1,1/2/2019
+Designing Illuminant Spectral Power Distributions for Surface Classification,http://openaccess.thecvf.com/content_cvpr_2017/html/Blasinski_Designing_Illuminant_Spectral_CVPR_2017_paper.html,CVPR,2017,https://github.com/hblasins/optIll,0,1/2/2019
+Enhancing the Spatial Resolution of Stereo Images Using a Parallax Prior,http://openaccess.thecvf.com/content_cvpr_2018/papers/Jeon_Enhancing_the_Spatial_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/hassanisaadi/stereoSR_tf,0,1/2/2019
+Variance Regularized Counterfactual Risk Minimization via Variational Divergence Minimization,http://proceedings.mlr.press/v80/wu18g.html,ICML,2018,https://github.com/hang-wu/VRCRM,0,1/2/2019
+Learning to Estimate 3D Hand Pose From Single RGB Images,http://openaccess.thecvf.com/content_iccv_2017/html/Zimmermann_Learning_to_Estimate_ICCV_2017_paper.html,ICCV,2017,https://github.com/hamaskhan/Hand3dRHD,0,1/2/2019
+CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images,http://openaccess.thecvf.com/content_ECCV_2018/html/Sheng_Guo_CurriculumNet_Learning_from_ECCV_2018_paper.html,ECCV,2018,https://github.com/guoshengcv/CurriculumNet,2,1/2/2019
+A Simple Multi-Class Boosting Framework with Theoretical Guarantees and Empirical Proficiency,http://proceedings.mlr.press/v70/appel17a.html,ICML,2017,https://github.com/GuillaumeCollin/A-Simple-Multi-Class-Boosting-Framework-with-Theoretical-Guarantees-and-Empirical-Proficiency,0,1/2/2019
+Algebraic Variety Models for High-Rank Matrix Completion,http://proceedings.mlr.press/v70/ongie17a.html,ICML,2017,https://github.com/gregongie/vmc,0,1/2/2019
+Dynamic Few-Shot Visual Learning Without Forgetting,http://openaccess.thecvf.com/content_cvpr_2018/papers/Gidaris_Dynamic_Few-Shot_Visual_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/greentfrapp/few-shot-without-forgetting-tensorflow,1,1/2/2019
+Supervised Local Modeling for Interpretability,http://arxiv.org/abs/1807.02910v1,NIPS,2018,https://github.com/GDPlumb/SLIM,0,1/2/2019
+Multimodal Visual Concept Learning With Weakly Supervised Techniques,http://openaccess.thecvf.com/content_cvpr_2018/papers/Bouritsas_Multimodal_Visual_Concept_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/gbouritsas/cvpr18_multimodal_weakly_supervised_learning,0,1/2/2019
+Bayesian Adversarial Learning,,NIPS,2018,https://github.com/GaganNarula/BirdsongGAN_sequencelearning,0,1/2/2019
+Structured Indoor Modeling,http://openaccess.thecvf.com/content_iccv_2015/html/Ikehata_Structured_Indoor_Modeling_ICCV_2015_paper.html,ICCV,2015,https://github.com/furukawa00000/2015_structured_indoor_modeling,0,1/2/2019
+Actions and Attributes From Wholes and Parts,http://openaccess.thecvf.com/content_iccv_2015/html/Gkioxari_Actions_and_Attributes_ICCV_2015_paper.html,ICCV,2015,https://github.com/frankmalcolmkembery/GNU-GENERAL-PUBLIC-LICENSE-Version-3-29-June-2007-Copy,0,1/2/2019
+Verisimilar Image Synthesis for Accurate Detection and Recognition of Texts in Scenes,http://openaccess.thecvf.com/content_ECCV_2018/html/Fangneng_Zhan_Verisimilar_Image_Synthesis_ECCV_2018_paper.html,ECCV,2018,https://github.com/fnzhan/Verisimilar-Image-Synthesis-for-Accurate-Detection-and-Recognition-of-Texts-in-Scenes,24,1/2/2019
+Human Pose Estimation in Videos,http://openaccess.thecvf.com/content_iccv_2015/html/Zhang_Human_Pose_Estimation_ICCV_2015_paper.html,ICCV,2015,https://github.com/FJR-Nancy/TS-LSTM,0,1/2/2019
+Maximum Persistency via Iterative Relaxed Inference With Graphical Models,http://openaccess.thecvf.com/content_cvpr_2015/html/Shekhovtsov_Maximum_Persistency_via_2015_CVPR_paper.html,CVPR,2015,https://github.com/fgrsnau/part_opt,0,1/2/2019
+Density Adaptive Point Set Registration,http://openaccess.thecvf.com/content_cvpr_2018/papers/Lawin_Density_Adaptive_Point_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/felja633/DARE,9,1/2/2019
+Scale-Aware Face Detection,http://openaccess.thecvf.com/content_cvpr_2017/html/Hao_Scale-Aware_Face_Detection_CVPR_2017_paper.html,CVPR,2017,https://github.com/eugenelet/Scale-Aware-Face-Detection,0,1/2/2019
+Hamiltonian Variational Auto-Encoder,,NIPS,2018,https://github.com/ericZYZ/HVI-RMHVI-for-VAE,0,1/2/2019
+Adaptive Sampling Probabilities for Non-Smooth Optimization,http://proceedings.mlr.press/v70/namkoong17a.html,ICML,2017,https://github.com/duchi-lab/adaptive-sampling-descent,2,1/2/2019
+Extending Layered Models to 3D Motion,http://openaccess.thecvf.com/content_ECCV_2018/html/Dong_Lao_Extending_Layered_Models_ECCV_2018_paper.html,ECCV,2018,https://github.com/donglao/layers3Dmotion,0,1/2/2019
+Forest-type Regression with General Losses and Robust Forest,http://proceedings.mlr.press/v70/li17e.html,ICML,2017,https://github.com/dma092/Forest-type-Regression-with-General-Losses-and-Robust-Forest-an-implementation,0,1/2/2019
+Beyond the Pixel-Wise Loss for Topology-Aware Delineation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Mosinska_Beyond_the_Pixel-Wise_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/dingmyu/Pytorch-Topology-Aware-Delineation,0,1/2/2019
+The Stitched Puppet: A Graphical Model of 3D Human Shape and Pose,http://openaccess.thecvf.com/content_cvpr_2015/html/Zuffi_The_Stitched_Puppet_2015_CVPR_paper.html,CVPR,2015,https://github.com/despicableMinions/stitched-puppet,0,1/2/2019
+"Cut, Glue & Cut: A Fast, Approximate Solver for Multicut Partitioning",http://openaccess.thecvf.com/content_cvpr_2014/html/Beier_Cut_Glue__2014_CVPR_paper.html,CVPR,2014,https://github.com/danoan/GCCS,0,1/2/2019
+Effective Face Frontalization in Unconstrained Images,http://openaccess.thecvf.com/content_cvpr_2015/html/Hassner_Effective_Face_Frontalization_2015_CVPR_paper.html,CVPR,2015,https://github.com/daemonlair/face-frontalization,0,1/2/2019
+Light Field Intrinsics With a Deep Encoder-Decoder Network,http://openaccess.thecvf.com/content_cvpr_2018/papers/Alperovich_Light_Field_Intrinsics_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/cvia-kn/lf_autoencoder_cvpr2018_code,0,1/2/2019
+Reconfiguring the Imaging Pipeline for Computer Vision,http://openaccess.thecvf.com/content_iccv_2017/html/Buckler_Reconfiguring_the_Imaging_ICCV_2017_paper.html,ICCV,2017,https://github.com/cucapra/vision-plots,0,1/2/2019
+A Holistic Approach to Cross-Channel Image Noise Modeling and Its Application to Image Denoising,http://openaccess.thecvf.com/content_cvpr_2016/html/Nam_A_Holistic_Approach_CVPR_2016_paper.html,CVPR,2016,https://github.com/csjunxu/ccnoise_code_CVPR2016,0,1/2/2019
+A Fast and Scalable Joint Estimator for Integrating Additional Knowledge in Learning Multiple Related Sparse Gaussian Graphical Models,http://proceedings.mlr.press/v80/wang18f.html,ICML,2018,https://github.com/cran/jeek,0,1/2/2019
+Latent Feature Lasso,http://proceedings.mlr.press/v70/yen17a.html,ICML,2017,https://github.com/cran/FLLat,0,1/2/2019
+Bayesian Nonparametric Spectral Estimation,,NIPS,2018,https://github.com/cran/bsplinePsd,0,1/2/2019
+A Linear Generalized Camera Calibration From Three Intersecting Reference Planes,http://openaccess.thecvf.com/content_iccv_2015/html/Nishimura_A_Linear_Generalized_ICCV_2015_paper.html,ICCV,2015,https://github.com/computer-vision/iccv2015,0,1/2/2019
+A Linear Extrinsic Calibration of Kaleidoscopic Imaging System From Single 3D Point,http://openaccess.thecvf.com/content_cvpr_2017/html/Takahashi_A_Linear_Extrinsic_CVPR_2017_paper.html,CVPR,2017,https://github.com/computer-vision/cvpr2017,0,1/2/2019
+ML-MG: Multi-Label Learning With Missing Labels Using a Mixed Graph,http://openaccess.thecvf.com/content_iccv_2015/html/Wu_ML-MG_Multi-Label_Learning_ICCV_2015_paper.html,ICCV,2015,https://github.com/CoderZWei/Multi-label,0,1/2/2019
+Extreme Learning to Rank via Low Rank Assumption,http://proceedings.mlr.press/v80/cheng18a.html,ICML,2018,https://github.com/cmhcbb/Extreme-learning-to-rank-via-low-rank-assumption,0,1/2/2019
+Hierarchical Recurrent Neural Network for Skeleton Based Action Recognition,http://openaccess.thecvf.com/content_cvpr_2015/html/Du_Hierarchical_Recurrent_Neural_2015_CVPR_paper.html,CVPR,2015,https://github.com/chrisjkim/hierarchical-recurrent-neural-network-for-skeleton-based-action-recognition,0,1/2/2019
+A Stable Multi-Scale Kernel for Topological Machine Learning,http://openaccess.thecvf.com/content_cvpr_2015/html/Reininghaus_A_Stable_Multi-Scale_2015_CVPR_paper.html,CVPR,2015,https://github.com/chocojoX/Kernel_for_TDAML,0,1/2/2019
+Fine-Grained Recognition Without Part Annotations,http://openaccess.thecvf.com/content_cvpr_2015/html/Krause_Fine-Grained_Recognition_Without_2015_CVPR_paper.html,CVPR,2015,https://github.com/chenlongcv/OVSNet,0,1/2/2019
+What are You Talking About? Text-to-Image Coreference,http://openaccess.thecvf.com/content_cvpr_2014/html/Kong_What_are_You_2014_CVPR_paper.html,CVPR,2014,https://github.com/chagge/sentences3D,0,1/2/2019
+Cross-View Image Matching for Geo-Localization in Urban Environments,http://openaccess.thecvf.com/content_cvpr_2017/html/Tian_Cross-View_Image_Matching_CVPR_2017_paper.html,CVPR,2017,https://github.com/cc1164/Cross-View-Image-Matching-for-Geo-localization-in-Urban-Environments,0,1/2/2019
+Deep Shape Matching,http://openaccess.thecvf.com/content_ECCV_2018/html/Filip_Radenovic_Deep_Shape_Matching_ECCV_2018_paper.html,ECCV,2018,https://github.com/CaramelYo/shape_matching_with_deep_learning,0,1/2/2019
+Seeing the Arrow of Time,http://openaccess.thecvf.com/content_cvpr_2014/html/Pickup_Seeing_the_Arrow_2014_CVPR_paper.html,CVPR,2014,https://github.com/BoeingX/seeing-the-arrow-of-time,0,1/2/2019
+Aggressive Sampling for Multi-class to Binary Reduction with Applications to Text Classification,http://papers.nips.cc/paper/7004-aggressive-sampling-for-multi-class-to-binary-reduction-with-applications-to-text-classification.pdf,NIPS,2017,https://github.com/bikash617/Aggressive-Sampling-for-Multi-class-to-BinaryReduction,0,1/2/2019
+An Analysis of Visual Question Answering Algorithms,http://openaccess.thecvf.com/content_iccv_2017/html/Kafle_An_Analysis_of_ICCV_2017_paper.html,ICCV,2017,https://github.com/bigman911/Project,0,1/2/2019
+A Boo(n) for Evaluating Architecture Performance,http://proceedings.mlr.press/v80/bajgar18a.html,ICML,2018,https://github.com/bajgar/Boon,0,1/2/2019
+Deep Reinforcement Learning-Based Image Captioning With Embedding Reward,http://openaccess.thecvf.com/content_cvpr_2017/html/Ren_Deep_Reinforcement_Learning-Based_CVPR_2017_paper.html,CVPR,2017,https://github.com/B3-348/DRL-based-Image-Captioning-with-Embedding-Reward,0,1/2/2019
+Interval Tracker: Tracking by Interval Analysis,http://openaccess.thecvf.com/content_cvpr_2014/html/Kwon_Interval_Tracker_Tracking_2014_CVPR_paper.html,CVPR,2014,https://github.com/atanu1982/Major-HIPAA-Survival-Guide,0,1/2/2019
+Webly Supervised Semantic Segmentation,http://openaccess.thecvf.com/content_cvpr_2017/html/Jin_Webly_Supervised_Semantic_CVPR_2017_paper.html,CVPR,2017,https://github.com/ascust/WSS,0,1/2/2019
+Image to Image Translation for Domain Adaptation,http://openaccess.thecvf.com/content_cvpr_2018/papers/Murez_Image_to_Image_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/artix41/ai-week-talk,0,1/2/2019
+Using Object Information for Spotting Text,http://openaccess.thecvf.com/content_ECCV_2018/html/Shitala_Prasad_Using_Object_Information_ECCV_2018_paper.html,ECCV,2018,https://github.com/arjun1237/Inheritance---Java,0,1/2/2019
+A Universal Analysis of Large-Scale Regularized Least Squares Solutions,http://papers.nips.cc/paper/6930-a-universal-analysis-of-large-scale-regularized-least-squares-solutions.pdf,NIPS,2017,https://github.com/apanahi/NIPS_Paper_1937,0,1/2/2019
+Fast Light Field Reconstruction With Deep Coarse-To-Fine Modeling of Spatial-Angular Clues,http://openaccess.thecvf.com/content_ECCV_2018/html/Henry_W._F._Yeung_Fast_Light_Field_ECCV_2018_paper.html,ECCV,2018,https://github.com/angularsr/LightFieldAngularSR,2,1/2/2019
+A Dataset for Movie Description,http://openaccess.thecvf.com/content_cvpr_2015/html/Rohrbach_A_Dataset_for_2015_CVPR_paper.html,CVPR,2015,https://github.com/aminanima/MovieProject,0,1/2/2019
+Feature Generating Networks for Zero-Shot Learning,http://openaccess.thecvf.com/content_cvpr_2018/papers/Xian_Feature_Generating_Networks_CVPR_2018_paper.pdf,CVPR,2018,https://github.com/akku1506/Feature-Generating-Networks-for-ZSL,3,1/2/2019
+AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning,http://proceedings.mlr.press/v80/alaa18b.html,ICML,2018,https://github.com/ahmedmalaa/AutoPrognosis,0,1/2/2019
+Accelerated Spectral Ranking,http://proceedings.mlr.press/v80/agarwal18b.html,ICML,2018,https://github.com/agarpit/asr,0,1/2/2019
+Active Learning for Top-$K$ Rank Aggregation from Noisy Comparisons,http://proceedings.mlr.press/v70/mohajer17a.html,ICML,2017,https://github.com/a-elmahdy/Active-Learning-from-Noisy-Comparisons,0,1/2/2019
+CryptoKnight: Generating and Modelling Compiled Cryptographic Primitives,https://www.mdpi.com/2078-2489/9/9/231,NAN,2018,https://github.com/AbertayMachineLearningGroup/CryptoKnight,13,1/2/2019
+"Detection, localisation and tracking of pallets using machine learning techniques and 2D range data",https://arxiv.org/abs/1803.11254,NCAA,2018,https://github.com/EmaroLab/PDT,5,1/2/2019
+How the Quality of Call Detail Records Influences the Detection of Commuting Trips,https://link.springer.com/chapter/10.1007/978-3-030-30241-2_54,EPIA19,2019,https://github.com/joelpires/CDRsDataAnalysis,0,1/16/2020
+Very Long Natural Scenery Image Prediction by Outpainting,https://arxiv.org/pdf/1912.12688v1.pdf,ICCV,2019,https://github.com/z-x-yang/NS-Outpainting,22,1/3/2020
+Inferring Commuting Routes and Transportation Modes from Call Detail Records,https://1drv.ms/b/s!Ap6B8pGCJqB6hogwlsUKNaJJRkCJlg?e=m4GFWp,TRA2020,2020,https://github.com/joelpires/CDRsDataAnalysis,0,1/3/2020
+Restricting the Flow: Information Bottlenecks for Attribution,https://arxiv.org/pdf/2001.00396v1.pdf,ICLR,2020,https://github.com/attribution-bottleneck/attribution-bottleneck-pytorch,20,1/3/2020