Skip to content
Open

Main #24

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
133 changes: 127 additions & 6 deletions notebook/problems.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -24,12 +24,107 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 9,
"id": "34720ab6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"La media de los elementos con distribución normal es: -0.02575701913475372\n",
"La media de los elementos con distribución chi-cuadrado es: 3.1341815977631926\n",
"La mediana de los elementos con distribución normal es: 0.06711738230446523\n",
"La mediana de los elementos con distribución chi-cuadrado es: 2.264034231107231\n",
"La moda de los elementos con distribución normal es: 0.1504587572000871\n",
"La moda de los elementos con distribución chi-cuadrado es: 2.158281311033611\n",
"El rango de los elementos con distribución normal es: 5.282970897189165\n",
"El rango de los elementos con distribución chi-cuadrado es: 9.345939537979136\n",
"La varianza de los elementos con distribución normal es: 1.0575524438121537\n",
"La varianza de los elementos con distribución chi-cuadrado es: 6.242600009195317\n",
"La desviación típica de los elementos con distribución normal es: 1.028373688798072\n",
"La desviación típica de los elementos con distribución chi-cuadrado es: 2.4985195635006177\n",
"La oblicuidad de los elementos con distribución normal es: -0.6331162644708517\n",
"La oblicuidad de los elementos con distribución chi-cuadrado es: 0.9909054595855211\n",
"La curtosis de los elementos con distribución normal es: 0.5208785728358238\n",
"La curtosis de los elementos con distribución chi-cuadrado es: -0.10824014999966147\n"
]
}
],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "c8390ef8",
"metadata": {},
"outputs": [],
"source": [
"# TODO"
"# TODO\n",
"import numpy as np \n",
"normal = np.random.normal(size=100)\n",
"chicua= np.random.chisquare(3,100)\n",
"\n",
"import statistics as stats\n",
"\n",
"#Media \n",
"media_normal = stats.mean(normal)\n",
"media_chi = stats.mean(chicua)\n",
"\n",
"print(f\"La media de los elementos con distribución normal es: {media_normal}\")\n",
"print(f\"La media de los elementos con distribución chi-cuadrado es: {media_chi}\")\n",
"\n",
"#Mediana\n",
"mediana_normal = stats.median(normal)\n",
"mediana_chi = stats.median(chicua)\n",
"\n",
"print(f\"La mediana de los elementos con distribución normal es: {mediana_normal}\")\n",
"print(f\"La mediana de los elementos con distribución chi-cuadrado es: {mediana_chi}\")\n",
"\n",
"#Moda \n",
"moda_normal = stats.mode(normal)\n",
"moda_chi = stats.mode(chicua)\n",
"\n",
"print(f\"La moda de los elementos con distribución normal es: {moda_normal}\")\n",
"print(f\"La moda de los elementos con distribución chi-cuadrado es: {moda_chi}\")\n",
"\n",
"#Rango\n",
"rango_normal = max(normal) - min(normal)\n",
"rango_chi = max(chicua) - min(chicua)\n",
"\n",
"print(f\"El rango de los elementos con distribución normal es: {rango_normal}\")\n",
"print(f\"El rango de los elementos con distribución chi-cuadrado es: {rango_chi}\")\n",
"\n",
"#Varianza \n",
"var_normal = stats.variance(normal)\n",
"var_chi = stats.variance(chicua)\n",
"\n",
"print(f\"La varianza de los elementos con distribución normal es: {var_normal}\")\n",
"print(f\"La varianza de los elementos con distribución chi-cuadrado es: {var_chi}\")\n",
"\n",
"#Desviación típica \n",
"dt_normal = stats.stdev(normal)\n",
"dt_chi = stats.stdev(chicua)\n",
"\n",
"print(f\"La desviación típica de los elementos con distribución normal es: {dt_normal}\")\n",
"print(f\"La desviación típica de los elementos con distribución chi-cuadrado es: {dt_chi}\")\n",
"\n",
"#Oblicuidad \n",
"from scipy.stats import skew\n",
"sk_normal = skew(normal)\n",
"sk_chi = skew(chicua)\n",
"\n",
"print(f\"La oblicuidad de los elementos con distribución normal es: {sk_normal}\")\n",
"print(f\"La oblicuidad de los elementos con distribución chi-cuadrado es: {sk_chi}\")\n",
"\n",
"#Curtosis\n",
"from scipy.stats import kurtosis\n",
"kur_normal = kurtosis(normal)\n",
"kur_chi = kurtosis(chicua)\n",
"\n",
"print(f\"La curtosis de los elementos con distribución normal es: {kur_normal}\")\n",
"print(f\"La curtosis de los elementos con distribución chi-cuadrado es: {kur_chi}\")\n",
"\n"
]
},
{
Expand All @@ -48,12 +143,38 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 20,
"id": "d590308e",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"La desviación estándar es: 2.0\n"
]
}
],
"source": [
"# TODO"
"# TODO\n",
"\n",
"data = [4,2,5,8,6]\n",
"N=len(data)\n",
"import statistics as stats\n",
"\n",
"media = stats.mean(data)\n",
"\n",
"def st_dev(lista):\n",
" suma = 0\n",
" for i in lista:\n",
" suma +=(i-media)**2 \n",
" varianza = suma / N\n",
" desviacion = varianza **0.5\n",
" return desviacion\n",
"\n",
"\n",
"\n",
"print(f\"La desviación estándar es: {st_dev(data)}\")"
]
}
],
Expand All @@ -76,7 +197,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.12.4"
}
},
"nbformat": 4,
Expand Down
20 changes: 10 additions & 10 deletions notebook/solutions.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
},
{
"cell_type": "code",
"execution_count": 19,
"execution_count": 2,
"id": "34720ab6",
"metadata": {},
"outputs": [
Expand Down Expand Up @@ -93,7 +93,7 @@
},
{
"cell_type": "code",
"execution_count": 20,
"execution_count": 3,
"id": "75ec280a",
"metadata": {},
"outputs": [
Expand Down Expand Up @@ -123,7 +123,7 @@
},
{
"cell_type": "code",
"execution_count": 21,
"execution_count": 4,
"id": "d7644384",
"metadata": {},
"outputs": [
Expand Down Expand Up @@ -153,7 +153,7 @@
},
{
"cell_type": "code",
"execution_count": 22,
"execution_count": 5,
"id": "3e8f1c6f",
"metadata": {},
"outputs": [
Expand Down Expand Up @@ -189,7 +189,7 @@
},
{
"cell_type": "code",
"execution_count": 23,
"execution_count": 6,
"id": "2f31b2e1",
"metadata": {},
"outputs": [
Expand Down Expand Up @@ -219,7 +219,7 @@
},
{
"cell_type": "code",
"execution_count": 24,
"execution_count": 7,
"id": "a8b51d2f",
"metadata": {},
"outputs": [
Expand Down Expand Up @@ -254,7 +254,7 @@
},
{
"cell_type": "code",
"execution_count": 25,
"execution_count": 8,
"id": "2b42a0af",
"metadata": {},
"outputs": [
Expand Down Expand Up @@ -287,7 +287,7 @@
},
{
"cell_type": "code",
"execution_count": 26,
"execution_count": 9,
"id": "968348dd",
"metadata": {},
"outputs": [
Expand Down Expand Up @@ -331,7 +331,7 @@
},
{
"cell_type": "code",
"execution_count": 27,
"execution_count": 10,
"id": "d590308e",
"metadata": {},
"outputs": [
Expand Down Expand Up @@ -402,7 +402,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
"version": "3.12.4"
}
},
"nbformat": 4,
Expand Down