Skip to content

This project aims to analyze visual data about the history of social conflict in Indonesia from 1989 to 2023, and then this project analyzes several other social conflicts in regions in Indonesia.

Notifications You must be signed in to change notification settings

Alammahadika/dataconflictindonesia

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

57 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SOCIAL CONFLICT'S IN INDONESIA

From R-Studio, this project tries to do a new innovation analysis of social conflict in Indonesia, collecting conflict data from The Humanitarian Data Exchange and Data World Bank, and this project also explains a little about social conflict in Indonesia by region. I hope this data becomes an open source for peoples.

Affected Kills Social Conflict in Indonesia 1989-2023

Read Data Base & Manipulation Data

dataconflictindonesia <-read.table("/Users/mymac/Desktop/Data Github/data_conflict", sep = ",", header = FALSE)
colnames(dataconflictindonesia) <-c("Years", "Province", "Affected")
View(dataconflictindonesia)
print(dataconflictindonesia)

library(tidyr)
dataconflictindonesia <- dataconflictindonesia %>% arrange(Years) #sort data to years
View(dataconflictindonesia)

library(writexl)
write_xlsx(dataconflictindonesia, "dataconflictindonesia.xlsx") # Import Data set to xlsx Excel
getwd()

library(readxl)
datasocialconflictidn <- read_excel("~/Desktop/Data Github/datasocialconflictidn.xlsx")
View(datasocialconflictidn) # manipulation data from 1887 to 68 with excel

library(knitr)
datasocialconflictidnmarkdown <-kable(datasocialconflictidn, format = "markdown") 
print(datasocialconflictidnmarkdown)
Years Affected
1989 7
1990 200
1991 429
1992 53
1993 27
1994 12
1995 65
1996 36
1997 441
1998 141
1999 2421
2000 917
2001 884
2002 726
2003 1069
2004 1082
2005 242
2006 13
2007 2
2008 6
2009 0
2010 0
2011 9
2012 1
2013 20
2014 12
2015 4
2016 0
2017 2
2018 32
2019 16
2020 24
2021 68
2022 64
2023 89

Death Toll Social Conflict in Indonesia 1989-2023

ggplot(datasocialconflictidn, aes(x = Years, y = Affected)) +
  geom_line(size = 1, alpha = 0.8, color = "black") +
  geom_point(size = 1) +
#shaded for conflict
  annotate("rect", xmin = 1991, xmax = 1996, ymin = 0, ymax = Inf, fill = "red", alpha = 0.3, color = "darkred") +
  annotate("rect", xmin = 1997, xmax = 1998, ymin = 0, ymax = Inf, fill = "blue", alpha = 0.3, color = "darkblue") +
  annotate("rect", xmin = 1999, xmax = 2000, ymin = 0, ymax = Inf, fill = "green", alpha = 0.3, color ="darkgreen") +
  annotate("rect", xmin = 2001, xmax = 2002, ymin = 0, ymax = Inf, fill = "grey", alpha = 0.3, color = "darkgrey") +
  annotate("rect", xmin = 2003, xmax = 2005, ymin = 0, ymax = Inf, fill = "yellow", alpha = 0.3, color = "darkgoldenrod") +
  # add text for conflict
  annotate("text", x = 1991.5, y = max(datasocialconflictidn$Affected) -500,
           label = "Conflict Timor-Timur", color = "black", angle = 90, fontface = "bold") +
  annotate("text", x = 1997.5, y = max(datasocialconflictidn$Affected) -1000,
           label = "Conflict West Kalimantan & Irian Jaya", color = "black", angle = 90, fontface = "bold") +
  annotate("text", x = 1999.5, y = max(datasocialconflictidn$Affected) -1500,
           label = "Conflict Timor-Timor & Maluku", color = "black", angle = 90, fontface = "bold") +
  annotate("text", x = 2001.5, y = max(datasocialconflictidn$Affected) -2000,
           label = "Conflict Sampit & Bali", color = "black", angle = 90, fontface = "bold") +
  annotate("text", x = 2003.5, y = max(datasocialconflictidn$Affected) -2200,
           label = "Conflict Aceh", color = "black", angle = 90, fontface = "bold") +
  theme_bw() +
  scale_x_continuous(breaks = seq(1898, 2023, by = 1)) +
  labs(x = "Years", y = NULL, 
       title = "Death Toll Social Conflict (Affected Kills) in Indonesia 1989-2023",
       subtitle = "Source: Humanitarian Data Exchange") +
  theme(plot.title = element_text(face = "bold"))

Indonesia Conflict Social

Death Toll of Social Conflict in Indonesia

The graph above shows the number of first fatalities from 1999 to 2001 the highest number of fatalities in the East Timor and Maluku conflicts, showing a range of 2500 victims in this period. Then from 2004 - 2005 there was a significant increase in the Aceh conflict with the number of victims above 500. After 2005, the graph shows a decrease in the number of victims of the conflict during this period. Social conflict in Indonesia is low, and the number of fatalities is very low due to social conditions.

This section tries to analyze the database of the 2014 National Violence Monitoring System, I will make innovations in data analysis, collecting databases on information on acts of violence between individuals or groups that have psychological impacts. The total observation data collected amounted to 28046 data case and 100 variable. This section only analyzes variables Affiliation involved in conflict and violence & Number of fatalities.

Data Bese & Data Manipulation

library(haven)
datasnpk <- read_sav("/Users/mymac/Desktop/Data Github/datasnpk2015.sav")

library(writexl) # import to 
write_xlsx(datasnpk, "datasnpk2014.xlsx")
getwd()

library(readxl)
datasnpk2014 <- read_excel("~/Desktop/Data Github/datasnpk2014.xlsx")
datasnpk2014$tanggal_kejadian <- as.Date(datasnpk2014$tanggal_kejadian, format = "%d/%m/%Y")

print(datasnpk2014) # view data

# import data set & subset data from spnk2014
library(readxl)
totalactors <- read_excel("~/Desktop/Data Github/totalactors.xlsx")
View(totalactors) 

# (1) Unclear                      : 6652
# (2) Others                       : 70
# (3) Militia                      : 18
# (4) Society                      : 13238
# (5) Affiliation with Government  : 973
# (6) Selected Institution         : 13
# (7) NGOs International           : 0
# (8) NGOs Local                   : 16
# (9) Private Sector               : 2858
# (10) Political Party             : 215
# (11) Religion Institution        : 26
# (12) Labor                       : 25
# (13) Mass Group                  : 96
# (14) Army                        : 126
# (15) Police                      : 2062
# (16) Police Brimob               : 49
# (17) Separatism                  : 38
# (18) Student                     : 1559
# (19) Security                    : 13

Affiates Involved in Conflict and Violance in Indonesia 2014

library(treemap)
library(treemapify)
library(ggplot2)
library(viridis)


ggplot(totalactors, aes(area = Total, fill = Actors, label = Actors)) +
  geom_treemap() +
  geom_treemap_text(colour = "yellow3", place = "centre", grow = FALSE, size = 15) +
  scale_fill_viridis_d(option = "magma") +
  labs(title = "Affiliates Involved in Conflict and Violence in Indonesia 2014") +
  theme(legend.background = "none",
        plot.background = element_rect(fill = "black"),
        panel.background = element_rect(fill = "black"),
        plot.title = element_text(color = "white")) +
  theme(plot.title = element_text(face = "bold")) +
  theme_classic()

Indonesia Conflict Social

Interpretation Affiliation Involved Social Conflict in Indonesia 2014

The interpretation tree map is very simple, we can now make a conclusion, having two dominant actors, the first such as “Community”, “Police”, and “Private Sector” which shows the dominance of conflict and violence in the analysis data. Because they are in a larger box area than the other actors. The second smaller actor such as “Affiliation with government” and “Political Party” in less area, they show relatively smaller to larger involvement.

Data Death Toll Social Conflict Indonesia in 2014 (REVISION OR OPTIONAL)

Read Data Base

data base did manipulation in sub Affiates Involved in Conflict and Violance in Indonesia 2014 

library(dplyr)
filtered_dataspnk2024 <- datasnpk2014 %>%
  filter(kil_total != 0) # filter data for point 0 in variable kill_total

print(filtered_dataspnk2024$jenis_kek)
   [1] 2 2 2 2 1 2 4 2 2 2 1 1 2 2 2 2 1 2 4 3 2 2 2 2 3 1 2 3 3 2 2 2 1 2 2 2 1 3
  [39] 2 2 2 3 2 2 2 2 3 1 2 2 2 2 3 3 1 2 1 2 2 2 2 2 2 2 4 2 2 2 1 3 1 2 2 2 2 2
  [77] 3 4 1 2 3 2 2 2 1 1 3 3 2 1 3 2 2 1 1 2 2 1 2 2 4 2 3 2 2 1 2 1 2 2 2 2 2 2
 [115] 2 2 3 2 1 2 2 2 1 2 2 3 2 2 2 2 2 2 1 2 2 2 2 3 2 2 2 3 3 3 4 2 2 1 1 2 1 2
 [153] 2 3 2 3 4 2 3 1 2 2 2 3 1 1 2 3 2 2 2 4 3 2 3 2 1 2 3 2 4 1 2 2 2 2 1 2 2 2
 [191] 1 2 2 2 2 1 1 2 2 2 2 2 2 3 4 1 2 2 4 2 2 2 2 2 2 2 2 1 2 1 2 1 3 2 2 2 2 1
 [229] 2 2 2 2 1 2 2 4 2 2 2 2 1 2 2 2 2 2 1 2 3 1 2 1 2 2 2 2 2 2 2 2 3 1 2 2 3 2
 [267] 2 2 2 2 2 2 1 2 1 3 1 1 2 2 2 4 3 2 1 1 1 2 2 3 2 2 2 1 3 3 4 2 2 1 2 1 2 2
 [305] 1 2 2 2 2 1 2 2 2 2 2 1 3 2 2 3 3 2 3 2 2 1 2 2 1 2 2 2 1 2 2 2 2 1 4 2 2 2
 [343] 1 3 2 2 1 2 2 3 2 2 2 2 2 2 1 1 1 1 2 2 2 1 4 4 2 3 1 2 2 2 2 2 2 2 1 2 3 2
 [381] 2 2 4 2 2 2 3 2 3 2 2 2 2 2 2 2 2 2 2 2 1 3 2 3 2 2 2 2 2 2 2 4 3 2 2 2 2 2
 [419] 2 2 2 2 3 2 1 2 3 3 2 3 1 1 3 2 2 3 2 1 4 1 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 3
 [457] 2 2 2 2 2 2 2 1 1 1 2 2 1 1 2 2 2 2 1 2 2 2 2 2 2 2 3 3 1 2 3 3 2 4 2 2 1 2
 [495] 2 2 2 2 2 2 3 2 2 2 4 3 2 3 2 1 2 1 2 1 2 2 2 2 2 2 2 3 3 2 3 2 2 1 2 3 2 2
 [533] 3 3 1 2 2 2 2 1 3 2 2 2 4 2 2 4 3 3 2 2 2 2 2 1 2 2 2 2 3 2 2 3 1 2 2 2 1 2
 [571] 2 2 2 2 1 3 1 2 2 2 3 2 4 2 3 2 2 2 1 2 1 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2
 [609] 3 1 2 2 2 1 1 3 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 4 4 4 2 2 2 2 4 3 2 2 2 1
 [647] 1 2 2 1 2 2 2 2 1 2 2 2 2 2 2 4 2 2 2 1 2 2 2 3 3 1 1 2 2 1 2 2 2 2 2 2 2 2
 [685] 2 2 3 4 4 4 4 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 4 2 4 4 4 2 2 2 2
 [723] 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 3 2 2 2 2 2 1 2 2 2 2 2 1 2 3 2 3 2 2 2 1 2 2
 [761] 3 2 4 3 1 1 1 2 3 2 2 1 3 2 2 2 1 2 2 2 1 2 2 3 2 2 4 1 3 1 4 2 1 2 1 4 1 2
 [799] 2 2 1 1 2 2 2 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 1 2 1 4 1 2 2 2 4 3 2 1 2 4 2
 [837] 1 1 1 4 2 2 2 2 1 2 1 2 2 2 2 2 2 3 2 2 2 3 2 2 2 2 2 3 2 3 2 2 2 2 2 2 3 2
 [875] 2 3 2 1 2 2 2 3 2 2 2 2 2 2 2 3 2 1 2 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 1 2 1
 [913] 2 3 3 2 2 1 1 1 1 2 2 2 3 2 1 2 3 3 2 3 2 2 3 2 2 1 1 2 1 2 2 2 2 4 2 2 2 2
 [951] 4 2 2 4 2 2 3 3 1 1 2 2 3 2 3 2 2 2 1 4 2 2 2 2 4 3 2 2 2 2 3 1 3 4 2 2 2 2
 [989] 2 2 4 2 2 2 4 3 1 3 2 3
 [ reached getOption("max.print") -- omitted 1783 entries ]

Result Analysis and Graph for Data Death Toll Social Conflict Indonesia in 2014

ggplot(filtered_dataspnk2024, aes(tanggal_kejadian, y = kil_total)) +
  geom_line(color = "black") +
  geom_smooth(method = "lm", formula = y~log(x)) +
  labs(x = "Date", y = "Total",
       subtitle = "Source: Government of Indonesia & The World Bank") +
  ggtitle("Total Death Toll Social Conflict Indonesia in 2014") +
  scale_x_date(date_breaks = "1 years", date_labels = "%Y") +
  theme(axis.text = element_blank()) +
  scale_y_continuous(breaks = seq(1, 19, by = 1)) +
  theme_bw() 

Indonesia Conflict Social

Death Toll Social Conflict Indonesia During in 2014

Time representation of variable X from early 2014 to late 2014, each vertical line graph in social conflict and variable Y shows the number of fatalities of each conflict incident. On the blue line of geom_smooth aims to show the range of fatalities due to the impact of social conflict mostly point 1, with slight fluctuations. Overall, this visualization shows a relatively spread out pattern, with several peaks of significant fatalities. The blue line shows that the average number of fatalities per social conflict incident in Indonesia in 2014 remained relatively low, at around 1 victim per incident.

Death Toll in 2024 Per Month

Data Base

library(readxl)
totalmonthdeath <- read_excel("totalmonthdeath.xlsx") # data set from datasnpnk2014
print(totalmonthdeath)

totalmonthdeath$Month <- factor(totalmonthdeath$Month, 
                                levels = c("January", "February", "March",
                                           "April", "May", "June", "July", 
                                           "August", "September", "October", 
                                           "November", "December")) # for continous x

 Month     Total
   <fct>     <dbl>
 1 January     226
 2 February    216
 3 March       266
 4 April       237
 5 May         263
 6 June        258
 7 July        245
 8 August      262
 9 September   273
10 October     275
11 November    236
12 December    205

Total Death Toll Social Conflict Indonesia in 2014 Per Month

library(ggplot2)
library(dplyr)

totalmonthdeath %>%
  tail(12) %>%
  ggplot(aes(x = Month, y = Total, group = 1)) +
  geom_line(aes(x = Month, y = Total), color = "black", size = 0.1) +
  geom_point(shape = 20, color = "darkblue", size = 3) +
  theme_bw() +
  geom_smooth(method = "loess", span = 1, se = FALSE) +
  labs(title = "Total Death Toll Social Conflict Indonesia in 2014 Per Month",
       subtitle = "Source: Government of Indonesia & The World Bank", 
       y = "Total",
       x = "Month") +
  scale_y_continuous(breaks = seq(min(totalmonthdeath$Total),max(totalmonthdeath$Total),
                                  by = 10)) +
  theme(plot.title = element_text(face = "bold"))

Social Conflict Indonesia

Death Victim People Per Months

The graph shows the fluctuation of the death toll from social conflicts in Indonesia during 2014. The death toll started to decline in the early years, then increased in the middle years, and stabilized in the latter years. The period from mid-April to August was particularly deadly, perhaps due to the escalation of conflict in some areas or the story needs to be further investigated.

Death Toll in Each Province

Read Data Base

library(readxl) 
deatheachprovince <- read_excel("~/Desktop/Data Github/deatheachprovince.xlsx") # manipulation data from datasnpk2014.xlsx 
View(deatheachprovince)

library(knitr)
deatheachprovincemarkdown <-kable(deatheachprovince, format = "markdown")
print(deatheachprovincemarkdown)

Province Total
Nanggro Aceh Darussalam 46
West Sumatera 280
Riau 85
Jambi 51
South Sumatera 302
Bengkulu 30
Lampung 94
Bangka Belitung Islan 23
Riau Island 55
Jakarta 155
West Jawa 327
Central Java 139
Special Regional of Yogyakarta 36
East Java 304
Banten 70
Bali 33
Nusa Tenggara Barat 60
Nusa Tenggara Timur 58
West Kalimantan 48
Central Kalimantan 58
South Kalimantan 85
East & North Kalimantan 48
North Sulawesi 103
Central Sulawesi 41
South Sulawesi 156
Southeast Sulawesi 30
Gorontalo 13
West Sulawesi 3
Maluku 42
North Maluku 20
West Papua 28
Papua 151

Result Number of Victims Province in 2014

library(ggplot2)
library(dplyr)
library(stringr)

deatheachprovince %>%
  mutate(Province = str_remove(Province, "-.*$")) %>%
  ggplot(aes(y = reorder(Province, Total), x = Total)) +
  geom_segment(aes(x = 0, xend = Total, y = reorder(Province, Total),
                   yend = reorder(Province, Total)), color = "black") +
  geom_point(size = 4, color = "red", fill = "darkred", shape = 21) +
  geom_text(aes(label = Total),
            nudge_x = 10, hjust = -0.3, vjust = 0.5, size = 3.5, color = "black") +
  labs(title = "Number of Victims Province in 2014",
       subtitle = "Source: Government of Indonesia & The World Bank",
       y = "Province",
       x = "Victims") +
  theme_classic() +
  theme(plot.title = element_text(face = "bold"),
        axis.title.x = element_text(angle = 90, hjust = 1))

Social Conflict Indonesia

Provinces With The Highest Death Toll

This visualization shows that there is significant variation in the number of victims of social conflict in Indonesia in 2014, with provinces in Java and Sumatra at the top.West Java had the highest number of victims related to social conflict in Indonesia in 2014, with 327 victims. This shows that social conflict in this province is more significant than other provinces.Followed by East Java with 304 victims, and South Sumatra and West Sumatra which each had 302 and 280 victims.

About

This project aims to analyze visual data about the history of social conflict in Indonesia from 1989 to 2023, and then this project analyzes several other social conflicts in regions in Indonesia.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages