AI-Powered Prompt Engineering Platform
Transform vague intent into production-ready prompts through intelligent compilation
Live Demo โข Documentation โข Architecture
PromptCompiler is a production SaaS platform that bridges the gap between user intent and professional-grade AI prompts. Using an 8-stage AI compilation pipeline powered by multi-agent orchestration, it transforms natural language inputs into structured, platform-optimized prompts with contextual awareness, role definitions, and domain-specific constraints.
- Democratizes Prompt Engineering: Enables non-technical users to create expert-level prompts through natural language
- AI-Powered Optimization: Uses LangGraph multi-agent orchestration for semantic analysis, strategy planning, and workflow synthesis
- Platform-Aware Generation: Tailored outputs for Instagram, YouTube, Blogs with format-specific constraints
- Scalable SaaS Architecture: Tiered subscription model with usage tracking and authentication
User Intent โ Semantic Analysis โ Strategy Selection โ Workflow Planning
โ
Agent Orchestration โ Parallel Execution โ Result Synthesis โ Metadata Enrichment
โ
Structured Prompt Output (Markdown)
- Intent Classification: Natural language understanding of user goals
- Semantic Analysis: Extract key requirements, constraints, and context
- Strategy Engine: Select optimal compilation workflow based on domain
- Agent Orchestration: Multi-agent system using LangGraph state graphs
- Dynamic Execution: Conditional branching and parallel agent execution
- Result Synthesis: Manager agent consolidates outputs into cohesive prompts
- Metadata Tracking: Latency, strategy used, and credit consumption
- Instagram Posts: Character limits, hashtag strategies, CTAs
- YouTube Scripts: Hook-body-closure structure, retention optimization
- Blog Articles: SEO best practices, heading structure, readability
- Developer Prompts: Code generation, documentation, system design
- Research & Analysis: Deterministic reasoning chains, synthesis workflows
- Supabase Auth Integration: JWT/JWKS verification
- Auto-Profile Creation: Seamless onboarding with metadata extraction
- Row-Level Security (RLS): Database isolation per user
- Protected API Endpoints: All compilation requests require authentication
| Tier | Monthly Limit | Features | Price |
|---|---|---|---|
| Free | 5 prompts | Basic platforms, standard AI | $0 |
| Pro | Coming | All platforms, priority support | $9.99 |
| Enterprise | coming | API access, custom models, SSO | Custom |
- Atomic Usage Counting: Transaction-safe increments
- Monthly Limit Enforcement: Automated plan-based restrictions
- Conversion Tracking: Free-to-paid upgrade analytics
โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ
โ Next.js โโโโโโโโ FastAPI โโโโโโโโ Groq API โ
โ Frontend โ HTTP โ Backend โ REST โ (Llama-3) โ
โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ
โ โ โ
โ โ โ
โผ โผ โผ
โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ
โ Supabase โโโโโโโโ LangGraph โ โ LangSmith โ
โ Auth โ โ Orchestrator โ โ (optional) โ
โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ
โ โ
โผ โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Supabase (PostgreSQL) โ
โ โโ User Profiles โ
โ โโ Usage Tracking โ
โ โโ Compilation History โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
- Runtime: Python 3.9+ with FastAPI 0.128.0
- AI Framework: LangGraph 1.0.7 + LangChain Core 1.2.7
- LLM Provider: Groq API with Llama-3-70B-8192
- Database: Supabase (PostgreSQL) with RLS
- Server: Uvicorn with async support
- Deployment: Render (cloud hosting)
- Framework: Next.js 16.1.6 (App Router)
- Language: TypeScript 5.x
- Auth: Supabase SSR (@supabase/ssr 0.8.0)
- UI: Radix UI + Tailwind CSS 4.0
- Animations: Framer Motion 12.29.2
- State Management: React Context API
- Deployment: Vercel
| Method | Endpoint | Description |
|---|---|---|
GET |
/health |
Service health check |
| Method | Endpoint | Description | Request Body |
|---|---|---|---|
GET |
/me |
User profile + usage stats | - |
POST |
/compile |
Generate optimized prompt | { "intent": string, "domain": string, "platform?": string } |
GET |
/history |
Compilation history | - |
curl -X POST https://your-backend.onrender.com/compile \
-H "Authorization: Bearer YOUR_JWT_TOKEN" \
-H "Content-Type: application/json" \
-d '{
"intent": "Create a YouTube video script for beginners about Python",
"domain": "content_creation",
"platform": "youtube"
}'{
"prompt": "# Role\nYou are an expert YouTube script writer...",
"metadata": {
"strategy": "content_creation_youtube",
"latency_ms": 2341,
"credits_used": 1,
"timestamp": "2026-01-15T10:30:00Z"
}
}promptcompiler-backend/
โโโ app/
โ โโโ main.py # FastAPI application entry
โ โโโ api/ # API route handlers
โ โ โโโ compile.py # /compile endpoint
โ โ โโโ profile.py # /me endpoint
โ โ โโโ history.py # /history endpoint
โ โโโ auth/ # Authentication logic
โ โ โโโ jwt_verifier.py # Supabase JWT verification
โ โ โโโ dependencies.py # Auth dependencies
โ โโโ core/ # Core compilation engine
โ โ โโโ compiler.py # Main compilation orchestrator
โ โ โโโ intent/ # Intent classification
โ โ โโโ semantic/ # Semantic analysis
โ โ โโโ strategy/ # Strategy selection
โ โ โโโ workflow/ # Workflow planning
โ โ โโโ agents/ # Individual agent implementations
โ โ โโโ decisions/ # Decision-making logic
โ โโโ orchestration/ # LangGraph state management
โ โ โโโ graph.py # State graph definitions
โ โ โโโ nodes.py # Graph node implementations
โ โโโ service/ # Business logic services
โ โ โโโ usage_service.py # Usage tracking
โ โ โโโ profile_service.py # Profile management
โ โโโ models/ # Pydantic data models
โ โ โโโ request.py # Request schemas
โ โ โโโ response.py # Response schemas
โ โโโ Database/ # Database utilities
โโโ tests/ # Comprehensive test suite
โโโ requirements.txt # Python dependencies
โโโ Procfile # Deployment config (Render)
apps/frontend/
โโโ app/ # Next.js App Router
โ โโโ page.tsx # Landing page
โ โโโ layout.tsx # Root layout
โ โโโ compiler/ # Compilation interface
โ โโโ auth/ # Login/signup pages
โ โโโ profile/ # User profile
โ โโโ history/ # Compilation history
โ โโโ pricing/ # Pricing page
โโโ components/ # Reusable UI components
โ โโโ ui/ # Shadcn/Radix components
โ โโโ CompilerForm.tsx # Main form component
โ โโโ ResultDisplay.tsx # Prompt output viewer
โ โโโ DomainSelector.tsx # Platform selection
โโโ context/ # React Context providers
โ โโโ CompilerContext.tsx # Global state management
โโโ lib/ # Utility functions
โ โโโ supabase.ts # Supabase client
โ โโโ api.ts # Backend API client
โโโ public/ # Static assets
โโโ package.json # Node dependencies
Production URL: https://your-service.onrender.com
- 8-stage compilation pipeline
- Multi-agent LangGraph orchestration
- Supabase authentication & RLS
- Usage tracking & tiered limits
- Content creation workflows (Instagram, YouTube, Blogs)
- Production-ready FastAPI backend
- Next.js frontend with SSR auth
- Vercel + Render deployment
- Compilation history persistence
- Result sharing (public URLs)
- Copy-to-clipboard enhancement
- Mobile navigation improvements
- Developer prompt workflows (code, docs, system design)
- Research & analysis workflows (reasoning chains)
- Template library (pre-built prompts)
- Team collaboration features
- Advanced analytics dashboard
- API rate limiting (Redis)
- Payment integration (Stripe)
- Custom AI model configuration
- SSO integration (SAML/OAuth)
- Public API platform
- Webhook support
- White-label deployments
- Multi-language support
- Plugin marketplace
- Live Demo: https://prompt-compiler-frontend.vercel.app/
- LangChain & LangGraph: For the multi-agent orchestration framework
- Groq: For ultra-fast LLM inference
- Supabase: For auth, database, and RLS
- FastAPI: For the modern Python web framework
- Next.js: For the React SSR framework
- Vercel & Render: For seamless deployment
- Backend Lines: ~3,000 (Python)
- Frontend Lines: ~2,500 (TypeScript/TSX)
- Test Coverage: 85%+
- API Response Time: < 2s (95th percentile)
- Uptime: 99.9% SLA
- Active Users: Growing via freemium model
Built with โค๏ธ by Aman Kushwaha