@@ -205,7 +205,7 @@ val range_fun_to_inner = store_thm("range_fun_to_inner",
205
205
rw[] ) >>
206
206
qspecl_then[`a`,`range ina`,`range inb`]mp_tac (UNDISCH in_funspace_abstract) >>
207
207
simp[] >> strip_tac >>
208
- qpat_assum `a = X`(SUBST1_TAC) >>
208
+ qpat_x_assum `a = X`(SUBST1_TAC) >>
209
209
qsuff_tac`∃x. Abstract (range ina) (range inb) f = fun_to_inner ina inb x` >- metis_tac[] >>
210
210
rw[fun_to_inner_def] >>
211
211
qexists_tac`finv inb o f o ina` >>
@@ -334,7 +334,7 @@ val tag_exists = prove(
334
334
metis_tac[pair_not_empty] ) >>
335
335
strip_tac >>
336
336
imp_res_tac (UNDISCH in_funspace_abstract) >>
337
- qpat_assum `X = Y`mp_tac >>
337
+ qpat_x_assum `X = Y`mp_tac >>
338
338
imp_res_tac is_extensional >> fs[extensional_def] >> pop_assum kall_tac >>
339
339
simp[EQ_IMP_THM,EXISTS_OR_THM] >> disj1_tac >>
340
340
srw_tac[boolSimps.DNF_ss][mem_binary_union,mem_boolset,true_def] >> disj1_tac >>
@@ -461,7 +461,7 @@ val good_context_instance_equality = prove(
461
461
impl_tac >- (
462
462
simp[is_type_valuation_def,combinTheory.APPLY_UPDATE_THM] >>
463
463
reverse(rw[mem_boolset]) >- metis_tac[] >>
464
- qpat_assum `X = Y` (SUBST1_TAC o SYM) >>
464
+ qpat_x_assum `X = Y` (SUBST1_TAC o SYM) >>
465
465
match_mp_tac (UNDISCH typesem_inhabited) >>
466
466
fs[is_valuation_def,is_interpretation_def] >>
467
467
metis_tac[] ) >>
@@ -1285,7 +1285,7 @@ val termsem_comb1_ax = store_thm("termsem_comb1_ax",
1285
1285
Q.PAT_ABBREV_TAC`s = [(a0,Var x tyia)]` >>
1286
1286
`term_ok (sigof ctxt) t` by (
1287
1287
fs[theory_ok_def] >> res_tac >>
1288
- qpat_assum `is_std_sig X`assume_tac >>
1288
+ qpat_x_assum `is_std_sig X`assume_tac >>
1289
1289
fs[term_ok_equation,term_ok_def] ) >>
1290
1290
`term_ok (sigof ctxt) (VSUBST s t)` by (
1291
1291
match_mp_tac term_ok_VSUBST >>
@@ -1385,7 +1385,7 @@ val termsem_comb2_ax = store_thm("termsem_comb2_ax",
1385
1385
Q.PAT_ABBREV_TAC`s = [(a0,Var x tyia);Y]` >>
1386
1386
`term_ok (sigof ctxt) t` by (
1387
1387
fs[theory_ok_def] >> res_tac >>
1388
- qpat_assum `is_std_sig X`assume_tac >>
1388
+ qpat_x_assum `is_std_sig X`assume_tac >>
1389
1389
fs[term_ok_equation,term_ok_def] ) >>
1390
1390
`term_ok (sigof ctxt) (VSUBST s t)` by (
1391
1391
match_mp_tac term_ok_VSUBST >>
@@ -1516,7 +1516,7 @@ val termsem_comb3_ax = store_thm("termsem_comb3_ax",
1516
1516
Q.PAT_ABBREV_TAC`s = (a0,Var x tyia)::Y ` >>
1517
1517
`term_ok (sigof ctxt) t` by (
1518
1518
fs[theory_ok_def] >> res_tac >>
1519
- qpat_assum `is_std_sig X`assume_tac >>
1519
+ qpat_x_assum `is_std_sig X`assume_tac >>
1520
1520
fs[term_ok_equation,term_ok_def] ) >>
1521
1521
`term_ok (sigof ctxt) (VSUBST s t)` by (
1522
1522
match_mp_tac term_ok_VSUBST >>
0 commit comments