Skip to content

Comfy-Org/comfy-kitchen

Repository files navigation

Comfy Kitchen

Fast kernel library for Diffusion inference with multiple compute backends.

Backend Capabilities Matrix

Function eager cuda triton
quantize_per_tensor_fp8
dequantize_per_tensor_fp8
quantize_nvfp4
dequantize_nvfp4
scaled_mm_nvfp4
apply_rope
apply_rope1

Quantized Tensors

The library provides QuantizedTensor, a torch.Tensor subclass that transparently intercepts PyTorch operations and dispatches them to optimized quantized kernels when available.

Layout Format HW Requirement Description
TensorCoreFP8Layout FP8 E4M3 SM ≥ 8.9 (Ada) Per-tensor scaling, 1:1 element mapping
TensorCoreNVFP4Layout NVFP4 E2M1 SM ≥ 10.0 (Blackwell) Block quantization with 16-element blocks
from comfy_kitchen.tensor import QuantizedTensor, TensorCoreFP8Layout, TensorCoreNVFP4Layout

# Quantize a tensor
x = torch.randn(128, 256, device="cuda", dtype=torch.bfloat16)
qt = QuantizedTensor.from_float(x, TensorCoreFP8Layout)

# Operations dispatch to optimized kernels automatically
output = torch.nn.functional.linear(qt, weight_qt)

# Dequantize back to float
dq = qt.dequantize()

Installation

From PyPI

# Install default (Linux/Windows/MacOS)
pip install comfy-kitchen

# Install with CUBLAS for NVFP4 (+Blackwell)
pip install comfy-kitchen[cublas]

Package Variants

  • CUDA wheels: Linux x86_64 and Windows x64
  • Pure Python wheel: Any platform, eager and triton backends only

Wheels are built for Python 3.10, 3.11, and 3.12+ (using Stable ABI for 3.12+).

From Source

# Standard installation with CUDA support
pip install .

# Development installation
pip install -e ".[dev]"

# For faster rebuilds during development (skip build isolation)
pip install -e . --no-build-isolation -v

Build Options

These options require using setup.py directly (not pip install):

Option Command Description Default
--no-cuda python setup.py bdist_wheel --no-cuda Build CPU-only wheel (py3-none-any) Enabled (build with CUDA)
--cuda-archs=... python setup.py build_ext --cuda-archs="80;89" CUDA architectures to build for 75-virtual;80;89;90a;100f;120f (Linux), 75-virtual;80;89;120f (Windows)
--debug-build python setup.py build_ext --debug-build Build in debug mode with symbols Disabled (Release)
--lineinfo python setup.py build_ext --lineinfo Enable NVCC line info for profiling Disabled
# Build CPU-only wheel (pure Python, no CUDA required)
python setup.py bdist_wheel --no-cuda

# Build with custom CUDA architectures
python setup.py build_ext --cuda-archs="80;89" bdist_wheel

# Debug build with line info for profiling
python setup.py build_ext --debug-build --lineinfo bdist_wheel

Requirements

  • Python: ≥3.10
  • PyTorch: ≥2.5.0
  • CUDA Runtime (for CUDA wheels): ≥13.0
    • Pre-built wheels require NVIDIA Driver r580+
    • Building from source requires CUDA Toolkit ≥12.8 and CUDA_HOME environment variable
  • nanobind: ≥2.0.0 (for building from source)
  • CMake: ≥3.18 (for building from source)

Quick Start

import comfy_kitchen as ck
import torch

# Automatic backend selection (triton -> cuda -> eager)
x = torch.randn(100, 100, device="cuda")
scale = torch.tensor([1.0], device="cuda")
result = ck.quantize_per_tensor_fp8(x, scale)

# Check which backends are available
print(ck.list_backends())

# Force a specific backend
result = ck.quantize_per_tensor_fp8(x, scale, backend="eager")

# Temporarily use a different backend
with ck.use_backend("triton"):
    result = ck.quantize_per_tensor_fp8(x, scale)

Backend System

The library supports multiple backends:

  • eager: Pure PyTorch implementation
  • cuda: Custom CUDA C kernels (CUDA only)
  • triton: Triton JIT-compiled kernels

Automatic Backend Selection

When you call a function, the registry selects the best backend by checking constraints in priority order (cudatritoneager):

# Backend is selected automatically based on input constraints
result = ck.quantize_per_tensor_fp8(x, scale)

# On CPU tensors → falls back to eager (only backend supporting CPU)
# On CUDA tensors → uses cuda or triton (higher priority)

Constraint System

Each backend declares constraints for its functions:

Constraint Description
Device Which device types are supported
Dtype Allowed input/output dtypes per parameter
Shape Shape requirements (e.g., 2D tensors, dimensions divisible by 16)
Compute Capability Minimum GPU architecture (e.g., SM 8.0 for FP8, SM 10.0 for NVFP4)

The registry validates inputs against these constraints before calling the backend—no try/except fallback patterns. If no backend can handle the inputs, a NoCapableBackendError is raised with details.

# Debug logging to see backend selection
import logging
logging.getLogger("comfy_kitchen.dispatch").setLevel(logging.DEBUG)

Testing

Run the test suite with pytest:

# Run all tests
pytest

# Run specific test file
pytest tests/test_backends.py

# Run with verbose output
pytest -v

# Run specific test
pytest tests/test_backends.py::TestBackendSystem::test_list_backends