Skip to content

Conversation

taegyunkim
Copy link
Contributor

@taegyunkim taegyunkim commented Feb 10, 2025

What does this PR do?

A brief description of the change being made with this pull request.

Motivation

What inspired you to submit this pull request?

Additional Notes

Anything else we should know when reviewing?

How to test the change?

Describe here in detail how the change can be validated.

PROF-11580

@taegyunkim taegyunkim requested review from a team as code owners February 10, 2025 18:43
@taegyunkim taegyunkim changed the title profiling: update build script to cross compiling 32 bit on 64 bit linux profiling: update ffi build script to cross compiling 32 bit on 64 bit linux Feb 10, 2025
@taegyunkim taegyunkim changed the title profiling: update ffi build script to cross compiling 32 bit on 64 bit linux profiling: update ffi build script to cross compile 32 bit on 64 bit linux Feb 10, 2025
@codecov-commenter
Copy link

codecov-commenter commented Feb 10, 2025

Codecov Report

All modified and coverable lines are covered by tests ✅

Project coverage is 71.81%. Comparing base (db24d6b) to head (47444c4).

Additional details and impacted files
@@            Coverage Diff             @@
##             main     #866      +/-   ##
==========================================
- Coverage   71.83%   71.81%   -0.03%     
==========================================
  Files         335      335              
  Lines       50330    50330              
==========================================
- Hits        36156    36144      -12     
- Misses      14174    14186      +12     
Components Coverage Δ
crashtracker 42.88% <ø> (ø)
crashtracker-ffi 6.25% <ø> (ø)
datadog-alloc 98.73% <ø> (ø)
data-pipeline 90.70% <ø> (ø)
data-pipeline-ffi 90.29% <ø> (ø)
ddcommon 79.95% <ø> (ø)
ddcommon-ffi 66.37% <ø> (ø)
ddtelemetry 61.76% <ø> (ø)
ddtelemetry-ffi 22.46% <ø> (ø)
dogstatsd-client 82.57% <ø> (ø)
ipc 82.42% <ø> (-0.11%) ⬇️
profiling 77.45% <ø> (ø)
profiling-ffi 62.28% <ø> (ø)
serverless 0.00% <ø> (ø)
sidecar 42.54% <ø> (ø)
sidecar-ffi 13.52% <ø> (ø)
spawn-worker 54.37% <ø> (ø)
tinybytes 91.59% <ø> (ø)
trace-mini-agent 73.82% <ø> (ø)
trace-normalization 98.24% <ø> (ø)
trace-obfuscation 96.00% <ø> (ø)
trace-protobuf 78.13% <ø> (ø)
trace-utils 93.05% <ø> (ø)
🚀 New features to boost your workflow:
  • ❄️ Test Analytics: Detect flaky tests, report on failures, and find test suite problems.

@pr-commenter
Copy link

pr-commenter bot commented Feb 10, 2025

Benchmarks

Comparison

Benchmark execution time: 2025-04-03 19:18:49

Comparing candidate commit 47444c4 in PR branch taegyunkim/prof-11194-32bit with baseline commit db24d6b in branch main.

Found 0 performance improvements and 0 performance regressions! Performance is the same for 52 metrics, 2 unstable metrics.

Candidate

Candidate benchmark details

Group 1

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 47444c4 1743707228 taegyunkim/prof-11194-32bit
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
concentrator/add_spans_to_concentrator execution_time 5.988ms 6.001ms ± 0.007ms 6.000ms ± 0.003ms 6.003ms 6.010ms 6.022ms 6.050ms 0.84% 2.836 16.192 0.12% 0.000ms 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
concentrator/add_spans_to_concentrator execution_time [6.000ms; 6.002ms] or [-0.016%; +0.016%] None None None

Group 2

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 47444c4 1743707228 taegyunkim/prof-11194-32bit
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
tags/replace_trace_tags execution_time 2.320µs 2.374µs ± 0.016µs 2.374µs ± 0.005µs 2.381µs 2.398µs 2.403µs 2.410µs 1.50% -1.353 3.367 0.67% 0.001µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
tags/replace_trace_tags execution_time [2.372µs; 2.376µs] or [-0.093%; +0.093%] None None None

Group 3

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 47444c4 1743707228 taegyunkim/prof-11194-32bit
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
benching string interning on wordpress profile execution_time 146.043µs 147.288µs ± 0.343µs 147.256µs ± 0.193µs 147.468µs 147.828µs 148.690µs 148.750µs 1.01% 0.905 4.102 0.23% 0.024µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
benching string interning on wordpress profile execution_time [147.241µs; 147.336µs] or [-0.032%; +0.032%] None None None

Group 4

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 47444c4 1743707228 taegyunkim/prof-11194-32bit
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
credit_card/is_card_number/ execution_time 3.895µs 3.914µs ± 0.004µs 3.914µs ± 0.002µs 3.916µs 3.919µs 3.923µs 3.947µs 0.84% 3.373 26.922 0.11% 0.000µs 1 200
credit_card/is_card_number/ throughput 253366552.283op/s 255482794.089op/s ± 288068.013op/s 255490201.953op/s ± 116753.647op/s 255610852.071op/s 255806232.037op/s 255943317.217op/s 256714438.997op/s 0.48% -3.314 26.517 0.11% 20369.485op/s 1 200
credit_card/is_card_number/ 3782-8224-6310-005 execution_time 82.049µs 82.451µs ± 0.204µs 82.397µs ± 0.113µs 82.554µs 82.889µs 83.072µs 83.108µs 0.86% 1.033 0.898 0.25% 0.014µs 1 200
credit_card/is_card_number/ 3782-8224-6310-005 throughput 12032539.537op/s 12128537.653op/s ± 29890.658op/s 12136356.958op/s ± 16715.882op/s 12150304.647op/s 12166696.527op/s 12173798.431op/s 12187781.749op/s 0.42% -1.020 0.863 0.25% 2113.589op/s 1 200
credit_card/is_card_number/ 378282246310005 execution_time 75.948µs 76.493µs ± 0.323µs 76.471µs ± 0.236µs 76.698µs 77.087µs 77.239µs 77.717µs 1.63% 0.581 0.338 0.42% 0.023µs 1 200
credit_card/is_card_number/ 378282246310005 throughput 12867198.917op/s 13073395.061op/s ± 55133.482op/s 13076844.831op/s ± 40220.488op/s 13123784.603op/s 13151852.637op/s 13164184.271op/s 13166919.552op/s 0.69% -0.556 0.275 0.42% 3898.526op/s 1 200
credit_card/is_card_number/37828224631 execution_time 3.894µs 3.914µs ± 0.003µs 3.914µs ± 0.002µs 3.916µs 3.918µs 3.920µs 3.922µs 0.20% -1.798 10.947 0.07% 0.000µs 1 200
credit_card/is_card_number/37828224631 throughput 254958829.535op/s 255485128.597op/s ± 192232.959op/s 255465957.012op/s ± 119380.794op/s 255590709.300op/s 255769794.191op/s 255955958.793op/s 256831790.953op/s 0.53% 1.819 11.121 0.08% 13592.923op/s 1 200
credit_card/is_card_number/378282246310005 execution_time 72.871µs 73.741µs ± 0.426µs 73.693µs ± 0.297µs 74.024µs 74.449µs 74.831µs 74.939µs 1.69% 0.473 -0.313 0.58% 0.030µs 1 200
credit_card/is_card_number/378282246310005 throughput 13344235.050op/s 13561373.896op/s ± 78107.085op/s 13569759.134op/s ± 54564.934op/s 13621980.429op/s 13669071.255op/s 13706450.362op/s 13722914.775op/s 1.13% -0.448 -0.345 0.57% 5523.005op/s 1 200
credit_card/is_card_number/37828224631000521389798 execution_time 51.923µs 52.126µs ± 0.063µs 52.130µs ± 0.039µs 52.161µs 52.232µs 52.279µs 52.304µs 0.34% -0.004 0.402 0.12% 0.004µs 1 200
credit_card/is_card_number/37828224631000521389798 throughput 19118840.522op/s 19184149.454op/s ± 23230.127op/s 19182920.488op/s ± 14361.177op/s 19199206.117op/s 19220088.164op/s 19233932.426op/s 19259208.585op/s 0.40% 0.013 0.408 0.12% 1642.618op/s 1 200
credit_card/is_card_number/x371413321323331 execution_time 6.469µs 6.605µs ± 0.065µs 6.599µs ± 0.044µs 6.646µs 6.714µs 6.743µs 6.763µs 2.48% 0.052 -0.645 0.98% 0.005µs 1 200
credit_card/is_card_number/x371413321323331 throughput 147860614.252op/s 151417543.533op/s ± 1479782.165op/s 151529544.625op/s ± 1015198.478op/s 152523501.602op/s 153713247.518op/s 154418094.519op/s 154573653.580op/s 2.01% -0.013 -0.648 0.97% 104636.400op/s 1 200
credit_card/is_card_number_no_luhn/ execution_time 3.900µs 3.915µs ± 0.003µs 3.915µs ± 0.002µs 3.916µs 3.919µs 3.921µs 3.925µs 0.27% -0.530 3.947 0.07% 0.000µs 1 200
credit_card/is_card_number_no_luhn/ throughput 254763524.287op/s 255441699.511op/s ± 185994.767op/s 255452125.032op/s ± 104969.109op/s 255542707.826op/s 255679144.171op/s 255958451.692op/s 256397874.889op/s 0.37% 0.543 3.982 0.07% 13151.816op/s 1 200
credit_card/is_card_number_no_luhn/ 3782-8224-6310-005 execution_time 63.782µs 63.989µs ± 0.099µs 63.972µs ± 0.058µs 64.036µs 64.161µs 64.277µs 64.343µs 0.58% 0.914 1.243 0.15% 0.007µs 1 200
credit_card/is_card_number_no_luhn/ 3782-8224-6310-005 throughput 15541741.554op/s 15627695.610op/s ± 24211.773op/s 15631920.641op/s ± 14122.122op/s 15644337.058op/s 15659252.747op/s 15673716.162op/s 15678506.336op/s 0.30% -0.903 1.216 0.15% 1712.031op/s 1 200
credit_card/is_card_number_no_luhn/ 378282246310005 execution_time 57.750µs 57.875µs ± 0.050µs 57.872µs ± 0.029µs 57.906µs 57.959µs 58.005µs 58.056µs 0.32% 0.296 0.663 0.09% 0.004µs 1 200
credit_card/is_card_number_no_luhn/ 378282246310005 throughput 17224878.858op/s 17278521.188op/s ± 15017.764op/s 17279629.909op/s ± 8652.922op/s 17287526.186op/s 17302765.762op/s 17314251.863op/s 17315902.925op/s 0.21% -0.289 0.656 0.09% 1061.916op/s 1 200
credit_card/is_card_number_no_luhn/37828224631 execution_time 3.895µs 3.915µs ± 0.003µs 3.914µs ± 0.001µs 3.916µs 3.919µs 3.920µs 3.929µs 0.36% -1.148 13.409 0.07% 0.000µs 1 200
credit_card/is_card_number_no_luhn/37828224631 throughput 254538835.902op/s 255451829.778op/s ± 183445.907op/s 255461438.096op/s ± 96856.129op/s 255539391.404op/s 255691964.640op/s 255883293.329op/s 256734120.919op/s 0.50% 1.178 13.549 0.07% 12971.584op/s 1 200
credit_card/is_card_number_no_luhn/378282246310005 execution_time 54.550µs 54.699µs ± 0.127µs 54.668µs ± 0.030µs 54.704µs 55.011µs 55.252µs 55.290µs 1.14% 2.873 8.527 0.23% 0.009µs 1 200
credit_card/is_card_number_no_luhn/378282246310005 throughput 18086490.785op/s 18281895.390op/s ± 42031.291op/s 18292233.118op/s ± 10112.299op/s 18300931.978op/s 18316023.324op/s 18328336.286op/s 18331669.793op/s 0.22% -2.857 8.438 0.23% 2972.061op/s 1 200
credit_card/is_card_number_no_luhn/37828224631000521389798 execution_time 51.943µs 52.142µs ± 0.083µs 52.145µs ± 0.056µs 52.207µs 52.269µs 52.297µs 52.313µs 0.32% -0.234 -0.505 0.16% 0.006µs 1 200
credit_card/is_card_number_no_luhn/37828224631000521389798 throughput 19115827.278op/s 19178339.560op/s ± 30669.089op/s 19177373.576op/s ± 20655.747op/s 19196785.020op/s 19230644.705op/s 19248981.787op/s 19252011.234op/s 0.39% 0.241 -0.500 0.16% 2168.632op/s 1 200
credit_card/is_card_number_no_luhn/x371413321323331 execution_time 6.435µs 6.595µs ± 0.066µs 6.594µs ± 0.044µs 6.640µs 6.711µs 6.754µs 6.764µs 2.58% 0.129 -0.220 1.00% 0.005µs 1 200
credit_card/is_card_number_no_luhn/x371413321323331 throughput 147840515.796op/s 151656238.380op/s ± 1516401.518op/s 151653223.385op/s ± 1001474.391op/s 152582148.661op/s 154286703.388op/s 154968212.655op/s 155410033.070op/s 2.48% -0.076 -0.228 1.00% 107225.780op/s 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
credit_card/is_card_number/ execution_time [3.914µs; 3.915µs] or [-0.016%; +0.016%] None None None
credit_card/is_card_number/ throughput [255442870.633op/s; 255522717.545op/s] or [-0.016%; +0.016%] None None None
credit_card/is_card_number/ 3782-8224-6310-005 execution_time [82.422µs; 82.479µs] or [-0.034%; +0.034%] None None None
credit_card/is_card_number/ 3782-8224-6310-005 throughput [12124395.096op/s; 12132680.211op/s] or [-0.034%; +0.034%] None None None
credit_card/is_card_number/ 378282246310005 execution_time [76.448µs; 76.537µs] or [-0.059%; +0.059%] None None None
credit_card/is_card_number/ 378282246310005 throughput [13065754.090op/s; 13081036.031op/s] or [-0.058%; +0.058%] None None None
credit_card/is_card_number/37828224631 execution_time [3.914µs; 3.915µs] or [-0.010%; +0.010%] None None None
credit_card/is_card_number/37828224631 throughput [255458486.958op/s; 255511770.237op/s] or [-0.010%; +0.010%] None None None
credit_card/is_card_number/378282246310005 execution_time [73.682µs; 73.800µs] or [-0.080%; +0.080%] None None None
credit_card/is_card_number/378282246310005 throughput [13550549.006op/s; 13572198.787op/s] or [-0.080%; +0.080%] None None None
credit_card/is_card_number/37828224631000521389798 execution_time [52.118µs; 52.135µs] or [-0.017%; +0.017%] None None None
credit_card/is_card_number/37828224631000521389798 throughput [19180929.982op/s; 19187368.926op/s] or [-0.017%; +0.017%] None None None
credit_card/is_card_number/x371413321323331 execution_time [6.596µs; 6.614µs] or [-0.135%; +0.135%] None None None
credit_card/is_card_number/x371413321323331 throughput [151212459.957op/s; 151622627.110op/s] or [-0.135%; +0.135%] None None None
credit_card/is_card_number_no_luhn/ execution_time [3.914µs; 3.915µs] or [-0.010%; +0.010%] None None None
credit_card/is_card_number_no_luhn/ throughput [255415922.425op/s; 255467476.597op/s] or [-0.010%; +0.010%] None None None
credit_card/is_card_number_no_luhn/ 3782-8224-6310-005 execution_time [63.975µs; 64.003µs] or [-0.022%; +0.022%] None None None
credit_card/is_card_number_no_luhn/ 3782-8224-6310-005 throughput [15624340.091op/s; 15631051.128op/s] or [-0.021%; +0.021%] None None None
credit_card/is_card_number_no_luhn/ 378282246310005 execution_time [57.868µs; 57.882µs] or [-0.012%; +0.012%] None None None
credit_card/is_card_number_no_luhn/ 378282246310005 throughput [17276439.870op/s; 17280602.505op/s] or [-0.012%; +0.012%] None None None
credit_card/is_card_number_no_luhn/37828224631 execution_time [3.914µs; 3.915µs] or [-0.010%; +0.010%] None None None
credit_card/is_card_number_no_luhn/37828224631 throughput [255426405.940op/s; 255477253.617op/s] or [-0.010%; +0.010%] None None None
credit_card/is_card_number_no_luhn/378282246310005 execution_time [54.682µs; 54.717µs] or [-0.032%; +0.032%] None None None
credit_card/is_card_number_no_luhn/378282246310005 throughput [18276070.257op/s; 18287720.522op/s] or [-0.032%; +0.032%] None None None
credit_card/is_card_number_no_luhn/37828224631000521389798 execution_time [52.131µs; 52.154µs] or [-0.022%; +0.022%] None None None
credit_card/is_card_number_no_luhn/37828224631000521389798 throughput [19174089.119op/s; 19182590.000op/s] or [-0.022%; +0.022%] None None None
credit_card/is_card_number_no_luhn/x371413321323331 execution_time [6.585µs; 6.604µs] or [-0.139%; +0.139%] None None None
credit_card/is_card_number_no_luhn/x371413321323331 throughput [151446079.714op/s; 151866397.046op/s] or [-0.139%; +0.139%] None None None

Group 5

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 47444c4 1743707228 taegyunkim/prof-11194-32bit
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
normalization/normalize_trace/test_trace execution_time 245.190ns 254.145ns ± 12.797ns 247.969ns ± 2.168ns 253.711ns 285.894ns 291.141ns 295.706ns 19.25% 1.903 2.338 5.02% 0.905ns 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
normalization/normalize_trace/test_trace execution_time [252.371ns; 255.918ns] or [-0.698%; +0.698%] None None None

Group 6

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 47444c4 1743707228 taegyunkim/prof-11194-32bit
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
redis/obfuscate_redis_string execution_time 32.757µs 33.321µs ± 1.042µs 32.841µs ± 0.035µs 32.924µs 35.550µs 35.567µs 36.862µs 12.24% 1.738 1.160 3.12% 0.074µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
redis/obfuscate_redis_string execution_time [33.177µs; 33.466µs] or [-0.433%; +0.433%] None None None

Group 7

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 47444c4 1743707228 taegyunkim/prof-11194-32bit
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
normalization/normalize_name/normalize_name/Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Lo... execution_time 208.711µs 209.246µs ± 0.296µs 209.215µs ± 0.106µs 209.352µs 209.492µs 209.544µs 212.757µs 1.69% 8.371 97.658 0.14% 0.021µs 1 200
normalization/normalize_name/normalize_name/Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Lo... throughput 4700197.265op/s 4779071.720op/s ± 6674.808op/s 4779767.245op/s ± 2428.322op/s 4781997.215op/s 4785697.592op/s 4787821.665op/s 4791317.494op/s 0.24% -8.246 95.729 0.14% 471.980op/s 1 200
normalization/normalize_name/normalize_name/bad-name execution_time 18.590µs 18.657µs ± 0.029µs 18.650µs ± 0.013µs 18.669µs 18.710µs 18.754µs 18.767µs 0.63% 1.372 2.877 0.15% 0.002µs 1 200
normalization/normalize_name/normalize_name/bad-name throughput 53283962.882op/s 53598201.075op/s ± 82680.475op/s 53618450.200op/s ± 37571.051op/s 53648007.696op/s 53681890.773op/s 53754872.145op/s 53792900.978op/s 0.33% -1.358 2.837 0.15% 5846.392op/s 1 200
normalization/normalize_name/normalize_name/good execution_time 10.813µs 10.943µs ± 0.084µs 10.959µs ± 0.040µs 10.988µs 11.019µs 11.061µs 11.571µs 5.58% 2.564 17.817 0.77% 0.006µs 1 200
normalization/normalize_name/normalize_name/good throughput 86423068.843op/s 91388280.233op/s ± 689394.376op/s 91247504.310op/s ± 335393.591op/s 91836446.573op/s 92390340.679op/s 92470021.095op/s 92484167.422op/s 1.36% -2.274 15.402 0.75% 48747.544op/s 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
normalization/normalize_name/normalize_name/Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Lo... execution_time [209.205µs; 209.287µs] or [-0.020%; +0.020%] None None None
normalization/normalize_name/normalize_name/Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Long-.Too-Lo... throughput [4778146.655op/s; 4779996.784op/s] or [-0.019%; +0.019%] None None None
normalization/normalize_name/normalize_name/bad-name execution_time [18.653µs; 18.661µs] or [-0.021%; +0.021%] None None None
normalization/normalize_name/normalize_name/bad-name throughput [53586742.356op/s; 53609659.794op/s] or [-0.021%; +0.021%] None None None
normalization/normalize_name/normalize_name/good execution_time [10.931µs; 10.955µs] or [-0.106%; +0.106%] None None None
normalization/normalize_name/normalize_name/good throughput [91292736.803op/s; 91483823.663op/s] or [-0.105%; +0.105%] None None None

Group 8

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 47444c4 1743707228 taegyunkim/prof-11194-32bit
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
ip_address/quantize_peer_ip_address_benchmark execution_time 4.953µs 5.025µs ± 0.043µs 5.026µs ± 0.034µs 5.050µs 5.101µs 5.103µs 5.105µs 1.58% 0.242 -0.973 0.85% 0.003µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
ip_address/quantize_peer_ip_address_benchmark execution_time [5.019µs; 5.031µs] or [-0.117%; +0.117%] None None None

Group 9

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 47444c4 1743707228 taegyunkim/prof-11194-32bit
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
two way interface execution_time 17.914µs 26.676µs ± 11.591µs 18.284µs ± 0.277µs 36.768µs 46.804µs 49.479µs 93.118µs 409.28% 1.577 4.534 43.34% 0.820µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
two way interface execution_time [25.069µs; 28.282µs] or [-6.022%; +6.022%] None None None

Group 10

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 47444c4 1743707228 taegyunkim/prof-11194-32bit
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
write only interface execution_time 1.198µs 3.166µs ± 1.416µs 2.972µs ± 0.026µs 3.000µs 3.640µs 13.763µs 14.918µs 402.01% 7.416 55.917 44.63% 0.100µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
write only interface execution_time [2.969µs; 3.362µs] or [-6.200%; +6.200%] None None None

Group 11

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 47444c4 1743707228 taegyunkim/prof-11194-32bit
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
benching deserializing traces from msgpack to their internal representation execution_time 55.689ms 56.188ms ± 0.165ms 56.184ms ± 0.072ms 56.257ms 56.458ms 56.668ms 57.152ms 1.72% 1.225 6.246 0.29% 0.012ms 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
benching deserializing traces from msgpack to their internal representation execution_time [56.165ms; 56.211ms] or [-0.041%; +0.041%] None None None

Group 12

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 47444c4 1743707228 taegyunkim/prof-11194-32bit
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
sql/obfuscate_sql_string execution_time 66.923µs 67.209µs ± 0.269µs 67.176µs ± 0.066µs 67.255µs 67.423µs 67.572µs 70.660µs 5.19% 10.644 133.690 0.40% 0.019µs 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
sql/obfuscate_sql_string execution_time [67.172µs; 67.246µs] or [-0.056%; +0.056%] None None None

Group 13

cpu_model git_commit_sha git_commit_date git_branch
Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz 47444c4 1743707228 taegyunkim/prof-11194-32bit
scenario metric min mean ± sd median ± mad p75 p95 p99 max peak_to_median_ratio skewness kurtosis cv sem runs sample_size
normalization/normalize_service/normalize_service/A0000000000000000000000000000000000000000000000000... execution_time 502.961µs 505.196µs ± 0.986µs 505.414µs ± 0.643µs 505.924µs 506.387µs 506.725µs 510.226µs 0.95% 0.228 2.051 0.19% 0.070µs 1 200
normalization/normalize_service/normalize_service/A0000000000000000000000000000000000000000000000000... throughput 1959916.656op/s 1979438.779op/s ± 3862.172op/s 1978575.979op/s ± 2516.868op/s 1982761.213op/s 1985909.169op/s 1987755.471op/s 1988225.508op/s 0.49% -0.205 1.941 0.19% 273.097op/s 1 200
normalization/normalize_service/normalize_service/Data🐨dog🐶 繋がっ⛰てて execution_time 453.895µs 455.194µs ± 0.756µs 455.130µs ± 0.319µs 455.457µs 455.985µs 456.337µs 463.264µs 1.79% 6.070 63.127 0.17% 0.053µs 1 200
normalization/normalize_service/normalize_service/Data🐨dog🐶 繋がっ⛰てて throughput 2158594.996op/s 2196871.234op/s ± 3612.529op/s 2197176.365op/s ± 1539.517op/s 2198613.994op/s 2200689.394op/s 2202833.341op/s 2203154.168op/s 0.27% -5.931 61.203 0.16% 255.444op/s 1 200
normalization/normalize_service/normalize_service/Test Conversion 0f Weird !@#$%^&**() Characters execution_time 176.567µs 177.687µs ± 0.370µs 177.814µs ± 0.155µs 177.919µs 178.096µs 178.299µs 178.485µs 0.38% -0.956 0.179 0.21% 0.026µs 1 200
normalization/normalize_service/normalize_service/Test Conversion 0f Weird !@#$%^&**() Characters throughput 5602710.181op/s 5627901.486op/s ± 11757.859op/s 5623864.168op/s ± 4897.277op/s 5632524.812op/s 5652981.552op/s 5656794.455op/s 5663574.815op/s 0.71% 0.963 0.191 0.21% 831.406op/s 1 200
normalization/normalize_service/normalize_service/[empty string] execution_time 37.583µs 37.687µs ± 0.040µs 37.682µs ± 0.026µs 37.716µs 37.753µs 37.786µs 37.807µs 0.33% 0.292 -0.108 0.11% 0.003µs 1 200
normalization/normalize_service/normalize_service/[empty string] throughput 26450057.137op/s 26534248.350op/s ± 27935.020op/s 26537907.341op/s ± 18264.376op/s 26553771.631op/s 26576212.256op/s 26593160.217op/s 26607550.802op/s 0.26% -0.287 -0.112 0.11% 1975.304op/s 1 200
normalization/normalize_service/normalize_service/test_ASCII execution_time 48.177µs 48.294µs ± 0.049µs 48.287µs ± 0.028µs 48.316µs 48.377µs 48.409µs 48.562µs 0.57% 1.113 3.848 0.10% 0.003µs 1 200
normalization/normalize_service/normalize_service/test_ASCII throughput 20592439.813op/s 20706626.291op/s ± 20776.996op/s 20709454.126op/s ± 12069.621op/s 20720309.783op/s 20735711.039op/s 20747733.562op/s 20756924.852op/s 0.23% -1.100 3.774 0.10% 1469.155op/s 1 200
scenario metric 95% CI mean Shapiro-Wilk pvalue Ljung-Box pvalue (lag=1) Dip test pvalue
normalization/normalize_service/normalize_service/A0000000000000000000000000000000000000000000000000... execution_time [505.059µs; 505.332µs] or [-0.027%; +0.027%] None None None
normalization/normalize_service/normalize_service/A0000000000000000000000000000000000000000000000000... throughput [1978903.519op/s; 1979974.039op/s] or [-0.027%; +0.027%] None None None
normalization/normalize_service/normalize_service/Data🐨dog🐶 繋がっ⛰てて execution_time [455.089µs; 455.299µs] or [-0.023%; +0.023%] None None None
normalization/normalize_service/normalize_service/Data🐨dog🐶 繋がっ⛰てて throughput [2196370.572op/s; 2197371.896op/s] or [-0.023%; +0.023%] None None None
normalization/normalize_service/normalize_service/Test Conversion 0f Weird !@#$%^&**() Characters execution_time [177.636µs; 177.738µs] or [-0.029%; +0.029%] None None None
normalization/normalize_service/normalize_service/Test Conversion 0f Weird !@#$%^&**() Characters throughput [5626271.960op/s; 5629531.013op/s] or [-0.029%; +0.029%] None None None
normalization/normalize_service/normalize_service/[empty string] execution_time [37.682µs; 37.693µs] or [-0.015%; +0.015%] None None None
normalization/normalize_service/normalize_service/[empty string] throughput [26530376.825op/s; 26538119.875op/s] or [-0.015%; +0.015%] None None None
normalization/normalize_service/normalize_service/test_ASCII execution_time [48.287µs; 48.300µs] or [-0.014%; +0.014%] None None None
normalization/normalize_service/normalize_service/test_ASCII throughput [20703746.800op/s; 20709505.783op/s] or [-0.014%; +0.014%] None None None

Baseline

Omitted due to size.

Copy link
Member

@ivoanjo ivoanjo left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

👍 Arguably this could go in as-is, and we could fix the sharp edges separately, up to you :D

@r1viollet
Copy link
Contributor

r1viollet commented Mar 20, 2025

Artifact Size Benchmark Report

aarch64-alpine-linux-musl
Artifact Baseline Commit Change
/aarch64-alpine-linux-musl/lib/libdatadog_profiling.a 77.58 MB 77.58 MB 0% (0 B) 👌
/aarch64-alpine-linux-musl/lib/libdatadog_profiling.so.debug 23.97 MB 23.97 MB 0% (0 B) 👌
/aarch64-alpine-linux-musl/lib/libdatadog_profiling.so 7.78 MB 7.78 MB 0% (0 B) 👌
aarch64-unknown-linux-gnu
Artifact Baseline Commit Change
/aarch64-unknown-linux-gnu/lib/libdatadog_profiling.so.debug 22.54 MB 22.54 MB 0% (0 B) 👌
/aarch64-unknown-linux-gnu/lib/libdatadog_profiling.so 7.71 MB 7.71 MB 0% (0 B) 👌
/aarch64-unknown-linux-gnu/lib/libdatadog_profiling.a 71.81 MB 71.81 MB 0% (0 B) 👌
libdatadog-x64-windows
Artifact Baseline Commit Change
/libdatadog-x64-windows/debug/dynamic/datadog_profiling_ffi.dll 16.83 MB 16.83 MB 0% (0 B) 👌
/libdatadog-x64-windows/debug/dynamic/datadog_profiling_ffi.lib 61.83 KB 61.83 KB 0% (0 B) 👌
/libdatadog-x64-windows/debug/dynamic/datadog_profiling_ffi.pdb 112.73 MB 112.73 MB +0% (+8.00 KB) 👌
/libdatadog-x64-windows/debug/static/datadog_profiling_ffi.lib 629.42 MB 629.42 MB 0% (0 B) 👌
/libdatadog-x64-windows/release/dynamic/datadog_profiling_ffi.dll 5.03 MB 5.03 MB 0% (0 B) 👌
/libdatadog-x64-windows/release/dynamic/datadog_profiling_ffi.lib 61.83 KB 61.83 KB 0% (0 B) 👌
/libdatadog-x64-windows/release/dynamic/datadog_profiling_ffi.pdb 16.03 MB 16.03 MB 0% (0 B) 👌
/libdatadog-x64-windows/release/static/datadog_profiling_ffi.lib 26.65 MB 26.65 MB 0% (0 B) 👌
libdatadog-x86-windows
Artifact Baseline Commit Change
/libdatadog-x86-windows/debug/dynamic/datadog_profiling_ffi.dll 14.23 MB 14.23 MB 0% (0 B) 👌
/libdatadog-x86-windows/debug/dynamic/datadog_profiling_ffi.lib 62.78 KB 62.78 KB 0% (0 B) 👌
/libdatadog-x86-windows/debug/dynamic/datadog_profiling_ffi.pdb 114.71 MB 114.72 MB +0% (+8.00 KB) 👌
/libdatadog-x86-windows/debug/static/datadog_profiling_ffi.lib 621.54 MB 621.54 MB 0% (0 B) 👌
/libdatadog-x86-windows/release/dynamic/datadog_profiling_ffi.dll 3.80 MB 3.80 MB 0% (0 B) 👌
/libdatadog-x86-windows/release/dynamic/datadog_profiling_ffi.lib 62.78 KB 62.78 KB 0% (0 B) 👌
/libdatadog-x86-windows/release/dynamic/datadog_profiling_ffi.pdb 16.65 MB 16.65 MB 0% (0 B) 👌
/libdatadog-x86-windows/release/static/datadog_profiling_ffi.lib 24.56 MB 24.56 MB 0% (0 B) 👌
x86_64-alpine-linux-musl
Artifact Baseline Commit Change
/x86_64-alpine-linux-musl/lib/libdatadog_profiling.a 66.87 MB 66.87 MB 0% (0 B) 👌
/x86_64-alpine-linux-musl/lib/libdatadog_profiling.so 8.24 MB 8.24 MB 0% (0 B) 👌
/x86_64-alpine-linux-musl/lib/libdatadog_profiling.so.debug 23.13 MB 23.13 MB 0% (0 B) 👌
x86_64-unknown-linux-gnu
Artifact Baseline Commit Change
/x86_64-unknown-linux-gnu/lib/libdatadog_profiling.a 67.79 MB 67.79 MB 0% (0 B) 👌
/x86_64-unknown-linux-gnu/lib/libdatadog_profiling.so 8.12 MB 8.12 MB 0% (0 B) 👌
/x86_64-unknown-linux-gnu/lib/libdatadog_profiling.so.debug 20.75 MB 20.75 MB 0% (0 B) 👌

@taegyunkim
Copy link
Contributor Author

taegyunkim commented Mar 21, 2025

@ivoanjo
I realized that the alpine and centos images that we use don't have rustup for some reasons.

https://github.com/DataDog/libddprof-build/blob/11f1208548e2fbc101e36cff16e5d9242c03d4fa/alpine.Dockerfile#L27

https://gitlab.ddbuild.io/DataDog/apm-reliability/libddprof-build/-/jobs/801726110

And to add a target in that case, I need to download tarballs for 32bit targets, i686-alpine-linux-musl, i686-unknown-linux-gnu, i686-alpine-linux-musl, and i686-unknown-linux-gnu manually.

Though I've already done most of work, I don't want to spend more time on supporting 32bits where we might not get that much value as you pointed out earlier.

So will close PR for now, and will just revert the libddprof changes adding 32bit linux builds.

@taegyunkim taegyunkim closed this Mar 21, 2025
@taegyunkim taegyunkim deleted the taegyunkim/prof-11194-32bit branch March 21, 2025 20:08
@taegyunkim taegyunkim changed the title profiling: update ffi build script to cross compile 32 bit on 64 bit linux profiling: update ffi build script for cross-compilation Apr 2, 2025
@taegyunkim taegyunkim restored the taegyunkim/prof-11194-32bit branch April 2, 2025 19:50
@taegyunkim taegyunkim reopened this Apr 2, 2025
@taegyunkim taegyunkim changed the title profiling: update ffi build script for cross-compilation profiling: update ffi build script for mac x86_64 cross-compilation Apr 2, 2025
@github-actions github-actions bot removed the common label Apr 2, 2025
@taegyunkim
Copy link
Contributor Author

Realized that this is indeed needed to cross compile x86_64-apple-darwin. What we built so far was another aarch64-apple-darwin with x86_64-apple-darwin name

image

@taegyunkim taegyunkim changed the title profiling: update ffi build script for mac x86_64 cross-compilation build: update ffi build script for mac x86_64 cross-compilation Apr 3, 2025
@taegyunkim taegyunkim changed the title build: update ffi build script for mac x86_64 cross-compilation build: update ffi build script and builder for mac x86_64 cross-compilation Apr 3, 2025
Copy link
Member

@ivoanjo ivoanjo left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

👍 LGTM

@taegyunkim taegyunkim merged commit 733ce1b into main Apr 3, 2025
35 checks passed
@taegyunkim taegyunkim deleted the taegyunkim/prof-11194-32bit branch April 3, 2025 20:56
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

Successfully merging this pull request may close these issues.

4 participants