Analysis and prediction of time-series data of temperature and heating demand
https://docs.google.com/presentation/d/1eMNVJstHoVfn2XtqSaIOQUNjUOtHGVVfSz-riOgJmCM/edit?usp=sharing
- EDA Notebook: Project_Notebook_EDA.IPYNB
- LSTM Notebook: Project_Notebook_LSTM.IPYNB + Project_Notebook_LSTM_Attention.IPYNB
- Prophet + SARIMAX Notebook: Project_Notebook_PROPHET&SARIMAX.ipynb
-
when2heat_DE (column: DE_heat_demand_total):
- Type: int
- Description: Heat demand in Germany in MW for space and water heating
-
weather data
- from 2004 to 2022
- hourly data
- two values per timestamp: TT_TU & RF_TU
Predict heating demand. -> with this information local electricity provider can better stabilise their grid. -> with more heatpumps used, heating demand will be more important for electricity grid than ever
Mean Squared Error on MinMax scaled data range 0 - 1
Only use heating demand as input data:
- SARIMAX
- LSTM
- Prophet (+ Holidays)
- Prophet (+ Holidays + Temperature)
Always compare 2day forecast-horizon and use mean of all predictions done in 2014. Use Min-Max Scaler(0,1).
Model Name | Hyperparameter | Additional features | MSE |
---|---|---|---|
SARIMAX | SARIMAX_v1 | nothing added | 0.000869 |
Prophet | Default-Values | holidays | 0.007121 |
Prophet | prophet_v1 | holidays | 0.0029120 |
Prophet_with_temp | prophet_v2 | holidays, temp | 0.0025222 |
LSTM 8 units | lr=1e-2/Restart | N/A | 0.001879228 |
LSTM + ATTENTION | lr=1e-2/Restart | N/A | 0.001313091 |
To decide on the Hyperparameters mentioned in the below tables a gridsearch was executed. See the grid search in the AllExperiments.ipynb notebook.
SARIMAX_v1:
order | seasonal_order |
---|---|
(1, 0, 1) | (1, 1, 1, 24) |
prophet_v1:
holidays_bool | weekly_seasonality | daily_seasonality_bool | changepoint_prior_scale | holidays_prior_scale | daily_fourier |
---|---|---|---|---|---|
True | 50 | False | 0.3 | 0.3 | 5 |
prophet_v2:
holidays_bool | daily_seas | daily_seasonality_bool | changepoint_prior_scale | holidays_prior_scale | daily_fourier |
---|---|---|---|---|---|
True | 10 | False | 0.3 | 0.1 | 5 |
LSTM: Architecture: LSTM_Heat_model.png
LSTM + ATTENTION Architecture: LSTM_Heat_model_attention.png