Skip to content

Goekdeniz-Guelmez/Local-NotebookLM

Repository files navigation

Local-NotebookLM

logo

A local AI-powered tool that converts PDF documents into engaging podcasts, using local LLMs and TTS models.

Features

  • PDF text extraction and processing
  • Customizable podcast generation with different styles and lengths
  • Support for various LLM providers (OpenAI, Groq, LMStudio, Ollama, Azure)
  • Text-to-Speech conversion with voice selection
  • Fully configurable pipeline
  • Preference-based content focus
  • Programmatic API for integration in other projects
  • FastAPI server for web-based access
  • Example podcast included for demonstration

Prerequisites

  • Python 3.12+
  • Local LLM server (optional, for local inference)
  • Local TTS server (optional, for local audio generation)
  • At least 8GB RAM (16GB+ recommended for local models)
  • 10GB+ free disk space

Installation

From PyPI

pip install local-notebooklm

From source

  1. Clone the repository:
git clone https://github.com/Goekdeniz-Guelmez/Local-NotebookLM.git
cd Local-NotebookLM
  1. Create and activate a virtual environment (conda works too):
python -m venv venv
source venv/bin/activate  # On Windows, use: venv\Scripts\activate
  1. Install the required packages:
pip install -r requirements.txt

Optional pre requisites

Local TTS server

Example Output

The repository includes an example podcast in examples/podcast.wav to demonstrate the quality and format of the output. The models used are: gpt4o and Mini with tts-hs on Azure. You can listen to this example to get a sense of what Local-NotebookLM can produce before running it on your own PDFs.

Configuration

You can use the default configuration or create a custom JSON config file with the following structure:

{
    "Co-Host-Speaker-Voice": "af_sky+af_bella",
    "Host-Speaker-Voice": "af_alloy",

    "Small-Text-Model": {
        "provider": {
            "name": "groq",
            "key": "your-api-key"
        },
        "model": "llama-3.2-90b-vision-preview"
    },

    "Big-Text-Model": {
        "provider": {
            "name": "groq",
            "key": "your-api-key"
        },
        "model": "llama-3.2-90b-vision-preview"
    },

    "Text-To-Speech-Model": {
        "provider": {
            "name": "custom",
            "endpoint": "http://localhost:8880/v1",
            "key": "not-needed"
        },
        "model": "kokoro",
        "audio_format": "wav"
    },

    "Step1": {
        "system": "",
        "max_tokens": 1028,
        "temperature": 0.7,
        "chunk_size": 1000,
        "max_chars": 100000
    },

    "Step2": {
        "system": "",
        "max_tokens": 8126,
        "temperature": 1,
        "chunk_token_limit": 2000,
        "overlap_percent": 10
    },

    "Step3": {
        "system": "",
        "max_tokens": 8126,
        "temperature": 1,
        "chunk_token_limit": 2000,
        "overlap_percent": 20
    }
}

Provider Options

The following provider options are supported:

  • OpenAI: Use OpenAI's API

    "provider": {
        "name": "openai",
        "key": "your-openai-api-key"
    }
  • Groq: Use Groq's API for faster inference

    "provider": {
        "name": "groq",
        "key": "your-groq-api-key"
    }
  • Azure OpenAI: Use Azure's OpenAI service

    "provider": {
        "name": "azure",
        "key": "your-azure-api-key",
        "endpoint": "your-azure-endpoint",
        "version": "api-version"
    }
  • LMStudio: Use a local LMStudio server

    "provider": {
        "name": "lmstudio",
        "endpoint": "http://localhost:1234/v1",
        "key": "not-needed"
    }
  • Ollama: Use a local Ollama server

    "provider": {
        "name": "ollama",
        "endpoint": "http://localhost:11434",
        "key": "not-needed"
    }
  • Google generative AI: Use Google's API

    "provider": {
        "name": "google",
        "key": "your-google-genai-api-key"
    }
  • Anthropic: Use Anthropic's API

    "provider": {
        "name": "anthropic",
        "key": "your-anthropic-api-key"
    }
  • Elevenlabs: Use Elevenlabs's API

    "provider": {
        "name": "elevenlabs",
        "key": "your-elevenlabs-api-key"
    }
  • Custom: Use any OpenAI-compatible API

    "provider": {
        "name": "custom",
        "endpoint": "your-custom-endpoint",
        "key": "your-api-key-or-not-needed"
    }

Usage

Command Line Interface

Run the script with the following command:

python -m local_notebooklm.start --pdf PATH_TO_PDF [options]

Available Options

Option Description Default
--pdf Path to the PDF file (required) -
--config Path to custom config file Uses base_config
--format Output format type (summary, podcast, article, interview, panel-discussion, debate, narration, storytelling, explainer, lecture, tutorial, q-and-a, news-report, executive-brief, meeting, analysis) podcast
--length Content length (short, medium, long, very-long) medium
--style Content style (normal, casual, formal, technical, academic, friendly, gen-z, funny) normal
--preference Additional focus preferences or instructions None
--output-dir Directory to store output files ./output

Format Types

Local-NotebookLM now supports both single-speaker and two-speaker formats:

Single-Speaker Formats:

  • summary
  • narration
  • storytelling
  • explainer
  • lecture
  • tutorial
  • news-report
  • executive-brief
  • analysis

Two-Speaker Formats:

  • podcast
  • interview
  • panel-discussion
  • debate
  • q-and-a
  • meeting

Example Commands

Basic usage:

python -m local_notebooklm.start --pdf documents/research_paper.pdf

Customized podcast:

python -m local_notebooklm.start --pdf documents/research_paper.pdf --format podcast --length long --style casual

With custom preferences:

python -m local_notebooklm.start --pdf documents/research_paper.pdf --preference "Focus on practical applications and real-world examples"

Using custom config:

python -m local_notebooklm.start --pdf documents/research_paper.pdf --config custom_config.json --output-dir ./my_podcast

Programmatic API

You can also use Local-NotebookLM programmatically in your Python code:

from local_notebooklm.processor import podcast_processor

success, result = podcast_processor(
    pdf_path="documents/research_paper.pdf",
    config_path="config.json",
    format_type="interview",
    length="long",
    style="professional",
    preference="Focus on the key technical aspects",
    output_dir="./test_output"
)

if success:
    print(f"Successfully generated podcast: {result}")
else:
    print(f"Failed to generate podcast: {result}")

FastAPI Server

Start the FastAPI server to access the functionality via a web API:

 python -m local_notebooklm.server

By default, the server runs on http://localhost:8000. You can access the API documentation at http://localhost:8000/docs.

Pipeline Steps

1. PDF Processing (Step1)

  • Extracts text from PDF documents
  • Cleans and formats the content
  • Removes irrelevant elements like page numbers and headers
  • Handles LaTeX math expressions and special characters
  • Splits content into manageable chunks for processing

2. Transcript Generation (Step2)

  • Generates an initial podcast script based on the extracted content
  • Applies the specified style (casual, formal, technical, academic)
  • Formats content according to the desired length (short, medium, long, very-long)
  • Structures content for a conversational format
  • Incorporates user-specified format type (summary, podcast, article, interview)

3. TTS Optimization (Step3)

  • Rewrites content specifically for better text-to-speech performance
  • Creates a two-speaker conversation format
  • Adds speech markers and natural conversation elements
  • Optimizes for natural flow and engagement
  • Incorporates user preferences for content focus
  • Formats output as a list of speaker-text tuples

4. Audio Generation (Step4)

  • Converts the optimized text to speech using the specified TTS model
  • Applies different voices for each speaker
  • Generates individual audio segments for each dialogue part
  • Concatenates segments into a final audio file
  • Maintains consistent audio quality and sample rate

Here is a detaled diagram to visualize the architecture of my project.

flowchart TD
    subgraph "Main Controller"
        processor["podcast_processor()"]
    end

    subgraph "AI Services"
        smallAI["Small Text Model Client"]
        bigAI["Big Text Model Client"]
        ttsAI["Text-to-Speech Model Client"]
    end
    
    subgraph "Step 1: PDF Processing"
        s1["step1()"]
        validate["validate_pdf()"]
        extract["extract_text_from_pdf()"]
        chunk1["create_word_bounded_chunks()"]
        process["process_chunk()"]
    end
    
    subgraph "Step 2: Transcript Generation"
        s2["step2()"]
        read2["read_input_file()"]
        gen2["generate_transcript()"]
        chunk2["Chunking with Overlap"]
    end
    
    subgraph "Step 3: TTS Optimization"
        s3["step3()"]
        read3["read_pickle_file()"]
        gen3["generate_rewritten_transcript()"]
        genOverlap["generate_rewritten_transcript_with_overlap()"]
        validate3["validate_transcript_format()"]
    end
    
    subgraph "Step 4: Audio Generation"
        s4["step4()"]
        load4["load_podcast_data()"]
        genAudio["generate_speaker_audio()"]
        concat["concatenate_audio_files()"]
    end

    %% Flow connections
    processor --> s1
    processor --> s2
    processor --> s3
    processor --> s4
    
    processor -.-> smallAI
    processor -.-> bigAI
    processor -.-> ttsAI
    
    %% Step 1 flow
    s1 --> validate
    validate --> extract
    extract --> chunk1
    chunk1 --> process
    process -.-> smallAI
    
    %% Step 2 flow
    s2 --> read2
    read2 --> gen2
    gen2 --> chunk2
    gen2 -.-> bigAI
    
    %% Step 3 flow
    s3 --> read3
    read3 --> gen3
    read3 --> genOverlap
    gen3 --> validate3
    genOverlap --> validate3
    gen3 -.-> bigAI
    genOverlap -.-> bigAI
    
    %% Step 4 flow
    s4 --> load4
    load4 --> genAudio
    genAudio --> concat
    genAudio -.-> ttsAI
    
    %% Data flow
    pdf[("PDF File")] --> s1
    s1 --> |"cleaned_text.txt"| file1[("Cleaned Text")]
    file1 --> s2
    s2 --> |"data.pkl"| file2[("Transcript")]
    file2 --> s3
    s3 --> |"podcast_ready_data.pkl"| file3[("Optimized Transcript")]
    file3 --> s4
    s4 --> |"podcast.wav"| fileAudio[("Final Audio")]

    %% Styling
    classDef controller fill:#f9d5e5,stroke:#333,stroke-width:2px
    classDef ai fill:#eeeeee,stroke:#333,stroke-width:1px
    classDef step fill:#d0e8f2,stroke:#333,stroke-width:1px
    classDef data fill:#fcf6bd,stroke:#333,stroke-width:1px,stroke-dasharray: 5 5
    
    class processor controller
    class smallAI,bigAI,ttsAI ai
    class s1,s2,s3,s4,validate,extract,chunk1,process,read2,gen2,chunk2,read3,gen3,genOverlap,validate3,load4,genAudio,concat step
    class pdf,file1,file2,file3,fileAudio data
Loading

Output Files

The pipeline generates the following files:

  • step1/extracted_text.txt: Raw text extracted from the PDF
  • step1/clean_extracted_text.txt: Cleaned and processed text
  • step2/data.pkl: Initial transcript data
  • step3/podcast_ready_data.pkl: TTS-optimized conversation data
  • step4/segments/podcast_segment_*.wav: Individual audio segments
  • step4/podcast.wav: Final concatenated podcast audio file

Troubleshooting

Common Issues

  1. PDF Extraction Fails

    • Try a different PDF file
    • Check if the PDF is password-protected
    • Ensure the PDF contains extractable text (not just images)
  2. API Connection Errors

    • Verify your API keys are correct
    • Check your internet connection
    • Ensure the API endpoints are accessible
  3. Out of Memory Errors

    • Reduce the chunk size in the configuration
    • Use a smaller model
    • Close other memory-intensive applications
  4. Audio Quality Issues

    • Try different TTS voices
    • Adjust the sample rate in the configuration
    • Check if the TTS server is running correctly

Getting Help

If you encounter issues not covered here, please:

  1. Check the logs for detailed error messages
  2. Open an issue on the GitHub repository with details about your problem
  3. Include the error message and steps to reproduce the issue

Requirements

  • Python 3.12+
  • PyPDF2
  • tqdm
  • numpy
  • soundfile
  • requests
  • pathlib
  • fastapi
  • uvicorn

Full requirements are listed in requirements.txt.

Acknowledgments

  • This project uses various open-source libraries and models
  • Special thanks to the developers of LLaMA, OpenAI, and other AI models that make this possible

For more information, visit the GitHub repository.

Best Gökdeniz Gülmez


Citing Local-NotebookLM

The Local-NotebookLM software suite was developed by Gökdeniz Gülmez. If you find Local-NotebookLM useful in your research and wish to cite it, please use the following BibTex entry:

@software{
  Local-NotebookLM,
  author = {Gökdeniz Gülmez},
  title = {{Local-NotebookLM}: A Local-NotebookLM to convert PDFs into Audio.},
  url = {https://github.com/Goekdeniz-Guelmez/Local-NotebookLM},
  version = {0.1.5},
  year = {2025},
}