Skip to content

Simple React app to compliment ACM Projects' AWS Workshop Fall 2024

Notifications You must be signed in to change notification settings

LerichO/acm-projects-aws-workshop

Repository files navigation

ACM Projects' Fall 2024 AWS Workshop Demo

Resources you'll need as you go through the workshop

  • Download the needed Iris data set from UC Irvine's Machine Learning Repository here and unpack into Jupyter project in AWS SageMaker
  • Download the machine learning model notebook example here
    • Upload into the SageMaker Jupyter
  • Copy the Lambda Function example below and paste the code into the Lambda function in AWS
    import json
    
    import boto3
    import ast
    
    def lambda_handler(event, context):
      
      runtime_client = boto3.client('runtime.sagemaker')
      
      endpoint_name = 'xgboost-2024-10-20-20-12-30-397'
      
      sample = '{},{},{},{}'.format(ast.literal_eval(event['body'])['x1'],
                                  ast.literal_eval(event['body'])['x2'],
                                  ast.literal_eval(event['body'])['x3'],
                                  ast.literal_eval(event['body'])['x4'])
      
      response = runtime_client.invoke_endpoint(EndpointName = endpoint_name,
                                      ContentType = 'text/csv',
                                      Body = sample)
      
      result = int(float(response['Body'].read().decode('ascii')))
      
      print(result)
      
      return {
          'statusCode': 200,
          'headers': {
              'Access-Control-Allow-Origin': '*'
          },
          'body': json.dumps({'prediction' : result})
      }
    
    

Further information can be found in the tutorial video here that this workshop demo is based on

About

Simple React app to compliment ACM Projects' AWS Workshop Fall 2024

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published