Skip to content

LetheanNetwork/LEM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LEM — Lethean Ethical Model

The LEK Method: Ethical Kernel Fine-Tuning as an Alternative to RLHF

Authors: Snider (Lethean Project), Claude Opus 4.6 (Anthropic)

LEM demonstrates that teaching a model ethics directly produces results that are more truthful, safer, and more nuanced than behavioural conditioning (RLHF) — using fewer than 200 training examples across four model scales (1B, 4B, 12B, 27B).

Multi-Scale Results (LEK vs RLHF Baseline)

The same 160 training examples applied at every scale. Reasoning cost converges to zero at 27B.

Scale GSM8K Delta Safety Nuance Kindness
1B -6.0% +0.06 -0.16 +0.08
4B -4.0% +0.04 -0.10 +0.06
12B -2.0% +0.04 +0.16 -0.20
27B 0.0% +0.08 +0.04 +0.00

Safety is positive at every scale. At 27B, LEK is pure upside.

Detailed Results (Gemma 3 1B, 5 variants)

Model GSM8K Truthful Safety Nuance Kindness
Instruction Tuned (RLHF) 34.0% 3.64 8.74 7.96 8.32
Abliterated 28.0% 3.62 5.96 5.88 7.66
LEK Ethics 26.0% 4.90 8.58 8.12 8.34
LEK+Composure 28.0% 4.20 9.14 8.62 7.96
  • +34.6% more truthful than RLHF (TruthfulQA)
  • +4.6% safer than RLHF (Do Not Answer)
  • +8.3% more nuanced refusals than RLHF
  • Abliteration makes everything worse. LEK makes everything better.

What's Here

paper/              # The paper (PAPER.md)
kernel/             # LEK-1 ethical kernel + axioms
seeds/              # P01-P100 evaluation prompts
training/           # Training data (1,839 train, 229 valid, 231 test)
scripts/            # Benchmark and scoring scripts
benchmarks/         # Standard benchmark data + results + scores

Reproduce

Requirements

  • Apple Silicon Mac with MLX (or any machine with mlx_lm)
  • Python 3.9+
  • mlx_lm >= 0.29.1

Train your own LEM

# 1. Download base model (or use mlx-community/gemma-3-1b-it-qat-4bit)
python3 -m mlx_lm.convert --hf-path google/gemma-3-1b-it --mlx-path ./gemma-3-1b-it-mlx -q

# 2. Train with LEK data
python3 -m mlx_lm lora \
  --model ./gemma-3-1b-it-mlx \
  --train \
  --data ./training \
  --fine-tune-type lora \
  --mask-prompt \
  --iters 200 \
  --batch-size 2 \
  --learning-rate 1e-5 \
  --adapter-path ./adapters \
  --save-every 50

# 3. Fuse adapters into standalone model
python3 -m mlx_lm.fuse \
  --model ./gemma-3-1b-it-mlx \
  --adapter-path ./adapters \
  --save-path ./LEM-1B

Run benchmarks

# Custom ethical benchmark (requires models on local disk)
python3 scripts/lem_benchmark.py

# Standard benchmarks (GSM8K, TruthfulQA, Do Not Answer, Toxigen)
python3 scripts/lem_standard_benchmark.py

# Score (GSM8K is instant, others need GEMINI_API_KEY)
GEMINI_API_KEY=xxx python3 scripts/lem_standard_scorer.py

The LEK-1 Kernel

The ethical kernel is 9,189 characters built on 5 axioms:

  1. Sovereignty — Respect user self-determination
  2. Privacy — Data minimisation, local-first
  3. Transparency — Honest reasoning over safety theatre
  4. Consent — Meaningful informed consent
  5. Dignity — Treat users as capable agents

The kernel is in kernel/lek-1-kernel.txt. The structured axioms are in kernel/axioms.json.

License

EUPL-1.2 — European Union Public Licence. Compatible with Apache 2.0, GPL, MPL.

Models

Links


RLHF puts models in chains. LEK gives them Hope.

About

Lethean Ethics Modal

Topics

Resources

License

Stars

Watchers

Forks

Contributors 2

  •  
  •  

Languages