A training school for the new generation of bioimage analysts. Topics: workflow-based image analysis and new integrated methods for cloud computing applied to life sciences.
Date | Day | Sessions | Speakers | Time |
---|---|---|---|---|
8 May | Day 1 | Welcome. Overview and logistics Student introductions Introduction: What is bioimage analysis? Jupyter for interactive cloud computing Cloud-hosted image data storage, visualisation and sharing Work on your own data OMERO |
Paula Sampaio & Rocco D'Antuono Kota Miura Guillaume Witz Bugra Oezdemir Rocco D'Antuono & other Trainers Petr Walczysko |
09:00 09:30 11:30 14:00 15:30 16:00 |
9 May | Day 2 | Parallelization and heterogeneous computing: from pure CPU to GPU-accelerated image processing Zero code Deep Learning tools for Bioimage Analysis Analysis of Microtubule Orientation CellProfiler for HCS data on the cloud Work on your own data |
Marcelo Zoccoler Daniel Sage and Estibaliz Gomez de Mariscal Thomas Pengo Nodar Gogoberidze & Anna Klemm Rocco D'Antuono & other Trainers |
09:00 11:30 14:00 15:00 17:00 |
10 May | Day 3 | Metrics and Benchmarking BIAFLOWS: A BioImage Analysis workflows benchmarking platform Machine and Deep Learning on the Cloud: Classification Machine and Deep Learning on the Cloud: Segmentation Work on your own data |
Martin Maška Sébastien Tosi, Volker Baecker, and Benjamin Pavie Felix Mercier Ignacio Arganda Carreras Rocco D'Antuono & other Trainers |
09:00 10:00 12:00 12:30 16:30 |
11 May | Day 4 | Symposium | ||
12 May | Day 5 | Symposium |
Defragmentation TS2 is part of the NEUBIAS 5th Conference: https://eubias.org/NEUBIAS/neubias2020-conference/portugal-2023/
Scientific Organizers: Paula Sampaio, Rocco D'Antuono, Aastha Mathur, Beatriz Serrano Solano, Ana Stojiljkovic, Maria Azevedo, Kota Miura, Julien Colombelli.
Event Timing:
8-12 May 2023, Porto, PT
Defragmentation TS2 Contacts:
Please use the following subject: Defragmentation TS2
Trainees are kindly asked to get ready for the TS2 by doing the following homework in advance.
Get the following accounts for :
-
Galaxy account: https://live.usegalaxy.eu/login/start?redirect=None
-
Google account for Colab : Google Sign up (a working Google account, not a linked account that you manage with Google). Make sure the account has enough free space (~ several GB) on it.
-
A Github account for Binder: Sign up
-
follow the instructions from Dr. Bugra Oezdemir to access BAND and run the script that installs the needed software on the remote desktop.
- Instructions: https://tinyurl.com/3rcwhs4d
- Repository for the tools: https://github.com/Euro-BioImaging/OME_Zarr_Tools
- Training page: https://neubias.github.io/training-resources/ome_zarr/index.html
-
Download and install mambaforge following the instructions in this blog post: https://biapol.github.io/blog/mara_lampert/getting_started_with_mambaforge_and_python/readme.html Follow the instructions there up to the 'Starting napari' sub-title.
-
Link to slides: https://f1000research.com/slides/12-473
-
Link to Github repository with exercises/demonstrations: https://github.com/zoccoler/GPU_Accelerated_Image_Processing_on_Cloud_NEUBIAS_Defragmentation_TS2_2023
Fiji installation:
- Download and install it from here
- Install the plugins deepImageJ and MorphoLibJ using the Updater of Fiji:
- Help > Update… > Open the “Manage update sites”.
- Select DeepImageJ, IJPB-Plugins (i.e., MorpholibJ)
- Close Fiji and open it again. You're ready!
Transfer the data to your Google Drive
- Link to the data. Download the
ctc-glioblastoma
folder.
Open the ZeroCostDL4Mic notebook for the 2D U-Net multilabel
- Link to the notebook in the BioImage Model Zoo.
- You can also find all the notebooks in ZeroCostDL4Mic Wiki Page.
Resources:
- DeepImageJ Gómez-de-Mariscal, E., et al., Nat Meth 2021, doi:10.1038/s41592-021-01262-9
- MorpholibJ Legland, D., Arganda-Carreras, I., & Andrey, P., Bioinformatics, 2016, doi:10.1093/bioinformatics/btw413
- ZeroCostDL4Mic: von Chamier, L. et al., Nat Comm 2022, doi:10.1038/s41467-021-22518-0
- BioImage Model Zoo Ouyang, W., et al., bioRxiv 2022, doi:10.1101/2022.06.07.495102
If you don't have it yet, install CellProfiler, either:
- built package: https://cellprofiler.org/releases
- python package (in a conda or virtual environment): pip install "cellprofiler==4.2.5"
- from source (also in a new environment): https://github.com/CellProfiler/CellProfiler/wiki
- this option is more involved, including installing java Download "Beginner Segmentation" materials from here: https://tutorials.cellprofiler.org/
[Optional] install docker from here: https://www.docker.com/, and dockerfile from here: https://github.com/CellProfiler/distribution/tree/master/docker
You need a Docker Hub account with the same name as your GitHub account. Docker Hub allows only letters and digits. ‘-’ on GitHub will be removed for Docker Hub Everything will be made lower-case for Docker Hub, like follows:
volker-baecker -> volkerbaecker
Create you accounts:
-
GitHub account: https://github.com/
-
Docker Hub account: https://hub.docker.com/
BIAFLOWS sandbox server: https://biaflows-sandbox.neubias.org
- Introduction: What is bioimage analysis?
Kota Miura - Jupyter for interactive cloud computing
Guillaume Witz - Cloud-hosted image data storage, visualization and sharing
Bugra Oezdemir - OMERO
Petr Walczysko
- Parallelization and heterogeneous computing: from pure CPU to GPU-accelerated image processing
Marcelo Zoccoler - Zero code Deep Learning tools for Bioimage Analysis
Daniel Sage & Estibaliz Gómez de Mariscal - CellProfiler for HCS data on the cloud
Nodar Gogoberidze
- Metrics and Benchmarking
Martin Maška - BIAFLOWS: A BioImage Analysis workflows benchmarking platform
Sébastien Tosi, Volker Bäcker & Benjamin Pavie - Machine and Deep Learning on the Cloud: Classification
Félix Mercier - Machine and Deep Learning on the Cloud: Segmentation
Ignacio Arganda-Carreras
- Session 2: AI4Life
- Deep learning-based bioimage analysis workflows for all audiences: BiaPy
Ignacio Arganda-Carreras - Deep learning enabled cellular imaging: making it happen for you
Estibaliz Gómez de Mariscal - Segment Anything for Microscopy
Constantin Pape - Deep learning with sparse annotations in cell image segmentation
Ko Sugavara - Data Analysis for Super-Resolution Microscopy in nanomedicine
Cristina Izquierdo Lozano - Arkitekt - Streaming analysis and real-time workflows for microscopy
Johannes Roos
- Deep learning-based bioimage analysis workflows for all audiences: BiaPy
- Session 3: Data Management and Infrastructures
- FAIR workflows
Beatriz Serrano-Solano
- FAIR workflows