Skip to content

Akoumparouli/nemo ux ckpt conv bugfix #4684

Akoumparouli/nemo ux ckpt conv bugfix

Akoumparouli/nemo ux ckpt conv bugfix #4684

Workflow file for this run

# Copyright (c) 2020-2021, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: "CICD NeMo"
on:
pull_request:
branches:
- 'main'
- 'r**'
types: [ labeled ]
workflow_dispatch:
inputs:
test_to_run:
required: false
default: all
type: string
description: Comma-separated list of tests to run. Use "all" to run the full test suite.
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
jobs:
pre-flight:
runs-on: ubuntu-latest
outputs:
test_to_run: ${{ steps.test_to_run.outputs.main }}
all: ${{ steps.all.outputs.main }}
steps:
- name: Parse test_to_run
id: test_to_run
run: |
parsed_string=$(echo ${{ inputs.test_to_run || 'all' }} | jq -c --raw-input 'split(",")')
echo "main=${parsed_string}" | tee -a "$GITHUB_OUTPUT"
- name: Parse all
id: all
run: |
echo "main=${{ contains(fromJSON(steps.test_to_run.outputs.main), 'all') }}" | tee -a "$GITHUB_OUTPUT"
gpu-test:
needs: [pre-flight]
runs-on: self-hosted-azure
if: ${{ github.event.label.name == 'Run CICD' || github.event_name == 'workflow_dispatch' }}
steps:
- name: Run nvidia-smi test
run: |
whoami
nvidia-smi
cicd-cluster-clean:
runs-on: self-hosted-azure-builder
needs: [pre-flight]
if: ${{ github.event.label.name == 'Run CICD' || github.event_name == 'workflow_dispatch' }}
steps:
- name: Clean server from old files
run: |
docker container prune --filter "until=24h" --force
docker image prune -a --filter "until=24h" --force
cicd-test-container-setup:
needs: [cicd-cluster-clean, pre-flight]
runs-on: self-hosted-azure-builder
if: ${{ github.event.label.name == 'Run CICD' || github.event_name == 'workflow_dispatch' }}
outputs:
test_to_run: ${{ needs.pre-flight.outputs.test_to_run }}
all: ${{ needs.pre-flight.outputs.all }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
path: ${{ github.run_id }}
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
# We use `docker` driver as this speeds things up for
# trivial (non-multi-stage) builds.
driver: docker
- name: Build and push
uses: docker/build-push-action@v5
with:
file: Dockerfile.ci
push: true
cache-from: nemoci.azurecr.io/nemo_container:latest
cache-to: type=inline
tags: |
nemoci.azurecr.io/nemo_container_${{ github.run_id }}
nemoci.azurecr.io/nemo_container:latest
- name: Run some checks
run: |
docker run --rm --device=/dev/nvidia0 --gpus all --shm-size=8g --env TRANSFORMERS_OFFLINE=0 --env HYDRA_FULL_ERROR=1 --env PYTHONUNBUFFERED=1 nemoci.azurecr.io/nemo_container_${{ github.run_id }} bash -c '\
# PyTorch Lightning version
python -c "import pytorch_lightning; print(pytorch_lightning.__version__)"
# PyTorch Lightning DDP Checks
CUDA_VISIBLE_DEVICES="0,1" python "tests/core_ptl/check_for_ranks.py"
# Basic Import Checks
python -c "import nemo.collections.asr as nemo_asr"
python -c "import nemo.collections.nlp as nemo_nlp"
python -c "import nemo.collections.tts as nemo_tts"
python setup.py style
python tests/check_copyright_header.py --dir .
# These checks are not crucial
exit 0
'
### \'\'
# L0: GPU unit tests
OPTIONAL_L0_Unit_Tests_GPU_ASR:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'OPTIONAL_L0_Unit_Tests_GPU_ASR') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
TIMEOUT: 20
SCRIPT: |
NEMO_NUMBA_MINVER=0.53 pytest tests/collections/asr -m "not pleasefixme" --with_downloads
IS_OPTIONAL: true
OPTIONAL_L0_Unit_Tests_GPU_Audio:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'OPTIONAL_L0_Unit_Tests_GPU_Audio') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
TIMEOUT: 20
SCRIPT: |
NEMO_NUMBA_MINVER=0.53 pytest tests/collections/audio -m "not pleasefixme" --with_downloads
IS_OPTIONAL: true
L0_Unit_Tests_GPU_Common:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L0_Unit_Tests_GPU_Common') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
NEMO_NUMBA_MINVER=0.53 pytest tests/collections/common -m "not pleasefixme" --with_downloads
L0_Unit_Tests_GPU_LLM:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L0_Unit_Tests_GPU_LLM') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
NEMO_NUMBA_MINVER=0.53 pytest tests/collections/llm -m "not pleasefixme" --with_downloads
L0_Unit_Tests_GPU_Multimodal:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L0_Unit_Tests_GPU_Multimodal') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
NEMO_NUMBA_MINVER=0.53 pytest tests/collections/multimodal -m "not pleasefixme" --with_downloads
OPTIONAL_L0_Unit_Tests_GPU_NLP:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'OPTIONAL_L0_Unit_Tests_GPU_NLP') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
NEMO_NUMBA_MINVER=0.53 pytest tests/collections/nlp -m "not pleasefixme" --with_downloads
IS_OPTIONAL: true
OPTIONAL_L0_Unit_Tests_GPU_TTS:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'OPTIONAL_L0_Unit_Tests_GPU_TTS') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
NEMO_NUMBA_MINVER=0.53 pytest tests/collections/tts -m "not pleasefixme" --with_downloads
IS_OPTIONAL: true
OPTIONAL_L0_Unit_Tests_GPU_Core:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'OPTIONAL_L0_Unit_Tests_GPU_Core') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
TIMEOUT: 20
SCRIPT: |
NEMO_NUMBA_MINVER=0.53 pytest tests/core -m "not pleasefixme" --with_downloads
IS_OPTIONAL: true
L0_Unit_Tests_GPU_Hydra:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L0_Unit_Tests_GPU_Hydra') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
NEMO_NUMBA_MINVER=0.53 pytest tests/hydra -m "not pleasefixme" --with_downloads
OPTIONAL_L0_Unit_Tests_GPU_Lightning:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'OPTIONAL_L0_Unit_Tests_GPU_Lightning') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
NEMO_NUMBA_MINVER=0.53 pytest tests/lightning -m "not pleasefixme" --with_downloads
IS_OPTIONAL: true
L0_Unit_Tests_GPU_Others:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L0_Unit_Tests_GPU_Others') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
NEMO_NUMBA_MINVER=0.53 pytest -m "not pleasefixme" --with_downloads \
--ignore=tests/collections/asr \
--ignore=tests/collections/audio \
--ignore=tests/collections/common \
--ignore=tests/collections/llm \
--ignore=tests/collections/multimodal \
--ignore=tests/collections/nlp \
--ignore=tests/collections/tts \
--ignore=tests/core \
--ignore=tests/core_ptl \
--ignore=tests/hydra \
--ignore=tests/lightning \
--ignore=tests/utils
# L0: CPU unit tests
OPTIONAL_L0_Unit_Tests_CPU_ASR:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'OPTIONAL_L0_Unit_Tests_CPU_ASR') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-cpu
TIMEOUT: 20
SCRIPT: |
CUDA_VISIBLE_DEVICES="" NEMO_NUMBA_MINVER=0.53 pytest tests/collections/asr -m "not pleasefixme" --cpu --with_downloads --relax_numba_compat
IS_OPTIONAL: true
OPTIONAL_L0_Unit_Tests_CPU_Audio:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'OPTIONAL_L0_Unit_Tests_CPU_Audio') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-cpu
SCRIPT: |
CUDA_VISIBLE_DEVICES="" NEMO_NUMBA_MINVER=0.53 pytest tests/collections/audio -m "not pleasefixme" --cpu --with_downloads --relax_numba_compat
IS_OPTIONAL: true
OPTIONAL_L0_Unit_Tests_CPU_Common:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'OPTIONAL_L0_Unit_Tests_CPU_Common') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-cpu
TIMEOUT: 20
SCRIPT: |
CUDA_VISIBLE_DEVICES="" NEMO_NUMBA_MINVER=0.53 pytest tests/collections/common -m "not pleasefixme" --cpu --with_downloads --relax_numba_compat
IS_OPTIONAL: true
L0_Unit_Tests_CPU_LLM:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L0_Unit_Tests_CPU_LLM') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-cpu
SCRIPT: |
CUDA_VISIBLE_DEVICES="" NEMO_NUMBA_MINVER=0.53 pytest tests/collections/llm -m "not pleasefixme" --cpu --with_downloads --relax_numba_compat
L0_Unit_Tests_CPU_Multimodal:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L0_Unit_Tests_CPU_Multimodal') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-cpu
SCRIPT: |
CUDA_VISIBLE_DEVICES="" NEMO_NUMBA_MINVER=0.53 pytest tests/collections/multimodal -m "not pleasefixme" --cpu --with_downloads --relax_numba_compat
OPTIONAL_L0_Unit_Tests_CPU_NLP:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'OPTIONAL_L0_Unit_Tests_CPU_NLP') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-cpu
TIMEOUT: 20
SCRIPT: |
CUDA_VISIBLE_DEVICES="" NEMO_NUMBA_MINVER=0.53 pytest tests/collections/nlp -m "not pleasefixme" --cpu --with_downloads --relax_numba_compat
IS_OPTIONAL: true
OPTIONAL_L0_Unit_Tests_CPU_TTS:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'OPTIONAL_L0_Unit_Tests_CPU_TTS') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-cpu
SCRIPT: |
CUDA_VISIBLE_DEVICES="" NEMO_NUMBA_MINVER=0.53 pytest tests/collections/tts -m "not pleasefixme" --cpu --with_downloads --relax_numba_compat
IS_OPTIONAL: true
OPTIONAL_L0_Unit_Tests_CPU_Core:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'OPTIONAL_L0_Unit_Tests_CPU_Core') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-cpu
TIMEOUT: 20
SCRIPT: |
CUDA_VISIBLE_DEVICES="" NEMO_NUMBA_MINVER=0.53 pytest tests/core tests/core_ptl -m "not pleasefixme" --cpu --with_downloads --relax_numba_compat
IS_OPTIONAL: true
L0_Unit_Tests_CPU_Hydra:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L0_Unit_Tests_CPU_Hydra') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-cpu
SCRIPT: |
CUDA_VISIBLE_DEVICES="" NEMO_NUMBA_MINVER=0.53 pytest tests/hydra -m "not pleasefixme" --cpu --with_downloads --relax_numba_compat
L0_Unit_Tests_CPU_Lightning:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L0_Unit_Tests_CPU_Lightning') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-cpu
SCRIPT: |
CUDA_VISIBLE_DEVICES="" NEMO_NUMBA_MINVER=0.53 pytest tests/lightning -m "not pleasefixme" --cpu --with_downloads --relax_numba_compat
L0_Unit_Tests_CPU_Others:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L0_Unit_Tests_CPU_Others') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-cpu
SCRIPT: |
CUDA_VISIBLE_DEVICES="" NEMO_NUMBA_MINVER=0.53 pytest -m "not pleasefixme" --cpu --with_downloads --relax_numba_compat \
--ignore=tests/collections/asr \
--ignore=tests/collections/audio \
--ignore=tests/collections/common \
--ignore=tests/collections/llm \
--ignore=tests/collections/multimodal \
--ignore=tests/collections/nlp \
--ignore=tests/collections/tts \
--ignore=tests/core \
--ignore=tests/core_ptl \
--ignore=tests/hydra \
--ignore=tests/lightning \
--ignore=tests/utils
IS_OPTIONAL: true
L0_Setup_Test_Data_And_Models:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L0_Setup_Test_Data_And_Models') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python -m tests.setup --save_dir /home/TestData/nlp
# - name: L2: Multimodal Imagen Train
# L2: Community LLM Checkpoints tests
L2_Community_LLM_Checkpoints_tests_Bert:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Community_LLM_Checkpoints_tests_Bert') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python scripts/checkpoint_converters/convert_bert_hf_to_nemo.py \
--input_name_or_path /home/TestData/nlp/megatron_ir/sbert/hf_model/bert-base-uncased \
--output_path /home/TestData/nlp/megatron_ir/sbert/sbert.nemo
AFTER_SCRIPT: |
rm -f /home/TestData/nlp/megatron_ir/sbert/sbert.nemo
rm -rf /home/TestData/nlp/megatron_ir/sbert/model_weights
L2_Community_LLM_Checkpoints_tests_Mamba2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Community_LLM_Checkpoints_tests_Mamba2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python scripts/checkpoint_converters/convert_mamba2_pyt_to_nemo.py \
--input_name_or_path /home/TestData/nlp/megatron_mamba/model_optim_rng.pt \
--output_path /home/TestData/nlp/megatron_mamba/converted_mamba.nemo \
--precision=bf16 \
--mamba_ssm_ngroups 1
AFTER_SCRIPT: |
rm -f /home/TestData/nlp/megatron_mamba/converted_mamba.nemo
rm -rf /home/TestData/nlp/megatron_mamba/model_weights
L2_Community_LLM_Checkpoints_tests_Llama:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Community_LLM_Checkpoints_tests_Llama') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
CUDA_VISIBLE_DEVICES=0 python scripts/checkpoint_converters/convert_llama_hf_to_nemo.py \
--input_name_or_path=/home/TestData/nlp/megatron_llama/llama-ci-hf-tiny \
--output_path=/home/TestData/nlp/megatron_llama/llama_ci.nemo \
--precision=16
AFTER_SCRIPT: |
rm -rf /home/TestData/nlp/megatron_llama/model_weights
L2_Community_LLM_Checkpoints_tests_Llama3:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Community_LLM_Checkpoints_tests_Llama3') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
CUDA_VISIBLE_DEVICES=0 python scripts/checkpoint_converters/convert_llama_hf_to_nemo.py \
--input_name_or_path=/home/TestData/nlp/megatron_llama/llama3-ci-hf \
--output_path=/home/TestData/nlp/megatron_llama/llama3-ci-hf/llama3_ci.nemo \
--precision=16
AFTER_SCRIPT: |
rm -f /home/TestData/nlp/megatron_llama/llama3-ci-hf/llama3_ci.nemo
rm -rf /home/TestData/nlp/megatron_llama/llama3-ci-hf/model_weights
L2_Community_LLM_Checkpoints_tests_StarCoder:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Community_LLM_Checkpoints_tests_StarCoder') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
mkdir -p /home/TestData/nlp/megatron_gpt/starcoder-ci-hf/${{ github.run_id }};
python scripts/checkpoint_converters/convert_starcoder_hf_to_nemo.py \
--input_name_or_path /home/TestData/nlp/megatron_gpt/starcoder-ci-hf \
--output_path /home/TestData/nlp/megatron_gpt/starcoder-ci-hf/${{ github.run_id }}
AFTER_SCRIPT: |
rm -rf /home/TestData/nlp/megatron_gpt/starcoder-ci-hf/megatron_starcoder_tp1_pp1.nemo;
rm -rf /home/TestData/nlp/megatron_gpt/starcoder-ci-hf/${{ github.run_id }}/
rm -rf /home/TestData/nlp/megatron_gpt/starcoder-ci-hf/model_weights
L2_Community_LLM_Checkpoints_tests_Falcon:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Community_LLM_Checkpoints_tests_Falcon') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python scripts/checkpoint_converters/convert_falcon_hf_to_nemo.py \
--input_name_or_path /home/TestData/nlp/megatron_gpt/falcon-ci-hf \
--output_path /home/TestData/nlp/megatron_gpt/falcon-ci-hf/falcon_ci.nemo
rm -f /home/TestData/nlp/megatron_gpt/falcon-ci-hf/falcon_ci.nemo
AFTER_SCRIPT: |
rm -rf /home/TestData/nlp/megatron_gpt/falcon-ci-hf/model_weights
# L2: Community llava multimodal Checkpoints tests
L2_Community_vita_Checkpoints_tests_Llama3:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Community_vita_Checkpoints_tests_Llama3') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
mkdir /home/TestData/multimodal/video_neva/llama3-ci-hf/${{ github.run_id }}
export PYTHONPATH=/home/TestData/multimodal/video_neva/LLaVA:$PYTHONPATH
CUDA_VISIBLE_DEVICES=0 python examples/multimodal/multimodal_llm/neva/convert_llava_to_neva.py \
--in-file /home/TestData/multimodal/video_neva/Llama-3-VILA1.5-8B/llm \
--mm-projector-ckpt-dir /home/TestData/multimodal/video_neva/Llama-3-VILA1.5-8B/mm_projector \
--mm-vision-tower /home/TestData/multimodal/video_neva/Llama-3-VILA1.5-8B/vision_tower \
--tokenizer-model /home/TestData/multimodal/video_neva/vita-tokenizer/ \
--config-file vita_config.yaml \
--out-file=/home/TestData/multimodal/video_neva/llama3-ci-hf/${{ github.run_id }}/llama3_ci.nemo \
--model-type VITA \
--conv-template llama_3
AFTER_SCRIPT: |
rm -rf /home/TestData/multimodal/video_neva/llama3-ci-hf/${{ github.run_id }}
# this test is using a 7B model which is too large for GitHub CI
# replace the model in this test with a toy model or move the test
# to the nightly CI
# OPTIONAL_L2_Community_LLM_Checkpoints_tests_Baichuan2:
# needs: [cicd-test-container-setup]
# runs-on: self-hosted-azure
# container:
# image: nemoci.azurecr.io/nemo_container_${{ github.run_id }}
# options:
# # --user 0:128
# --device=/dev/nvidia0
# --gpus all
# --shm-size=8g
# --env TRANSFORMERS_OFFLINE=0
# --env HYDRA_FULL_ERROR=1
# --volume /mnt/datadrive/TestData:/home/TestData
# steps:
# - name: Checkout repository
# uses: actions/checkout@v4
# - run: |
# python scripts/checkpoint_converters/convert_baichuan2_hf_to_nemo.py \
# --input_name_or_path=/home/TestData/nlp/megatron_gpt/Baichuan2-7B-Base \
# --output_path=/home/TestData/nlp/megatron_gpt/Baichuan2-7B-Base/ci.nemo
# rm -f /home/TestData/nlp/megatron_gpt/Baichuan2-7B-Base/ci.nemo
# - uses: "NVIDIA/NeMo/.github/actions/cancel-workflow@main"
# if: "failure()"
L2_PTQ_Llama2_Export_Only:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_PTQ_Llama2_Export_Only') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_gpt_ptq.py \
model.restore_from_path=/home/TestData/nlp/megatron_llama/llama_ci.nemo \
quantization.algorithm=null \
export.save_path=/home/TestData/nlp/megatron_llama/ci_baseline
AFTER_SCRIPT: |
rm -rf /home/TestData/nlp/megatron_llama/ci_baseline
L2_PTQ_Llama2_FP8:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_PTQ_Llama2_FP8') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_gpt_ptq.py \
model.restore_from_path=/home/TestData/nlp/megatron_llama/llama_ci.nemo \
model.tensor_model_parallel_size=2 \
trainer.devices=2 \
quantization.calib_dataset=/home/TestData/nlp/test_quantization/test.json \
quantization.algorithm=fp8 \
quantization.num_calib_size=8 \
inference.batch_size=2 \
export.inference_tensor_parallel=2 \
export.sample_output=False \
export.save_path=/home/TestData/nlp/megatron_llama/ci_fp8.qnemo
AFTER_SCRIPT: |
rm -rf /home/TestData/nlp/megatron_llama/ci_fp8.qnemo
OPTIONAL_L2_PTQ_Llama2_INT8_SQ:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'OPTIONAL_L2_PTQ_Llama2_INT8_SQ') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
TIMEOUT: 15
SCRIPT: |
python examples/nlp/language_modeling/megatron_gpt_ptq.py \
model.restore_from_path=/home/TestData/nlp/megatron_llama/llama_ci.nemo \
quantization.calib_dataset=/home/TestData/nlp/test_quantization/test.json \
quantization.algorithm=int8_sq \
quantization.num_calib_size=8 \
inference.batch_size=2 \
export.sample_output=False \
export.save_path=/home/TestData/nlp/megatron_llama/ci_int8_sq.qnemo
AFTER_SCRIPT: |
rm -rf /home/TestData/nlp/megatron_llama/ci_int8_sq.qnemo
IS_OPTIONAL: true
# TODO: investigate int4_awq stuck issues and restore the test
#L2_PTQ_Llama2_INT4_AWQ:
# needs: [cicd-test-container-setup]
# runs-on: self-hosted-azure
# timeout-minutes: 10
# container:
# image: nemoci.azurecr.io/nemo_container_${{ github.run_id }}
# options:
# # --user 0:128
# --device=/dev/nvidia0
# --gpus all
# --shm-size=8g
# --env TRANSFORMERS_OFFLINE=0
# --env HYDRA_FULL_ERROR=1
# --volume /mnt/datadrive/TestData:/home/TestData
# steps:
# - name: Checkout repository
# uses: actions/checkout@v4
# - run: |
# python examples/nlp/language_modeling/megatron_gpt_ptq.py \
# model.restore_from_path=/home/TestData/nlp/megatron_llama/llama_ci.nemo \
# model.tensor_model_parallel_size=1 \
# trainer.devices=1 \
# quantization.calib_dataset=/home/TestData/nlp/test_quantization/test.json \
# quantization.algorithm=int4_awq \
# quantization.num_calib_size=8 \
# inference.batch_size=2 \
# export.save_path=/home/TestData/nlp/megatron_llama/ci_int4_awq.qnemo
#
# rm -rf /home/TestData/nlp/megatron_llama/ci_int4_awq.qnemo
#- uses: "NVIDIA/NeMo/.github/actions/cancel-workflow@main"
# if: "failure()"
# OPTIONAL_L2_QAT_Llama2_INT4:
# needs: [cicd-test-container-setup]
# runs-on: self-hosted-azure
# timeout-minutes: 10
# container:
# image: nemoci.azurecr.io/nemo_container_${{ github.run_id }}
# options:
# # --user 0:128
# --device=/dev/nvidia0
# --gpus all
# --shm-size=8g
# --env TRANSFORMERS_OFFLINE=0
# --env HYDRA_FULL_ERROR=1
# --volume /mnt/datadrive/TestData:/home/TestData
# steps:
# - name: Checkout repository
# uses: actions/checkout@v4
# - run: |
# python examples/nlp/language_modeling/tuning/megatron_gpt_qat.py \
# quantization.algorithm=int4 \
# quantization.num_calib_size=8 \
# trainer.devices=1 \
# trainer.num_nodes=1 \
# trainer.max_steps=4 \
# trainer.val_check_interval=4 \
# +trainer.limit_val_batches=2 \
# exp_manager.explicit_log_dir=llama2_qat_results \
# model.restore_from_path=/home/TestData/nlp/megatron_llama/llama_ci.nemo \
# model.tensor_model_parallel_size=1 \
# model.pipeline_model_parallel_size=1 \
# model.global_batch_size=2 \
# model.data.train_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl] \
# model.data.train_ds.concat_sampling_probabilities=[1.0] \
# model.data.validation_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl]
# rm -rf llama2_qat_results
L2_Distill_Llama2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Distill_Llama2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_gpt_distillation.py \
trainer.devices=2 \
trainer.num_nodes=1 \
trainer.precision=bf16 \
trainer.max_steps=5 \
trainer.log_every_n_steps=5 \
trainer.val_check_interval=5 \
trainer.limit_val_batches=2 \
model.restore_from_path=/home/TestData/nlp/megatron_llama/llama_ci.nemo \
model.kd_teacher_restore_from_path=/home/TestData/nlp/megatron_llama/llama_ci.nemo \
model.tensor_model_parallel_size=2 \
model.pipeline_model_parallel_size=1 \
model.micro_batch_size=1 \
model.global_batch_size=4 \
model.optim.name=distributed_fused_adam \
model.optim.sched.warmup_steps=1 \
model.data.data_prefix=[1.0,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document] \
model.data.index_mapping_dir=examples/nlp/language_modeling/gpt_index_mappings \
exp_manager.exp_dir=examples/nlp/megatron_llama_distill
AFTER_SCRIPT: |
rm -rf examples/nlp/megatron_llama_distill
# L2: ASR dev run
ASR_dev_run_Speech_to_Text:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'ASR_dev_run_Speech_to_Text') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
python examples/asr/asr_ctc/speech_to_text_ctc.py \
model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \
model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=True \
exp_manager.exp_dir=examples/asr/speech_to_text_results
AFTER_SCRIPT: |
rm -rf examples/asr/speech_to_text_results
ASR_dev_run_Speech_to_Text_WPE_-_CitriNet:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'ASR_dev_run_Speech_to_Text_WPE_-_CitriNet') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
python examples/asr/asr_ctc/speech_to_text_ctc_bpe.py \
--config-path="../conf/citrinet/" --config-name="config_bpe" \
model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \
model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \
model.tokenizer.dir="/home/TestData/asr_tokenizers/an4_wpe_128/" \
model.tokenizer.type="wpe" \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=True \
exp_manager.exp_dir=examples/asr/speech_to_text_wpe_results
AFTER_SCRIPT: |
rm -rf examples/asr/speech_to_text_wpe_results
ASR_dev_run_Speech_Pre-training_-_CitriNet:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'ASR_dev_run_Speech_Pre-training_-_CitriNet') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
python examples/asr/speech_pretraining/speech_pre_training.py \
--config-path="../conf/ssl/citrinet/" --config-name="citrinet_ssl_ci" \
model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \
model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=True \
exp_manager.exp_dir=examples/asr/speech_pre_training_results
AFTER_SCRIPT: |
rm -rf examples/asr/speech_pre_training_results
ASR_dev_run_Speech_To_Text_Finetuning:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'ASR_dev_run_Speech_To_Text_Finetuning') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
python examples/asr/speech_to_text_finetune.py \
--config-path="conf/asr_finetune" --config-name="speech_to_text_finetune" \
model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \
model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \
init_from_nemo_model=/home/TestData/asr/stt_en_fastconformer_transducer_large.nemo \
model.tokenizer.update_tokenizer=False \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=True \
exp_manager.exp_dir=examples/asr/speech_finetuning_results
AFTER_SCRIPT: |
rm -rf examples/asr/speech_finetuning_results
OPTIONAL_ASR_dev_run_Speech_To_Text_HF_Finetuning:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |-
python examples/asr/speech_to_text_finetune.py \
--config-path="conf/asr_finetune" --config-name="speech_to_text_hf_finetune" \
~model.train_ds.hf_data_cfg \
model.train_ds.num_workers=1 \
model.train_ds.batch_size=2 model.validation_ds.batch_size=2 \
model.train_ds.streaming=true \
+model.train_ds.hf_data_cfg.path="librispeech_asr" \
+model.train_ds.hf_data_cfg.name=null \
+model.train_ds.hf_data_cfg.split="test.clean" \
+model.train_ds.hf_data_cfg.streaming=true \
+model.train_ds.hf_data_cfg.trust_remote_code=True \
~model.validation_ds.hf_data_cfg \
model.validation_ds.streaming=true \
+model.validation_ds.hf_data_cfg.path="librispeech_asr" \
+model.validation_ds.hf_data_cfg.name=null \
+model.validation_ds.hf_data_cfg.split="test.clean" \
+model.validation_ds.hf_data_cfg.streaming=true \
+model.validation_ds.hf_data_cfg.trust_remote_code=True \
~model.test_ds \
init_from_nemo_model=/home/TestData/asr/stt_en_fastconformer_transducer_large.nemo \
model.tokenizer.update_tokenizer=False \
model.optim.sched.warmup_steps=0 \
+model.optim.sched.max_steps=3 \
trainer.max_epochs=null \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=True \
exp_manager.exp_dir=examples/asr/speech_finetuning_results
AFTER_SCRIPT: |
rm -rf examples/asr/speech_finetuning_results
IS_OPTIONAL: true
ASR_dev_run_Speech_to_Text_WPE_-_Conformer:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'ASR_dev_run_Speech_to_Text_WPE_-_Conformer') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
python examples/asr/asr_ctc/speech_to_text_ctc_bpe.py \
--config-path="../conf/conformer" --config-name="conformer_ctc_bpe" \
model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \
model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \
model.tokenizer.dir="/home/TestData/asr_tokenizers/an4_wpe_128/" \
model.tokenizer.type="wpe" \
model.train_ds.batch_size=4 \
model.validation_ds.batch_size=4 \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=True \
exp_manager.exp_dir=examples/asr/speech_to_text_wpe_conformer_results
AFTER_SCRIPT: |
rm -rf examples/asr/speech_to_text_wpe_conformer_results
# L2: ASR dev run - part two
ASR_dev_run-part_two_Speech_to_Text_WPE_-_Squeezeformer:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'ASR_dev_run-part_two_Speech_to_Text_WPE_-_Squeezeformer') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
python examples/asr/asr_ctc/speech_to_text_ctc_bpe.py \
--config-path="../conf/squeezeformer" --config-name="squeezeformer_ctc_bpe" \
model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \
model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \
model.tokenizer.dir="/home/TestData/asr_tokenizers/an4_wpe_128/" \
model.tokenizer.type="wpe" \
model.encoder.d_model=144 \
model.train_ds.batch_size=4 \
model.validation_ds.batch_size=4 \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=True \
exp_manager.exp_dir=examples/asr/speech_to_text_wpe_squeezeformer_results
AFTER_SCRIPT: |
rm -rf examples/asr/speech_to_text_wpe_squeezeformer_results
L2_Speech_to_Text_EMA:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Speech_to_Text_EMA') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/asr/asr_ctc/speech_to_text_ctc.py \
model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \
model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \
trainer.devices=2 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=True \
+exp_manager.ema.enable=True \
exp_manager.exp_dir=examples/asr/speech_to_text_results
AFTER_SCRIPT: |
rm -rf examples/asr/speech_to_text_results
L2_Speech_to_Text_AED:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Speech_to_Text_AED') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
python examples/asr/speech_multitask/speech_to_text_aed.py \
model.prompt_format=canary \
model.model_defaults.asr_enc_hidden=256 \
model.model_defaults.lm_dec_hidden=256 \
model.encoder.n_layers=12 \
model.transf_encoder.num_layers=0 \
model.transf_decoder.config_dict.num_layers=12 \
model.train_ds.manifest_filepath=/home/TestData/asr/manifests/canary/an4_canary_train.json \
model.train_ds.batch_duration=60 \
model.train_ds.use_bucketing=false \
model.train_ds.shuffle_buffer_size=100 \
model.train_ds.num_workers=0 \
+model.train_ds.text_field="answer" \
+model.train_ds.lang_field="target_lang" \
model.validation_ds.manifest_filepath=/home/TestData/asr/manifests/canary/an4_canary_val.json \
+model.validation_ds.text_field="answer" \
+model.validation_ds.lang_field="target_lang" \
model.validation_ds.num_workers=0 \
model.test_ds.manifest_filepath=/home/TestData/asr/manifests/canary/an4_canary_val.json \
+model.test_ds.text_field="answer" \
+model.test_ds.lang_field="target_lang" \
model.test_ds.num_workers=0 \
spl_tokens.model_dir=/home/TestData/asr_tokenizers/canary/canary_spl_tokenizer_v32 \
model.tokenizer.langs.en.dir=/home/TestData/asr_tokenizers/canary/en/tokenizer_spe_bpe_v1024_max_4 \
model.tokenizer.langs.en.type=bpe \
++model.tokenizer.langs.es.dir=/home/TestData/asr_tokenizers/canary/es/tokenizer_spe_bpe_v1024_max_4 \
++model.tokenizer.langs.es.type=bpe \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=True \
exp_manager.exp_dir=examples/asr/speech_to_text_aed_results
AFTER_SCRIPT: |
rm -rf examples/asr/speech_to_text_results
# L2: Speaker dev run
L2_Speaker_dev_run_Speaker_Recognition:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Speaker_dev_run_Speaker_Recognition') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
python examples/speaker_tasks/recognition/speaker_reco.py \
model.train_ds.batch_size=10 \
model.validation_ds.batch_size=2 \
model.train_ds.manifest_filepath=/home/TestData/an4_speaker/train.json \
model.validation_ds.manifest_filepath=/home/TestData/an4_speaker/dev.json \
model.decoder.num_classes=2 \
trainer.max_epochs=10 \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=True \
exp_manager.exp_dir=examples/speaker_tasks/recognition/speaker_recognition_results
AFTER_SCRIPT: |
rm -rf examples/speaker_tasks/recognition/speaker_recognition_results
L2_Speaker_dev_run_Speaker_Diarization:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Speaker_dev_run_Speaker_Diarization') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
python examples/speaker_tasks/diarization/neural_diarizer/multiscale_diar_decoder.py \
model.diarizer.speaker_embeddings.model_path=titanet_large \
model.train_ds.batch_size=5 \
model.validation_ds.batch_size=5 \
model.train_ds.emb_dir=examples/speaker_tasks/diarization/speaker_diarization_results \
model.validation_ds.emb_dir=examples/speaker_tasks/diarization/speaker_diarization_results \
model.train_ds.manifest_filepath=/home/TestData/an4_diarizer/simulated_train/msdd_data.50step.json \
model.validation_ds.manifest_filepath=/home/TestData/an4_diarizer/simulated_valid/msdd_data.50step.json \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=True \
exp_manager.exp_dir=examples/speaker_tasks/diarization/speaker_diarization_results
AFTER_SCRIPT: |
rm -rf examples/speaker_tasks/diarization/speaker_diarization_results
L2_Speaker_dev_run_Speech_to_Label:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Speaker_dev_run_Speech_to_Label') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
python examples/asr/speech_classification/speech_to_label.py \
model.train_ds.manifest_filepath=/home/TestData/speech_commands/train_manifest.json \
model.validation_ds.manifest_filepath=/home/TestData/speech_commands/test_manifest.json \
model.test_ds.manifest_filepath=/home/TestData/speech_commands/test_manifest.json \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=True \
model.preprocessor._target_=nemo.collections.asr.modules.AudioToMelSpectrogramPreprocessor \
~model.preprocessor.window_size \
~model.preprocessor.window_stride \
~model.preprocessor.window \
~model.preprocessor.n_mels \
~model.preprocessor.n_mfcc \
~model.preprocessor.n_fft \
exp_manager.exp_dir=examples/asr/speech_to_label_results
AFTER_SCRIPT: |
rm -rf examples/asr/speech_to_label_results
L2_Speaker_dev_run_Speaker_Diarization_with_ASR_Inference:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Speaker_dev_run_Speaker_Diarization_with_ASR_Inference') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/speaker_tasks/diarization/clustering_diarizer/offline_diar_with_asr_infer.py \
diarizer.manifest_filepath=/home/TestData/an4_diarizer/an4_manifest.json \
diarizer.speaker_embeddings.model_path=/home/TestData/an4_diarizer/spkr.nemo \
diarizer.speaker_embeddings.parameters.save_embeddings=True \
diarizer.speaker_embeddings.parameters.window_length_in_sec=[1.5] \
diarizer.speaker_embeddings.parameters.shift_length_in_sec=[0.75] \
diarizer.speaker_embeddings.parameters.multiscale_weights=[1.0] \
diarizer.asr.model_path=QuartzNet15x5Base-En \
diarizer.asr.parameters.asr_based_vad=True \
diarizer.out_dir=examples/speaker_tasks/diarization/speaker_diarization_asr_results
AFTER_SCRIPT: |
rm -rf examples/speaker_tasks/diarization/speaker_diarization_asr_results
L2_Speaker_dev_run_Clustering_Diarizer_Inference:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Speaker_dev_run_Clustering_Diarizer_Inference') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/speaker_tasks/diarization/clustering_diarizer/offline_diar_infer.py \
diarizer.manifest_filepath=/home/TestData/an4_diarizer/an4_manifest.json \
diarizer.speaker_embeddings.model_path=/home/TestData/an4_diarizer/spkr.nemo \
diarizer.speaker_embeddings.parameters.save_embeddings=True \
diarizer.speaker_embeddings.parameters.window_length_in_sec=1.5 \
diarizer.speaker_embeddings.parameters.shift_length_in_sec=0.75 \
diarizer.speaker_embeddings.parameters.multiscale_weights=null \
diarizer.vad.model_path=/home/TestData/an4_diarizer/MatchboxNet_VAD_3x2.nemo \
diarizer.out_dir=examples/speaker_tasks/diarization/clustering_diarizer_results
AFTER_SCRIPT: |
rm -rf examples/speaker_tasks/diarization/clustering_diarizer_results
L2_Speaker_dev_run_Neural_Diarizer_Inference:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Speaker_dev_run_Neural_Diarizer_Inference') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/speaker_tasks/diarization/neural_diarizer/multiscale_diar_decoder_infer.py \
diarizer.manifest_filepath=/home/TestData/an4_diarizer/an4_manifest.json \
diarizer.msdd_model.model_path=/home/TestData/an4_diarizer/diar_msdd_telephonic.nemo \
diarizer.speaker_embeddings.parameters.save_embeddings=True \
diarizer.vad.model_path=/home/TestData/an4_diarizer/MatchboxNet_VAD_3x2.nemo \
diarizer.out_dir=examples/speaker_tasks/diarization/neural_diarizer_results
AFTER_SCRIPT: |
rm -rf examples/speaker_tasks/diarization/neural_diarizer_results
L2_Speaker_dev_run_Multispeaker_ASR_Data_Simulation:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Speaker_dev_run_Multispeaker_ASR_Data_Simulation') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python tools/speech_data_simulator/multispeaker_simulator.py \
--config-path=conf --config-name=data_simulator.yaml \
data_simulator.random_seed=42 \
data_simulator.manifest_filepath=/home/TestData/LibriSpeechShort/dev-clean-align-short.json \
data_simulator.outputs.output_dir=./test_simulator \
data_simulator.session_config.num_sessions=2 \
data_simulator.session_config.session_length=60
AFTER_SCRIPT: |
rm -rf ./test_simulator
# L2: ASR Multi-dataloader dev run
L2_ASR_Multi-dataloader_dev_run_Speech_to_Text_multi-dataloader:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_ASR_Multi-dataloader_dev_run_Speech_to_Text_multi-dataloader') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
python examples/asr/asr_ctc/speech_to_text_ctc.py \
model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \
model.validation_ds.manifest_filepath=[/home/TestData/an4_dataset/an4_val.json,/home/TestData/an4_dataset/an4_val.json] \
trainer.devices=1 \
trainer.accelerator="gpu" \
trainer.max_epochs=1 \
trainer.max_steps=1 \
+trainer.num_sanity_val_steps=1 \
exp_manager.exp_dir=examples/asr/speech_to_text_results
AFTER_SCRIPT: |
rm -rf examples/asr/speech_to_text_results
L2_ASR_Multi-dataloader_dev_run_Speech_to_Label_multi-dataloader:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_ASR_Multi-dataloader_dev_run_Speech_to_Label_multi-dataloader') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
python examples/asr/speech_classification/speech_to_label.py \
model.train_ds.manifest_filepath=/home/TestData/speech_commands/train_manifest.json \
model.validation_ds.manifest_filepath=[/home/TestData/speech_commands/test_manifest.json,/home/TestData/speech_commands/test_manifest.json] \
trainer.devices=1 \
trainer.accelerator="gpu" \
trainer.max_epochs=1 \
trainer.max_steps=1 \
+trainer.num_sanity_val_steps=1 \
model.preprocessor._target_=nemo.collections.asr.modules.AudioToMelSpectrogramPreprocessor \
~model.preprocessor.window_size \
~model.preprocessor.window_stride \
~model.preprocessor.window \
~model.preprocessor.n_mels \
~model.preprocessor.n_mfcc \
~model.preprocessor.n_fft \
exp_manager.exp_dir=examples/asr/speech_to_label_results
AFTER_SCRIPT: |
rm -rf examples/asr/speech_to_label_results
# L2: ASR Adapters
L2_ASR_Adapters_Linear_Adapters:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_ASR_Adapters_Linear_Adapters') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
python examples/asr/asr_adapters/train_asr_adapter.py \
model.pretrained_model="stt_en_conformer_ctc_small" \
model.adapter.adapter_name="an4" \
model.adapter.linear.in_features=176 \
model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \
model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \
trainer.max_steps=5 \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=True \
exp_manager.exp_dir=examples/asr/speech_to_text_adapters_results
AFTER_SCRIPT: |
rm -rf examples/asr/speech_to_text_adapters_results
L2_ASR_Adapters_RelPos_MHA_Adapters:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_ASR_Adapters_RelPos_MHA_Adapters') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
python examples/asr/asr_adapters/train_asr_adapter.py \
model.pretrained_model="stt_en_conformer_ctc_small" \
model.adapter.adapter_name="encoder:an4" \
model.adapter.adapter_type="tiny_attn" \
model.adapter.tiny_attn.n_feat=176 \
model.train_ds.manifest_filepath=/home/TestData/an4_dataset/an4_train.json \
model.validation_ds.manifest_filepath=/home/TestData/an4_dataset/an4_val.json \
trainer.max_steps=5 \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=True \
exp_manager.exp_dir=examples/asr/speech_to_text_adapters_mha_results
AFTER_SCRIPT: |
rm -rf examples/asr/speech_to_text_adapters_mha_results
# L2: OOMptimizer
L2_Speech_Estimate_Duration_Bins:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Speech_Estimate_Duration_Bins') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
set -x
# 1D buckets [SSL, CTC]
python scripts/speech_recognition/estimate_duration_bins.py \
/home/TestData/an4_dataset/an4_train.json \
--buckets 5
# 2D buckets [CTC, RNNT, TDT] / with tokenizer
python scripts/speech_recognition/estimate_duration_bins_2d.py \
/home/TestData/an4_dataset/an4_train_lang.json \
--tokenizer /home/TestData/asr_tokenizers/canary/en/tokenizer_spe_bpe_v1024_max_4/tokenizer.model \
--buckets 5 \
--sub-buckets 2
# TODO(pzelasko): Figure out how to quote the value in the test properly for CI to accept it...
# 2D buckets with prompt [AED/Canary, SpeechLM] / with aggregate tokenizer + prompt format
# python scripts/speech_recognition/estimate_duration_bins_2d.py \
# /home/TestData/an4_dataset/an4_train_lang.json \
# --tokenizer /home/TestData/asr_tokenizers/canary/canary_spl_tokenizer_v32/tokenizer.model \
# /home/TestData/asr_tokenizers/canary/en/tokenizer_spe_bpe_v1024_max_4/tokenizer.model \
# /home/TestData/asr_tokenizers/canary/es/tokenizer_spe_bpe_v1024_max_4/tokenizer.model \
# --langs spl_tokens en es \
# --prompt-format canary \
# --prompt '[{"role":"user","slots":{"source_lang":"en","target_lang":"en","task":"asr","pnc":"yes"}}]' \
# --buckets 5 \
# --sub-buckets 2
# L2: OOMptimizer
L2_Speech_Batch_Size_OOMptimizer:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Speech_Batch_Size_OOMptimizer') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
# 1D bucketing
python scripts/speech_recognition/oomptimizer.py \
-c /home/TestData/oomptimizer/fast-conformer_ctc_bpe.yaml \
-m nemo.collections.asr.models.EncDecCTCModelBPE \
-b "[5.0,10.0]"
# 2D bucketing
python scripts/speech_recognition/oomptimizer.py \
-c /home/TestData/oomptimizer/fast-conformer_ctc_bpe.yaml \
-m nemo.collections.asr.models.EncDecCTCModelBPE \
-b "[[5.0,30],[5.0,45],[10.0,57],[10.0,71]]"
# L2: OOMptimizer Canary (has a different batch schema)
L2_Speech_Batch_Size_OOMptimizer_Canary:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Speech_Batch_Size_OOMptimizer_Canary') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python scripts/speech_recognition/oomptimizer.py \
-c /home/TestData/oomptimizer/fast-conformer_aed.yaml \
-m nemo.collections.asr.models.EncDecMultiTaskModel \
-b "[[5.0,30],[5.0,45],[10.0,57],[10.0,71]]"
# L2: Speech Transcription
L2_Speech_Transcription_Speech_to_Text_Transcribe:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Speech_Transcription_Speech_to_Text_Transcribe') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/asr/transcribe_speech.py \
pretrained_name="QuartzNet15x5Base-En" \
audio_dir="/home/TestData/an4_transcribe/test_subset/" \
output_filename="stt_test_res.json" \
amp=true
AFTER_SCRIPT: |
rm -rf stt_test_res.json
# L2: Speech Transcription
L2_Speech_Transcription_Canary_Transcribe_Full_Manifest:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Speech_Transcription_Canary_Transcribe_Full_Manifest') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/asr/transcribe_speech.py \
dataset_manifest=/home/TestData/asr/canary/dev-other-wav-10-canary-fields.json \
output_filename=preds.json \
batch_size=10 \
pretrained_name=nvidia/canary-1b \
num_workers=0 \
amp=false \
compute_dtype=bfloat16 \
matmul_precision=medium
AFTER_SCRIPT: |
rm -rf preds.json transcribe.log
L2_Speech_Transcription_Canary_Transcribe_With_Prompt:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Speech_Transcription_Canary_Transcribe_With_Prompt') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/asr/transcribe_speech.py \
dataset_manifest=/home/TestData/asr/canary/dev-other-wav-10.json \
output_filename=preds.json \
batch_size=10 \
pretrained_name=nvidia/canary-1b \
num_workers=0 \
amp=false \
compute_dtype=bfloat16 \
matmul_precision=medium \
+prompt.source_lang="en" \
+prompt.target_lang="en" \
+prompt.task="asr" \
+prompt.pnc="no"
AFTER_SCRIPT: |
rm -rf preds.json transcribe.log
L2_Speech_Transcription_Canary_Transcribe_Audio_Dir:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Speech_Transcription_Canary_Transcribe_Audio_Dir') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/asr/transcribe_speech.py \
audio_dir=/home/TestData/asr/canary/dev-other-wav \
output_filename=preds.json \
batch_size=10 \
pretrained_name=nvidia/canary-1b \
num_workers=0 \
amp=false \
compute_dtype=bfloat16 \
matmul_precision=medium
AFTER_SCRIPT: |
rm -rf preds.json
# L2: Transducer alignment
L2_Transducer_alignment_Running_pytest:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Transducer_alignment_Running_pytest') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
pytest tests/collections/asr/decoding/rnnt_alignments_check.py --durations=-1 --with_downloads
# L2: Segmentation Tool
L2_Segmentation_Tool_Parallel_ctc_segmentation_test_L2_Eng_CitriNet_with_wav:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Segmentation_Tool_Parallel_ctc_segmentation_test_L2_Eng_CitriNet_with_wav') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
cd tools/ctc_segmentation && \
TIME=`date +"%Y-%m-%d-%T"` && \
/bin/bash run_segmentation.sh \
--MODEL_NAME_OR_PATH="stt_en_citrinet_512_gamma_0_25" \
--DATA_DIR=/home/TestData/ctc_segmentation/eng \
--OUTPUT_DIR=/home/TestData/ctc_segmentation/eng/output${TIME} \
--LANGUAGE=en \
--USE_NEMO_NORMALIZATION="TRUE" && \
python /home/TestData/ctc_segmentation/verify_alignment.py \
-r /home/TestData/ctc_segmentation/eng/eng_valid_segments_1.7.txt \
-g /home/TestData/ctc_segmentation/eng/output${TIME}/verified_segments/nv_test_segments.txt;
AFTER_SCRIPT: |
rm -rf /home/TestData/ctc_segmentation/eng/output${TIME}
L2_Segmentation_Tool_Parallel_ctc_segmentation_test_L2_Ru_QN_with_mp3:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Segmentation_Tool_Parallel_ctc_segmentation_test_L2_Ru_QN_with_mp3') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
cd tools/ctc_segmentation && \
TIME=`date +"%Y-%m-%d-%T"` && \
/bin/bash run_segmentation.sh \
--MODEL_NAME_OR_PATH=/home/TestData/ctc_segmentation/QuartzNet15x5-Ru-e512-wer14.45.nemo \
--DATA_DIR=/home/TestData/ctc_segmentation/ru \
--OUTPUT_DIR=/home/TestData/ctc_segmentation/ru/output${TIME} \
--LANGUAGE=ru \
--ADDITIONAL_SPLIT_SYMBOLS=";" && \
python /home/TestData/ctc_segmentation/verify_alignment.py \
-r /home/TestData/ctc_segmentation/ru/valid_ru_segments_1.7.txt \
-g /home/TestData/ctc_segmentation/ru/output${TIME}/verified_segments/ru_segments.txt;
rm -rf /home/TestData/ctc_segmentation/eng/output${TIME}
# L2: G2P Models
L2_G2P_Models_G2P_Conformer_training_evaluation_and_inference:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_G2P_Models_G2P_Conformer_training_evaluation_and_inference') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
cd examples/tts/g2p && \
TIME=`date +"%Y-%m-%d-%T"` && OUTPUT_DIR_CONFORMER=output_ctc_${TIME} && \
python g2p_train_and_evaluate.py \
train_manifest=/home/TestData/g2p/g2p.json \
validation_manifest=/home/TestData/g2p/g2p.json \
model.test_ds.manifest_filepath=/home/TestData/g2p/g2p.json \
model.tokenizer.dir=/home/TestData/g2p/tokenizer_spe_unigram_v512 \
trainer.max_epochs=1 \
model.max_source_len=64 \
trainer.devices=1 \
do_training=True \
do_testing=True \
exp_manager.exp_dir=${OUTPUT_DIR_CONFORMER} \
+exp_manager.use_datetime_version=False\
+exp_manager.version=test \
--config-name=g2p_conformer_ctc && \
python g2p_inference.py \
pretrained_model=${OUTPUT_DIR_CONFORMER}/G2P-Conformer-CTC/test/checkpoints/G2P-Conformer-CTC.nemo \
manifest_filepath=/home/TestData/g2p/g2p.json \
phoneme_field=text
# TODO: pleasefixme @redoctopus
# - name: ByT5G2P training, evaluation and inference
# run: |
# cd examples/tts/g2p && \
# TIME=`date +"%Y-%m-%d-%T"` && OUTPUT_DIR_T5=output_byt5_${TIME} && \
# python g2p_train_and_evaluate.py \
# train_manifest=/home/TestData/g2p/g2p.json \
# validation_manifest=/home/TestData/g2p/g2p.json \
# model.test_ds.manifest_filepath=/home/TestData/g2p/g2p.json \
# trainer.max_epochs=1 \
# model.max_source_len=64 \
# trainer.devices=1 \
# do_training=True \
# do_testing=True \
# exp_manager.exp_dir=${OUTPUT_DIR_T5} \
# +exp_manager.use_datetime_version=False\
# +exp_manager.version=test && \
# python g2p_inference.py \
# pretrained_model=${OUTPUT_DIR_T5}/T5G2P/test/checkpoints/T5G2P.nemo \
# manifest_filepath=/home/TestData/g2p/g2p.json \
# phoneme_field=text
# }
# }
# - uses: "NVIDIA/NeMo/.github/actions/cancel-workflow@main"
# if: "failure()"
L2_G2P_Models_HeteronymClassificationModel_training_evaluation_and_inference:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_G2P_Models_HeteronymClassificationModel_training_evaluation_and_inference') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
cd examples/tts/g2p && \
TIME=`date +"%Y-%m-%d-%T"` && OUTPUT_DIR=output_${TIME} && \
python g2p_heteronym_classification_train_and_evaluate.py \
train_manifest=/home/TestData/g2p/manifest.json \
validation_manifest=/home/TestData/g2p/manifest.json \
test_manifest=/home/TestData/g2p/manifest.json \
model.wordids=/home/TestData/g2p/wordids.tsv \
trainer.max_epochs=1 \
model.max_seq_length=64 \
do_training=True \
do_testing=True \
exp_manager.exp_dir=${OUTPUT_DIR} \
+exp_manager.use_datetime_version=False\
+exp_manager.version=test && \
python g2p_heteronym_classification_inference.py \
manifest=/home/TestData/g2p/manifest.json \
pretrained_model=${OUTPUT_DIR}/HeteronymClassification/test/checkpoints/HeteronymClassification.nemo \
output_manifest=preds.json
# L2: Duplex Text Normalization
L2_Duplex_Text_Normalization_with_Tarred_dataset:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Duplex_Text_Normalization_with_Tarred_dataset') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
cd examples/nlp/duplex_text_normalization && \
python duplex_text_normalization_train.py \
data.validation_ds.data_path=/home/TestData/nlp/duplex_text_norm/small_test.tsv \
mode=tn \
lang=en \
tagger_model.do_training=false \
decoder_model.transformer=t5-small \
data.validation_ds.batch_size=2 \
data.train_ds.use_cache=false \
data.validation_ds.use_cache=false \
data.test_ds.batch_size=2 \
data.train_ds.decoder_data_augmentation=false \
data.train_ds.num_workers=2 \
decoder_trainer.devices=[0,1] \
decoder_trainer.accelerator="gpu" \
data.train_ds.use_tarred_dataset=true \
+decoder_trainer.fast_dev_run=true \
decoder_exp_manager.create_checkpoint_callback=false \
data.train_ds.tar_metadata_file=/home/TestData/nlp/duplex_text_norm/tarred_small/metadata.json \
data.test_ds.use_cache=false \
data.test_ds.data_path=/home/TestData/nlp/duplex_text_norm/small_test.tsv
# L2: Intent and Slot Classification Tasks
L2_Intent_and_Slot_Classification_Tasks_Intent_and_Slot_Classification:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Intent_and_Slot_Classification_Tasks_Intent_and_Slot_Classification') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
cd examples/nlp/intent_slot_classification && \
python intent_slot_classification.py \
model.data_dir=/home/TestData/nlp/retail \
model.validation_ds.prefix=dev \
model.test_ds.prefix=dev \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=true \
exp_manager.exp_dir=checkpoints
AFTER_SCRIPT: |
rm -rf checkpoints
L2_Intent_and_Slot_Classification_Tasks_Multi-Label_Intent_and_Slot_Classification:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Intent_and_Slot_Classification_Tasks_Multi-Label_Intent_and_Slot_Classification') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
cd examples/nlp/intent_slot_classification && \
python multi_label_intent_slot_classification.py \
model.data_dir=/home/TestData/nlp/new_multiatis \
model.validation_ds.prefix=dev \
model.test_ds.prefix=dev \
trainer.devices=1 \
+trainer.fast_dev_run=true \
exp_manager.exp_dir=checkpoints2
AFTER_SCRIPT: |
rm -rf checkpoints2
# TODO: add when megatron-bert is supported again
# stage("L2: Model Parallel Size 2 Megatron Text Classification") {
# when {
# anyOf{
# branch "main"
# changeRequest target: "main"
# }
# }
# failFast true
# steps{
# cd examples/nlp/text_classification && \
# python text_classification_with_bert.py \
# trainer.devices=[0,1] \
# trainer.accelerator="gpu" \
# trainer.num_nodes=1 \
# trainer.precision=16 \
# trainer.gradient_clip_val=1.0 \
# +trainer.fast_dev_run=true \
# model.dataset.num_classes=6 \
# model.train_ds.file_path=/home/TestData/nlp/retail_text_classification/train.tsv \
# model.train_ds.batch_size=4 \
# model.language_model.pretrained_model_name=megatron-bert-uncased \
# model.language_model.config_file=/home/TestData/nlp/mp_2_bert_toy/config.json \
# model.language_model.lm_checkpoint=/home/TestData/nlp/mp_2_bert_toy/iter_2000000 \
# model.nemo_path=null \
# ~model.infer_samples \
# exp_manager=null
# }
# }
# stage("L2: Model Parallel Size 2 Megatron Autoresume") {
# when {
# anyOf{
# branch "main"
# changeRequest target: "main"
# }
# }
# failFast true
# steps{
# cd examples/nlp/text_classification && \
# python text_classification_with_bert.py \
# trainer.devices=[0,1] \
# trainer.accelerator="gpu" \
# trainer.num_nodes=1 \
# trainer.precision=16 \
# trainer.gradient_clip_val=1.0 \
# trainer.max_epochs=1 \
# +trainer.fast_dev_run=true \
# model.dataset.num_classes=6 \
# model.train_ds.file_path=/home/TestData/nlp/retail_text_classification/train.tsv \
# model.train_ds.batch_size=4 \
# model.language_model.pretrained_model_name=megatron-bert-uncased \
# model.language_model.config_file=/home/TestData/nlp/mp_2_bert_toy/config.json \
# model.language_model.lm_checkpoint=/home/TestData/nlp/mp_2_bert_toy/iter_2000000 \
# model.nemo_path=null \
# ~model.infer_samples \
# +exp_manager.explicit_log_dir=/home/TestData/nlp/mp_autoresume \
# +exp_manager.resume_if_exists=true
# }
# }
# stage("L2: Model Parallel Size 2 Megatron Evaluation from .nemo") {
# when {
# anyOf{
# branch "main"
# changeRequest target: "main"
# }
# }
# failFast true
# steps{
# cd examples/nlp/text_classification && \
# python model_parallel_text_classification_evaluation.py \
# trainer.devices=[0,1] \
# trainer.accelerator="gpu" \
# trainer.num_nodes=1 \
# model.dataset.num_classes=6 \
# model.test_ds.file_path=/home/TestData/nlp/retail_text_classification/dev.tsv \
# model.nemo_path=/home/TestData/nlp/mp_2_nemo/retail_text_class_350M.nemo \
# exp_manager=null
# }
# }
# stage("L2: Model Parallel Size 2 Megatron Train from .nemo") {
# when {
# anyOf{
# branch "main"
# changeRequest target: "main"
# }
# }
# failFast true
# steps{
# cd examples/nlp/token_classification && \
# python token_classification_train.py \
# pretrained_model=/home/TestData/nlp/mp_2_nemo/ner_350M.nemo \
# model.dataset.data_dir=/home/TestData/nlp/ner/ \
# model.train_ds.batch_size=2 \
# model.dataset.use_cache=false \
# trainer.devices=[0,1] \
# trainer.accelerator="gpu" \
# +trainer.fast_dev_run=true \
# model.dataset.class_balancing="weighted_loss" \
# exp_manager=null
# }
# }
# L2: Parallel NLP Examples 2
L2_Parallel_NLP_Examples2_NER_finetuning_from_pretrained_Test:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Parallel_NLP_Examples2_NER_finetuning_from_pretrained_Test') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
cd examples/nlp/token_classification && \
python token_classification_train.py \
pretrained_model=ner_en_bert \
model.dataset.data_dir=/home/TestData/nlp/ner/ \
model.train_ds.batch_size=2 \
model.dataset.use_cache=false \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=true \
model.dataset.class_balancing="weighted_loss" \
exp_manager.exp_dir=null
L2_Parallel_NLP_Examples2_Punctuation_and_capitalization_finetuning_from_pretrained_test:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Parallel_NLP_Examples2_Punctuation_and_capitalization_finetuning_from_pretrained_test') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
cd examples/nlp/token_classification && \
data_dir="$(mktemp -d -p "$(pwd)")" && \
cp /home/TestData/nlp/token_classification_punctuation/*.txt "${data_dir}"/ && \
python punctuation_capitalization_train_evaluate.py \
pretrained_model=punctuation_en_bert \
model.train_ds.ds_item="${data_dir}" \
model.validation_ds.ds_item="${data_dir}" \
model.test_ds.ds_item="${data_dir}" \
+model.train_ds.use_cache=false \
+model.validation_ds.use_cache=false \
+model.test_ds.use_cache=false \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=true \
exp_manager.exp_dir=null;
rm -rf "${data_dir}"
L2_Parallel_NLP_Examples2_NER_with_TurkuNLP__bert-base-finnish-cased-v1:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Parallel_NLP_Examples2_NER_with_TurkuNLP__bert-base-finnish-cased-v1') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
cd examples/nlp/token_classification && \
python token_classification_train.py \
model.dataset.data_dir=/home/TestData/nlp/token_classification_punctuation/ \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=true \
model.dataset.use_cache=false \
model.language_model.pretrained_model_name="TurkuNLP/bert-base-finnish-cased-v1" \
exp_manager.exp_dir=null
L2_Parallel_NLP_Examples2_Evaluation_script_for_Token_Classification:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Parallel_NLP_Examples2_Evaluation_script_for_Token_Classification') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/token_classification/token_classification_evaluate.py \
model.dataset.data_dir=/home/TestData/nlp/ner/ \
model.dataset.use_cache=false \
pretrained_model=/home/TestData/nlp/pretrained_models/NER_Model_with_BERT_base_uncased.nemo
L2_Parallel_NLP_Examples2_Evaluation_script_for_Punctuation:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Parallel_NLP_Examples2_Evaluation_script_for_Punctuation') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
data_dir="$(mktemp -d -p "$(pwd)")" && \
cp /home/TestData/nlp/token_classification_punctuation/*.txt "${data_dir}"/ && \
python examples/nlp/token_classification/punctuation_capitalization_train_evaluate.py \
+do_training=false \
+do_testing=true \
model.test_ds.ds_item="${data_dir}" \
~model.train_ds \
~model.validation_ds \
+model.test_ds.use_cache=false \
pretrained_model=/home/TestData/nlp/pretrained_models/Punctuation_Capitalization_with_DistilBERT_base_uncased.nemo;
rm -rf "${data_dir}"
# L2: Parallel Pretraining BERT pretraining from Text/Preprocessed
L2_Pretraining_BERT_pretraining_from_Text:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Pretraining_BERT_pretraining_from_Text') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
cd examples/nlp/language_modeling && \
python bert_pretraining.py \
--config-name=bert_pretraining_from_text_config.yaml \
trainer.devices=1 \
trainer.accelerator="gpu" \
trainer.precision=16 \
+trainer.fast_dev_run=true \
model.train_ds.data_file=/home/TestData/nlp/wikitext-2/train.txt \
model.train_ds.batch_size=32 \
model.validation_ds.data_file=/home/TestData/nlp/wikitext-2/valid.txt \
model.validation_ds.batch_size=32 \
model.language_model.config_file=/home/TestData/nlp/bert_configs/bert_3200.json \
model.optim.lr=0.01 \
model.optim.sched.warmup_ratio=0.1 \
model.tokenizer.tokenizer_name=sentencepiece \
model.tokenizer.tokenizer_model=/home/TestData/nlp/wikitext-2/tokenizer_bpe_v3193/tokenizer.model \
model.mask_prob=0.15 \
model.short_seq_prob=0.1 \
exp_manager.exp_dir=PretrainingBERTFromText;
AFTER_SCRIPT: |
rm -f /home/TestData/nlp/wikitext-2/*.pkl
#rm -rf examples/nlp/language_modeling/PretrainingBERTFromText
L2_Pretraining_BERT_from_Preprocessed:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Pretraining_BERT_from_Preprocessed') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
cd examples/nlp/language_modeling && \
python bert_pretraining.py \
--config-name=bert_pretraining_from_preprocessed_config.yaml \
trainer.devices=1 \
trainer.accelerator="gpu" \
trainer.precision=16 \
+trainer.fast_dev_run=false \
+trainer.max_epochs=1 \
+trainer.limit_val_batches=0 \
+trainer.limit_train_batches=1 \
model.train_ds.data_file=/home/TestData/nlp/wiki_book_mini/training \
model.train_ds.batch_size=8 \
model.language_model.lm_checkpoint=/home/TestData/nlp/bert_ckpts/nemo1.0/bert_base_uncased_mlm_final_1074591_nemo1.0.pt \
model.language_model.config_file=/home/TestData/nlp/bert_configs/uncased_L-12_H-768_A-12.json \
model.optim.lr=0.875e-4 \
model.optim.weight_decay=0.01 \
model.optim.sched.warmup_ratio=0.01 \
exp_manager.exp_dir=PretrainingBERTFromPreprocessed \
exp_manager.create_checkpoint_callback=False \
#rm -rf examples/nlp/language_modeling/PretrainingBERTFromPreprocessed
# TODO: remove +model.optim.capturable=True when Pytorch fix: https://github.com/pytorch/pytorch/pull/81858
# is in the release container
# L2: NMT Attention is All You Need Training
L2_NMT_Attention_is_All_You_Need_Training_NMT_Training_Post-LN:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_NMT_Attention_is_All_You_Need_Training_NMT_Training_Post-LN') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
python examples/nlp/machine_translation/enc_dec_nmt.py \
--config-path=conf \
--config-name=aayn_base \
do_testing=false \
model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \
model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.test_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.test_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.encoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/spm_4k_ende.model \
model.decoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/spm_4k_ende.model \
model.encoder.num_layers=1 \
model.encoder.hidden_size=64 \
model.encoder.inner_size=256 \
model.decoder.num_layers=1 \
model.decoder.hidden_size=64 \
model.decoder.inner_size=256 \
+model.optim.capturable=True \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.val_check_interval=2 \
+trainer.limit_val_batches=1 \
+trainer.max_steps=2 \
trainer.precision=16 \
+exp_manager.explicit_log_dir=examples/nlp/machine_translation/nmt_results \
+exp_manager.create_checkpoint_callback=true
python examples/nlp/machine_translation/enc_dec_nmt.py \
--config-path=conf \
--config-name=aayn_base \
do_testing=true \
model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \
model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.test_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.test_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.encoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/spm_4k_ende.model \
model.decoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/spm_4k_ende.model \
model.encoder.num_layers=1 \
model.encoder.hidden_size=64 \
model.encoder.inner_size=256 \
model.decoder.num_layers=1 \
model.decoder.hidden_size=64 \
model.decoder.inner_size=256 \
+model.optim.capturable=True \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.val_check_interval=10 \
+trainer.limit_val_batches=1 \
+trainer.limit_test_batches=1 \
+trainer.max_steps=10 \
+exp_manager.explicit_log_dir=examples/nlp/machine_translation/nmt_results \
+exp_manager.create_checkpoint_callback=true \
+exp_manager.resume_if_exists=True
AFTER_SCRIPT: |
rm -rf examples/nlp/machine_translation/nmt_results
L2_NMT_Attention_is_All_You_Need_Training_NMT_Training_Pre-LN:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_NMT_Attention_is_All_You_Need_Training_NMT_Training_Pre-LN') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
cd examples/nlp/machine_translation && \
python enc_dec_nmt.py \
--config-path=conf \
--config-name=aayn_base \
do_testing=true \
model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \
model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.test_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.test_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.encoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/spm_4k_ende.model \
model.decoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/spm_4k_ende.model \
model.encoder.pre_ln=true \
model.decoder.pre_ln=true \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=true \
+trainer.limit_test_batches=2 \
exp_manager=null
L2_NMT_Attention_is_All_You_Need_Training_NMT_Multi-Validation:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_NMT_Attention_is_All_You_Need_Training_NMT_Multi-Validation') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
cd examples/nlp/machine_translation && \
python enc_dec_nmt.py \
--config-path=conf \
--config-name=aayn_base \
do_testing=true \
model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-en-de.src \
model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-en-de.ref \
model.validation_ds.src_file_name=[/home/TestData/nlp/nmt/toy_data/wmt13-en-de.src,/home/TestData/nlp/nmt/toy_data/wmt14-en-de.src] \
model.validation_ds.tgt_file_name=[/home/TestData/nlp/nmt/toy_data/wmt13-en-de.ref,/home/TestData/nlp/nmt/toy_data/wmt14-en-de.ref] \
model.test_ds.src_file_name=[/home/TestData/nlp/nmt/toy_data/wmt13-en-de.src,/home/TestData/nlp/nmt/toy_data/wmt14-en-de.src] \
model.test_ds.tgt_file_name=[/home/TestData/nlp/nmt/toy_data/wmt13-en-de.ref,/home/TestData/nlp/nmt/toy_data/wmt14-en-de.ref] \
model.encoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/spm_4k_ende.model \
model.decoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/spm_4k_ende.model \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=true \
+trainer.limit_test_batches=2 \
exp_manager=null
# L2: NMT Attention is All You Need Inference
L2_NMT_Attention_is_All_You_Need_Inference:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_NMT_Attention_is_All_You_Need_Inference') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
cd examples/nlp/machine_translation && \
python nmt_transformer_infer.py \
--model=/home/TestData/nlp/nmt/toy_data/enes_v16k_s100k_6x6.nemo \
--srctext=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.test.src \
--tgtout=/home/TestData/nlp/nmt/toy_data/out.txt \
--target_lang en \
--source_lang de
# L2: NMT Attention is All You Need Finetuning
L2_NMT_Attention_is_All_You_Need_Finetuning:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_NMT_Attention_is_All_You_Need_Finetuning') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
cd examples/nlp/machine_translation && \
python enc_dec_nmt_finetune.py \
model_path=/home/TestData/nlp/nmt/toy_data/enes_v16k_s100k_6x6.nemo \
trainer.devices=1 \
~trainer.max_epochs \
model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \
model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.test_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.test_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
+trainer.val_check_interval=10 \
+trainer.limit_val_batches=1 \
+trainer.limit_test_batches=1 \
+trainer.max_steps=10 \
+exp_manager.exp_dir=examples/nlp/machine_translation/nmt_finetune \
+exp_manager.create_checkpoint_callback=True \
+exp_manager.checkpoint_callback_params.monitor=val_sacreBLEU \
+exp_manager.checkpoint_callback_params.mode=max \
+exp_manager.checkpoint_callback_params.save_best_model=true
AFTER_SCRIPT: |
rm -rf examples/nlp/machine_translation/nmt_finetune
# L2: NMT Tarred Dataset Creation
L2_NMT_Tarred_Dataset_Creation_Auto_Tarred_Dataset_Creation:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_NMT_Tarred_Dataset_Creation_Auto_Tarred_Dataset_Creation') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
cd examples/nlp/machine_translation && \
python enc_dec_nmt.py \
--config-path=conf \
--config-name=aayn_base \
do_training=false \
model.preproc_out_dir=$PWD/preproc_out_dir \
model.train_ds.use_tarred_dataset=true \
model.train_ds.n_preproc_jobs=2 \
model.train_ds.lines_per_dataset_fragment=500 \
model.train_ds.num_batches_per_tarfile=10 \
model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \
model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.encoder_tokenizer.vocab_size=2000 \
model.decoder_tokenizer.vocab_size=2000 \
~model.test_ds \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.fast_dev_run=true \
exp_manager=null
L2_NMT_Tarred_Dataset_Creation_Script_Tarred_Dataset_Creation:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_NMT_Tarred_Dataset_Creation_Script_Tarred_Dataset_Creation') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
cd examples/nlp/machine_translation && \
python create_tarred_parallel_dataset.py \
--src_fname /home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
--tgt_fname /home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \
--out_dir $PWD/out_dir \
--encoder_tokenizer_vocab_size=2000 \
--decoder_tokenizer_vocab_size=2000 \
--tokens_in_batch=1000 \
--lines_per_dataset_fragment=500 \
--num_batches_per_tarfile=10 \
--n_preproc_jobs=2
L2_Megatron_NMT_Training_TP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_NMT_Training_TP2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/machine_translation/megatron_nmt_training.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=10 \
+trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/machine_translation/megatron_nmt_results \
model.tensor_model_parallel_size=2 \
model.seq_length=128 \
model.encoder.num_layers=4 \
model.encoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.encoder.activation="swiglu" \
model.encoder.masked_softmax_fusion=False \
model.encoder.bias_activation_fusion=False \
model.encoder.activations_checkpoint_method="block" \
model.encoder.activations_checkpoint_num_layers=1 \
model.decoder.num_layers=2 \
model.decoder.hidden_size=64 \
model.decoder.num_attention_heads=8 \
model.decoder.activation="swiglu" \
model.decoder.masked_softmax_fusion=False \
model.decoder.bias_activation_fusion=False \
model.decoder.activations_checkpoint_method="block" \
model.decoder.activations_checkpoint_num_layers=1 \
model.micro_batch_size=2 \
model.global_batch_size=4 \
model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \
model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \
model.train_ds.num_workers=1 \
model.validation_ds.num_workers=1 \
~model.test_ds \
model.train_ds.dataset_type=text_memmap \
model.encoder_tokenizer.library=sentencepiece \
model.encoder_tokenizer.model=/home/TestData/nlp/nmt/toy_data/spm_64k_all_langs_plus_en.model \
model.decoder_tokenizer.library=sentencepiece \
model.decoder_tokenizer.model=/home/TestData/nlp/nmt/toy_data/spm_64k_all_langs_plus_en.model
# Change val_check_interval to 1 for resume as the len(dataloder) is 1 due to max_steps being the same as that of training and Lightning 2.0 raises an error
# if val_check_interval > len(dataloder: https://github.com/Lightning-AI/lightning/blob/2.0.6/src/lightning/pytorch/loops/fit_loop.py#L259 at the beginning of fit_loop.run()
python examples/nlp/machine_translation/megatron_nmt_training.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=1 \
+trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/machine_translation/megatron_nmt_results \
model.tensor_model_parallel_size=2 \
model.seq_length=128 \
model.encoder.num_layers=4 \
model.encoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.encoder.activation="swiglu" \
model.encoder.masked_softmax_fusion=False \
model.encoder.bias_activation_fusion=False \
model.encoder.activations_checkpoint_method="block" \
model.encoder.activations_checkpoint_num_layers=1 \
model.decoder.num_layers=2 \
model.decoder.hidden_size=64 \
model.decoder.num_attention_heads=8 \
model.decoder.activation="swiglu" \
model.decoder.masked_softmax_fusion=False \
model.decoder.bias_activation_fusion=False \
model.decoder.activations_checkpoint_method="block" \
model.decoder.activations_checkpoint_num_layers=1 \
model.micro_batch_size=2 \
model.global_batch_size=4 \
model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \
model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \
model.train_ds.num_workers=1 \
model.validation_ds.num_workers=1 \
~model.test_ds \
model.train_ds.dataset_type=text_memmap \
model.encoder_tokenizer.library=sentencepiece \
model.encoder_tokenizer.model=/home/TestData/nlp/nmt/toy_data/spm_64k_all_langs_plus_en.model \
model.decoder_tokenizer.library=sentencepiece \
model.decoder_tokenizer.model=/home/TestData/nlp/nmt/toy_data/spm_64k_all_langs_plus_en.model
AFTER_SCRIPT: |
rm -rf examples/nlp/machine_translation/megatron_nmt_results
L2_Megatron_BART_Perceiver_MIM_Training_TP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_BART_Perceiver_MIM_Training_TP2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_bart_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=10 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/megatron_mim_results \
model.tensor_model_parallel_size=2 \
model.seq_length=128 \
model.encoder.num_layers=4 \
model.encoder.hidden_size=64 \
model.encoder.arch=perceiver \
model.encoder.num_attention_heads=8 \
model.encoder.activation="swiglu" \
model.encoder.masked_softmax_fusion=False \
model.encoder.bias_activation_fusion=False \
model.encoder.activations_checkpoint_method="block" \
model.encoder.activations_checkpoint_num_layers=1 \
model.decoder.num_layers=2 \
model.decoder.hidden_size=64 \
model.decoder.num_attention_heads=8 \
model.decoder.activation="swiglu" \
model.decoder.masked_softmax_fusion=False \
model.decoder.bias_activation_fusion=False \
model.decoder.activations_checkpoint_method="block" \
model.decoder.activations_checkpoint_num_layers=1 \
model.micro_batch_size=2 \
model.global_batch_size=4 \
model.data.data_impl=text_mmap \
model.data.data_prefix=[1.0,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src] \
model.data.splits_string="\"800,100,100\"" \
model.data.whole_word_masking=False \
model.tokenizer.library=sentencepiece \
model.tokenizer.model=/home/TestData/nlp/nmt/toy_data/spm_64k_all_langs_plus_en.model \
++model.hiddens.enc_output_name=z \
++model.hiddens.transform.q_z_given_x.cls_name=cond_gaussian \
++model.hiddens.transform.q_z_given_x.hidden_size=64 \
++model.hiddens.loss.mim.cls_name=a_mim \
++model.hiddens.loss.mim.loss_weight=0.5
# Change val_check_interval to 1 for resume as the len(dataloder) is 1 due to max_steps being the same as that of training and Lightning 2.0 raises an error
# if val_check_interval > len(dataloder: https://github.com/Lightning-AI/lightning/blob/2.0.6/src/lightning/pytorch/loops/fit_loop.py#L259 at the beginning of fit_loop.run()
python examples/nlp/language_modeling/megatron_bart_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=1 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/megatron_mim_results \
model.tensor_model_parallel_size=2 \
model.seq_length=128 \
model.encoder.num_layers=4 \
model.encoder.hidden_size=64 \
model.encoder.arch=perceiver \
model.encoder.num_attention_heads=8 \
model.encoder.activation="swiglu" \
model.encoder.masked_softmax_fusion=False \
model.encoder.bias_activation_fusion=False \
model.encoder.activations_checkpoint_method="block" \
model.encoder.activations_checkpoint_num_layers=1 \
model.decoder.num_layers=2 \
model.decoder.hidden_size=64 \
model.decoder.num_attention_heads=8 \
model.decoder.activation="swiglu" \
model.decoder.masked_softmax_fusion=False \
model.decoder.bias_activation_fusion=False \
model.decoder.activations_checkpoint_method="block" \
model.decoder.activations_checkpoint_num_layers=1 \
model.micro_batch_size=2 \
model.global_batch_size=4 \
model.data.data_impl=text_mmap \
model.data.data_prefix=[1.0,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src] \
model.data.splits_string="\"800,100,100\"" \
model.data.whole_word_masking=False \
model.tokenizer.library=sentencepiece \
model.tokenizer.model=/home/TestData/nlp/nmt/toy_data/spm_64k_all_langs_plus_en.model \
++model.hiddens.enc_output_name=z \
++model.hiddens.transform.q_z_given_x.cls_name=cond_gaussian \
++model.hiddens.transform.q_z_given_x.hidden_size=64 \
++model.hiddens.loss.mim.cls_name=a_mim \
++model.hiddens.loss.mim.loss_weight=0.5
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/megatron_mim_results
# stage("L2: NMT Bottleneck Fallback") {
# when {
# anyOf {
# branch "main"
# changeRequest target: "main"
# }
# }
# failFast true
# parallel {
# stage("L2: seq2seq (no bottleneck)") {
# steps {
# cd examples/nlp/machine_translation && \
# enc_dec_nmt-bottleneck.py \
# --config-path=conf \
# --config-name=aayn_bottleneck \
# do_testing=true \
# model.model_type=nll \
# model.encoder.arch=seq2seq \
# model.encoder.hidden_steps=1 \
# model.encoder.hidden_blocks=1 \
# model.encoder.hidden_init_method=params \
# model.encoder.hidden_size=64 \
# model.encoder.inner_size=128 \
# model.encoder.num_attention_heads=2 \
# model.encoder.num_layers=2 \
# model.decoder.hidden_size=64 \
# model.decoder.inner_size=128 \
# model.decoder.num_attention_heads=2 \
# model.decoder.num_layers=2 \
# model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-en-de.src \
# model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-en-de.ref \
# model.validation_ds.src_file_name=[/home/TestData/nlp/nmt/toy_data/wmt13-en-de.src,/home/TestData/nlp/nmt/toy_data/wmt14-en-de.src] \
# model.validation_ds.tgt_file_name=[/home/TestData/nlp/nmt/toy_data/wmt13-en-de.ref,/home/TestData/nlp/nmt/toy_data/wmt14-en-de.ref] \
# model.test_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt13-en-de.src \
# model.test_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt13-en-de.ref \
# model.encoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \
# model.decoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \
# trainer.devices=1 \
# trainer.accelerator="gpu" \
# +trainer.fast_dev_run=true \
# +trainer.limit_test_batches=2 \
# exp_manager=null \
# }
# }
# }
# }
# stage("L2: NMT Bottleneck Architecture") {
# when {
# anyOf {
# branch "main"
# changeRequest target: "main"
# }
# }
# failFast true
# parallel {
# stage("Bridge Encoder (identity)") {
# steps {
# cd examples/nlp/machine_translation && \
# enc_dec_nmt-bottleneck.py \
# --config-path=conf \
# --config-name=aayn_bottleneck \
# do_testing=true \
# model.model_type=nll \
# model.encoder.arch=bridge \
# model.encoder.hidden_steps=1 \
# model.encoder.hidden_blocks=1 \
# model.encoder.hidden_init_method=identity \
# model.encoder.hidden_size=64 \
# model.encoder.inner_size=128 \
# model.encoder.num_attention_heads=2 \
# model.encoder.num_layers=2 \
# model.decoder.hidden_size=64 \
# model.decoder.inner_size=128 \
# model.decoder.num_attention_heads=2 \
# model.decoder.num_layers=2 \
# model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
# model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \
# model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
# model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
# model.test_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
# model.test_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
# model.encoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \
# model.decoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \
# trainer.devices=1 \
# trainer.accelerator="gpu" \
# +trainer.fast_dev_run=true \
# +trainer.limit_test_batches=2 \
# exp_manager=null
# }
# }
# stage("Perceiver Encoder (params)") {
# steps {
# cd examples/nlp/machine_translation && \
# enc_dec_nmt-bottleneck.py \
# --config-path=conf \
# --config-name=aayn_bottleneck \
# do_testing=true \
# model.model_type=nll \
# model.encoder.arch=perceiver \
# model.encoder.hidden_steps=1 \
# model.encoder.hidden_blocks=1 \
# model.encoder.hidden_init_method=params \
# model.encoder.hidden_size=64 \
# model.encoder.inner_size=128 \
# model.encoder.num_attention_heads=2 \
# model.encoder.num_layers=2 \
# model.decoder.hidden_size=64 \
# model.decoder.inner_size=128 \
# model.decoder.num_attention_heads=2 \
# model.decoder.num_layers=2 \
# model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
# model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \
# model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
# model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
# model.test_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
# model.test_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
# model.encoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \
# model.decoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \
# trainer.devices=1 \
# trainer.accelerator="gpu" \
# +trainer.fast_dev_run=true \
# +trainer.limit_test_batches=2 \
# exp_manager=null
# }
# }
# }
# }
# stage("L2: NMT Bottleneck LVM") {
# when {
# anyOf {
# branch "main"
# changeRequest target: "main"
# }
# }
# failFast true
# parallel {
# stage("VAE") {
# steps {
# cd examples/nlp/machine_translation && \
# enc_dec_nmt-bottleneck.py \
# --config-path=conf \
# --config-name=aayn_bottleneck \
# do_testing=true \
# model.model_type=vae \
# model.encoder.arch=perceiver \
# model.encoder.hidden_steps=1 \
# model.encoder.hidden_blocks=1 \
# model.encoder.hidden_init_method=params \
# model.encoder.hidden_size=64 \
# model.encoder.inner_size=128 \
# model.encoder.num_attention_heads=2 \
# model.encoder.num_layers=2 \
# model.decoder.hidden_size=64 \
# model.decoder.inner_size=128 \
# model.decoder.num_attention_heads=2 \
# model.decoder.num_layers=2 \
# model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
# model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \
# model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
# model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
# model.test_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
# model.test_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
# model.encoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \
# model.decoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \
# trainer.devices=1 \
# trainer.accelerator="gpu" \
# +trainer.fast_dev_run=true \
# +trainer.limit_test_batches=2 \
# exp_manager=null
# }
# }
# stage("MIM") {
# steps {
# cd examples/nlp/machine_translation && \
# enc_dec_nmt-bottleneck.py \
# --config-path=conf \
# --config-name=aayn_bottleneck \
# do_testing=true \
# model.model_type=mim \
# model.encoder.arch=perceiver \
# model.encoder.hidden_steps=1 \
# model.encoder.hidden_blocks=1 \
# model.encoder.hidden_init_method=params \
# model.encoder.hidden_size=64 \
# model.encoder.inner_size=128 \
# model.encoder.num_attention_heads=2 \
# model.encoder.num_layers=2 \
# model.decoder.hidden_size=64 \
# model.decoder.inner_size=128 \
# model.decoder.num_attention_heads=2 \
# model.decoder.num_layers=2 \
# model.train_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
# model.train_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref \
# model.validation_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
# model.validation_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
# model.test_ds.src_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
# model.test_ds.tgt_file_name=/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src \
# model.encoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \
# model.decoder_tokenizer.tokenizer_model=/home/TestData/nlp/nmt/toy_data/tt_tokenizer.BPE.4096.model \
# trainer.devices=1 \
# trainer.accelerator="gpu" \
# +trainer.fast_dev_run=true \
# +trainer.limit_test_batches=2 \
# exp_manager=null
# }
# }
# }
# }
L2_Megatron_Bert_Pretraining_and_Resume_Training_with_Pipeline_Parallelism:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_Bert_Pretraining_and_Resume_Training_with_Pipeline_Parallelism') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_bert_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=10 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=bf16 \
model.megatron_amp_O2=True \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/bert_pretrain_results \
model.tensor_model_parallel_size=2 \
model.optim.name=fused_adam \
model.optim.lr=2e-4 \
model.optim.sched.warmup_steps=2 \
model.optim.sched.constant_steps=2 \
model.optim.sched.min_lr=8e-5 \
model.max_position_embeddings=128 \
model.encoder_seq_length=128 \
model.data.seq_length=128 \
model.tokenizer.vocab_file=/home/TestData/nlp/megatron_bert/data/bert/vocab.txt \
model.num_layers=8 \
model.hidden_size=256 \
model.num_attention_heads=8 \
model.activations_checkpoint_method=block \
model.activations_checkpoint_num_layers=1 \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_bert/data/bert/simple_wiki_bert_preproc_text_sentence,.5,/home/TestData/nlp/megatron_bert/data/bert/simple_wiki_bert_preproc_text_sentence] \
model.data.index_mapping_dir=examples/nlp/language_modeling/bert_index_mappings
python examples/nlp/language_modeling/megatron_bert_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=10 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=20 \
trainer.precision=bf16 \
model.megatron_amp_O2=True \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/bert_pretrain_results \
exp_manager.resume_if_exists=True \
model.tensor_model_parallel_size=2 \
model.optim.name=fused_adam \
model.optim.lr=2e-4 \
model.optim.sched.warmup_steps=2 \
model.optim.sched.constant_steps=2 \
model.optim.sched.min_lr=8e-5 \
model.max_position_embeddings=128 \
model.encoder_seq_length=128 \
model.data.seq_length=128 \
model.tokenizer.vocab_file=/home/TestData/nlp/megatron_bert/data/bert/vocab.txt \
model.num_layers=8 \
model.hidden_size=256 \
model.num_attention_heads=8 \
model.activations_checkpoint_method=block \
model.activations_checkpoint_num_layers=1 \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_bert/data/bert/simple_wiki_bert_preproc_text_sentence,.5,/home/TestData/nlp/megatron_bert/data/bert/simple_wiki_bert_preproc_text_sentence] \
model.data.index_mapping_dir=examples/nlp/language_modeling/bert_index_mappings
L2_Megatron_Bert_Pretraining_and_Resume_Training:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_Bert_Pretraining_and_Resume_Training') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_bert_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=10 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=bf16 \
model.megatron_amp_O2=True \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/bert_pretrain_results \
model.tensor_model_parallel_size=2 \
model.optim.name=fused_adam \
model.optim.lr=2e-4 \
model.sequence_parallel=True \
model.optim.sched.warmup_steps=2 \
model.optim.sched.constant_steps=2 \
model.optim.sched.min_lr=8e-5 \
model.max_position_embeddings=128 \
model.encoder_seq_length=128 \
model.data.seq_length=128 \
model.tokenizer.vocab_file=/home/TestData/nlp/megatron_bert/data/bert/vocab.txt \
model.num_layers=8 \
model.hidden_size=256 \
model.num_attention_heads=8 \
model.activations_checkpoint_method=block \
model.activations_checkpoint_num_layers=1 \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_bert/data/bert/simple_wiki_bert_preproc_text_sentence,.5,/home/TestData/nlp/megatron_bert/data/bert/simple_wiki_bert_preproc_text_sentence] \
model.data.index_mapping_dir=examples/nlp/language_modeling/bert_index_mappings
python examples/nlp/language_modeling/megatron_bert_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=10 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=20 \
trainer.precision=bf16 \
model.megatron_amp_O2=True \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/bert_pretrain_results \
exp_manager.resume_if_exists=True \
model.tensor_model_parallel_size=2 \
model.optim.name=fused_adam \
model.optim.lr=2e-4 \
model.optim.sched.warmup_steps=2 \
model.optim.sched.constant_steps=2 \
model.optim.sched.min_lr=8e-5 \
model.max_position_embeddings=128 \
model.encoder_seq_length=128 \
model.data.seq_length=128 \
model.tokenizer.vocab_file=/home/TestData/nlp/megatron_bert/data/bert/vocab.txt \
model.num_layers=8 \
model.hidden_size=256 \
model.num_attention_heads=8 \
model.activations_checkpoint_method=block \
model.activations_checkpoint_num_layers=1 \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_bert/data/bert/simple_wiki_bert_preproc_text_sentence,.5,/home/TestData/nlp/megatron_bert/data/bert/simple_wiki_bert_preproc_text_sentence] \
model.data.index_mapping_dir=examples/nlp/language_modeling/bert_index_mappings
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/bert_pretrain_results
rm -rf examples/nlp/language_modeling/bert_index_mappings
L2_Megatron_Core_Bert_Pretraining_and_Resume_Training:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_Core_Bert_Pretraining_and_Resume_Training') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_bert_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=10 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/bert_pretrain_results \
model.mcore_bert=True \
model.tensor_model_parallel_size=2 \
model.optim.name=fused_adam \
model.optim.lr=2e-4 \
model.sequence_parallel=True \
model.optim.sched.warmup_steps=2 \
model.optim.sched.constant_steps=2 \
model.optim.sched.min_lr=8e-5 \
model.max_position_embeddings=128 \
model.encoder_seq_length=128 \
model.data.seq_length=128 \
model.tokenizer.vocab_file=/home/TestData/nlp/megatron_bert/data/bert/vocab.txt \
model.num_layers=8 \
model.hidden_size=256 \
model.num_attention_heads=8 \
model.activations_checkpoint_method="block" \
model.activations_checkpoint_num_layers=1 \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_bert/data/bert/simple_wiki_bert_preproc_text_sentence,.5,/home/TestData/nlp/megatron_bert/data/bert/simple_wiki_bert_preproc_text_sentence] \
model.data.index_mapping_dir=examples/nlp/language_modeling/bert_index_mappings
python examples/nlp/language_modeling/megatron_bert_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=10 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=20 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/bert_pretrain_results \
exp_manager.resume_if_exists=True \
model.mcore_bert=True \
model.tensor_model_parallel_size=2 \
model.optim.name=fused_adam \
model.optim.lr=2e-4 \
model.optim.sched.warmup_steps=2 \
model.optim.sched.constant_steps=2 \
model.optim.sched.min_lr=8e-5 \
model.max_position_embeddings=128 \
model.encoder_seq_length=128 \
model.data.seq_length=128 \
model.tokenizer.vocab_file=/home/TestData/nlp/megatron_bert/data/bert/vocab.txt \
model.num_layers=8 \
model.hidden_size=256 \
model.num_attention_heads=8 \
model.activations_checkpoint_method="block" \
model.activations_checkpoint_num_layers=1 \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_bert/data/bert/simple_wiki_bert_preproc_text_sentence,.5,/home/TestData/nlp/megatron_bert/data/bert/simple_wiki_bert_preproc_text_sentence] \
model.data.index_mapping_dir=examples/nlp/language_modeling/bert_index_mappings
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/bert_pretrain_results
rm -rf examples/nlp/language_modeling/bert_index_mappings
L2_Megatron_RETRO_Pretraining_and_Resume_Training:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_RETRO_Pretraining_and_Resume_Training') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_retro_pretraining.py \
trainer.num_nodes=1 \
trainer.devices=2 \
trainer.precision=bf16 \
trainer.accelerator=gpu \
model.data.data_prefix=["none"] \
exp_manager.exp_dir=examples/nlp/language_modeling/mcore_retro_results \
model.mcore_gpt=True \
model.tensor_model_parallel_size=1 \
model.pipeline_model_parallel_size=1 \
model.optim.name=distributed_fused_adam \
model.retro.retro_project_dir=/home/TestData/nlp/megatron_retro/mcore_retro/micro-wiki-core \
model.data.num_workers=4 \
model.micro_batch_size=1 \
model.data.shuffle_documents=False \
trainer.val_check_interval=30 \
+trainer.num_sanity_val_steps=0 \
model.init_method_std=0.023 \
model.optim.lr=6.0e-4 \
model.megatron_amp_O2=True \
model.data.splits_string="\"98,2,0\"" \
model.data.dataloader_type=cyclic \
trainer.max_steps=10
python examples/nlp/language_modeling/megatron_retro_pretraining.py \
trainer.num_nodes=1 \
trainer.devices=2 \
trainer.precision=bf16 \
trainer.accelerator=gpu \
model.data.data_prefix=["none"] \
exp_manager.exp_dir=examples/nlp/language_modeling/mcore_retro_results \
model.mcore_gpt=True \
model.tensor_model_parallel_size=1 \
model.pipeline_model_parallel_size=1 \
model.optim.name=distributed_fused_adam \
model.retro.retro_project_dir=/home/TestData/nlp/megatron_retro/mcore_retro/micro-wiki-core \
model.data.num_workers=4 \
model.micro_batch_size=1 \
model.data.shuffle_documents=False \
trainer.val_check_interval=30 \
+trainer.num_sanity_val_steps=0 \
model.init_method_std=0.023 \
model.optim.lr=6.0e-4 \
model.megatron_amp_O2=True \
model.data.splits_string="\"98,2,0\"" \
model.data.dataloader_type=cyclic \
trainer.max_steps=20
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/mcore_retro_results
L2_Legacy_Megatron_RETRO_Pretraining_and_Resume_Training:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Legacy_Megatron_RETRO_Pretraining_and_Resume_Training') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_retro_pretraining_legacy.py \
trainer.devices=2 \
trainer.num_nodes=1 \
trainer.accelerator=gpu \
trainer.accumulate_grad_batches=1 \
trainer.limit_val_batches=2 \
exp_manager.resume_if_exists=True \
trainer.max_steps=10 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
trainer.val_check_interval=10 \
exp_manager.exp_dir=examples/nlp/language_modeling/retro_legacy_results \
model.data.data_prefix= \
model.data.knn_index= \
model.data.retrieval_prefix= \
model.tensor_model_parallel_size=2 \
model.micro_batch_size=4 \
model.optim.name=fused_adam \
model.optim.lr=2e-4 \
model.optim.sched.warmup_steps=2 \
model.optim.sched.constant_steps=2 \
model.optim.sched.min_lr=8e-5 \
model.max_position_embeddings=128 \
model.encoder_seq_length=128 \
model.chunk_size=32 \
model.enc_num_layers=2 \
model.dec_num_layers=2 \
model.enc_cross_attention=[1] \
model.dec_cross_attention=[1] \
+model.data.mock=True
python examples/nlp/language_modeling/megatron_retro_pretraining_legacy.py \
trainer.devices=2 \
trainer.num_nodes=1 \
trainer.accelerator=gpu \
trainer.accumulate_grad_batches=1 \
trainer.limit_val_batches=2 \
exp_manager.resume_if_exists=True \
trainer.max_steps=20 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
trainer.val_check_interval=10 \
exp_manager.exp_dir=examples/nlp/language_modeling/retro_legacy_results \
model.data.data_prefix= \
model.data.knn_index= \
model.data.retrieval_prefix= \
model.tensor_model_parallel_size=2 \
model.micro_batch_size=4 \
model.optim.name=fused_adam \
model.optim.lr=2e-4 \
model.optim.sched.warmup_steps=2 \
model.optim.sched.constant_steps=2 \
model.optim.sched.min_lr=8e-5 \
model.max_position_embeddings=128 \
model.encoder_seq_length=128 \
model.chunk_size=32 \
model.enc_num_layers=2 \
model.dec_num_layers=2 \
model.enc_cross_attention=[1] \
model.dec_cross_attention=[1] \
+model.data.mock=True
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/retro_legacy_results
# L2_Megatron_RETRO_muTransfer_Pretraining_Performance:
# needs: [cicd-test-container-setup]
# runs-on: self-hosted-azure
# container:
# image: nemoci.azurecr.io/nemo_container_${{ github.run_id }}
# options:
# # --user 0:128
# --device=/dev/nvidia0
# --gpus all
# --shm-size=8g
# --env TRANSFORMERS_OFFLINE=0
# --env HYDRA_FULL_ERROR=1
# --volume /mnt/datadrive/TestData:/home/TestData
# steps:
# - name: Checkout repository
# uses: actions/checkout@v4
# - run: |
# python examples/nlp/language_modeling/megatron_retro_mutransfer_pretrain.py \
# trainer.devices=2 \
# trainer.num_nodes=1 \
# trainer.accelerator=gpu \
# trainer.accumulate_grad_batches=1 \
# trainer.max_steps=100 \
# trainer.log_every_n_steps=1 \
# trainer.precision=16 \
# trainer.val_check_interval=100 \
# trainer.limit_val_batches=0 \
# trainer.gradient_clip_val=1.0 \
# +trainer.num_sanity_val_steps=0 \
# exp_manager.exp_dir=examples/nlp/language_modeling/retro_results/ \
# +exp_manager.version=smalltest \
# model.data.neighbors=2 \
# model.megatron_amp_O2=False \
# model.apply_query_key_layer_scaling=False \
# model.tensor_model_parallel_size=1 \
# model.optim.name=muadamw \
# model.optim.weight_decay=0.1 \
# model.optim.betas=[0.9,0.95] \
# model.optim.lr=6e-4 \
# model.optim.sched.warmup_steps=1000 \
# model.optim.sched.constant_steps=0 \
# model.optim.sched.min_lr=6e-5 \
# model.add_position_embedding=False \
# model.enc_num_layers=2 \
# model.dec_num_layers=6 \
# model.enc_cross_attention=[0] \
# model.dec_cross_attention=[3,5] \
# model.hidden_size=96 \
# model.ffn_hidden_size=384 \
# model.init_method_std=0.023 \
# model.num_attention_heads=12 \
# model.max_position_embeddings=1024 \
# model.encoder_seq_length=1024 \
# model.tokenizer.library=megatron \
# model.tokenizer.type=GPT2BPETokenizer \
# model.tokenizer.merge_file=/home/TestData/nlp/megatron_retro/gpt2-merges.txt \
# model.tokenizer.vocab_file=/home/TestData/nlp/megatron_retro/gpt2-vocab.json \
# model.data.data_prefix=[/home/TestData/nlp/megatron_retro/retro_wiki_test_text_document] \
# model.data.knn_index=[/home/TestData/nlp/megatron_retro/knn2_map_wiki_test.idx] \
# model.data.retrieval_prefix=/home/TestData/nlp/megatron_retro/retro_wiki_test_text_document \
# model.data.index_mapping_dir=/home/TestData/nlp/megatron_retro \
# model.data.num_workers=8 \
# model.micro_batch_size=8 \
# model.normalization=rmsnorm \
# model.transformer_block_type=pre_ln \
# model.bias_activation_fusion=True \
# model.bias_dropout_add_fusion=False \
# model.masked_softmax_fusion=True \
# model.hidden_dropout=0 \
# model.attention_dropout=0 \
# model.fp32_residual_connection=True \
# model.shape_file=/home/TestData/nlp/megatron_retro/o1_rel_shape_info_tiny.yaml
# python -c "import pandas as pd
# import pathlib
# from pandas.testing import assert_frame_equal
# from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
# import torch
# if not (torch.cuda.is_available() and "A100" in torch.cuda.get_device_name()):
# import sys
# sys.exit(0)
# event_file = list(pathlib.Path("examples/nlp/language_modeling/retro_results/megatron_retro/smalltest").glob("events.out.tfevents*"))[0]
# ea = EventAccumulator(str(event_file)).Reload()
# vals = []
# for i in ea.Scalars("reduced_train_loss"):
# vals.append(i.value)
# training_curve = pd.DataFrame({"loss": vals})
# gt_curve = pd.read_csv("/home/TestData/nlp/megatron_retro/expected_learning_curve.csv")
# assert_frame_equal(training_curve, gt_curve, rtol=1e-3, atol=1e-3)"
# rm -rf examples/nlp/language_modeling/retro_results
# - uses: "NVIDIA/NeMo/.github/actions/cancel-workflow@main"
# if: "failure()"
L2_RAG_Pipeline_Indexing:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_RAG_Pipeline_Indexing') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/rag/rag_indexing.py \
trainer.num_nodes=1 \
trainer.devices=1 \
trainer.precision="bf16-mixed" \
indexing.embedder.model_path="/home/TestData/nlp/rag_pipeline/testing_models/embedders/sbert_nemo.nemo" \
indexing.embedder.embed_batch_size=128 \
indexing.data.data_path="/home/TestData/nlp/rag_pipeline/testing_data/corpus_data/sample_data" \
indexing.data.chunk_size=256 \
indexing.data.chunk_overlap=10 \
indexing.index_path="/home/TestData/nlp/rag_pipeline/testing_data/saved_index/sample_index"
L2_RAG_Pipeline_Generating:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_RAG_Pipeline_Generating') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/rag/rag_generating.py \
trainer.devices=1 \
trainer.precision="bf16-mixed" \
indexing.embedder.model_path="/home/TestData/nlp/rag_pipeline/testing_models/embedders/sbert_nemo.nemo" \
indexing.index_path="/home/TestData/nlp/rag_pipeline/testing_data/saved_index/sample_index" \
generating.llm.model_path="/home/TestData/nlp/rag_pipeline/testing_models/llms/megatron_gpt_125m.nemo" \
generating.inference.tokens_to_generate=50 \
generating.inference.greedy=False \
generating.inference.temperature=1.0 \
generating.query="Which art schools did I applied to?"
L2_BioMegatron_Bert_NER_Task:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_BioMegatron_Bert_NER_Task') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/token_classification/token_classification_train.py \
exp_manager.exp_dir=examples/nlp/language_modeling/token_classification_results \
trainer.max_epochs=1 \
model.dataset.data_dir=/home/TestData/nlp/ner \
model.language_model.pretrained_model_name=biomegatron345m_biovocab_30k_cased \
model.tokenizer.tokenizer_name=null
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/token_classification_results
L2_Megatron_GPT_Pretraining_and_Resume_Training_TP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_GPT_Pretraining_and_Resume_Training_TP2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-2-h100
SCRIPT: |
# This is to improve p2p overlap on H100
export NVTE_FWD_LAYERNORM_SM_MARGIN=8
export NVTE_BWD_LAYERNORM_SM_MARGIN=8
export TORCH_NCCL_AVOID_RECORD_STREAMS=1
export NCCL_MIN_NCHANNELS=4
# TP overlap is not supported in docker environment
#NVTE_UB_SPLIT_RS: 0
#NVTE_UB_ATOMIC_GEMM_RS: 1
#NVTE_RS_STRIDED_ATOMIC: 1
#NVTE_UB_FP8_RS: 1
# Increase p2p chunksize to 2MB
export NCCL_P2P_NET_CHUNKSIZE=2097152
# Disable gc when switching to/from validation steps
export NEMO_MANUAL_GC_IN_VALIDATION=0
python examples/nlp/language_modeling/megatron_gpt_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=2 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=3 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \
++model.transformer_engine=True \
++model.fp8=True \
++model.fp8_hybrid=True \
++model.fp8_amax_history_len=1024 \
++model.fp8_amax_compute_algo=max \
++model.reduce_amax=True \
++model.use_te_rng_tracker=True \
++model.name=megatron_gpt_full_te_layer_autocast \
model.ub_tp_comm_overlap=False \
model.tensor_model_parallel_size=2 \
model.optim.name=distributed_fused_adam \
model.optim.lr=2e-4 \
model.optim.sched.warmup_steps=1 \
model.optim.sched.constant_steps=1 \
model.optim.sched.min_lr=8e-5 \
model.max_position_embeddings=128 \
model.encoder_seq_length=128 \
model.data.seq_length=128 \
model.bias=False \
model.bias_activation_fusion=False \
model.bias_dropout_add_fusion=False \
model.tokenizer.vocab_file=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \
model.tokenizer.merge_file=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \
model.num_layers=8 \
model.hidden_size=256 \
model.num_attention_heads=8 \
model.activations_checkpoint_method=block \
model.activations_checkpoint_granularity=full \
model.activations_checkpoint_num_layers=1 \
model.data.validation_drop_last=False \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document,.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document] \
model.data.index_mapping_dir=examples/nlp/language_modeling/gpt_index_mappings
python examples/nlp/language_modeling/megatron_gpt_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=2 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=6 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \
exp_manager.resume_if_exists=True \
++model.transformer_engine=True \
++model.fp8=True \
++model.fp8_hybrid=True \
++model.fp8_amax_history_len=1024 \
++model.fp8_amax_compute_algo=max \
++model.reduce_amax=True \
++model.use_te_rng_tracker=True \
++model.name=megatron_gpt_full_te_layer_autocast \
model.ub_tp_comm_overlap=False \
model.tensor_model_parallel_size=2 \
model.optim.name=distributed_fused_adam \
model.optim.lr=2e-4 \
model.optim.sched.warmup_steps=2 \
model.optim.sched.constant_steps=2 \
model.optim.sched.min_lr=8e-5 \
model.max_position_embeddings=128 \
model.encoder_seq_length=128 \
model.data.seq_length=128 \
model.bias=False \
model.bias_activation_fusion=False \
model.bias_dropout_add_fusion=False \
model.tokenizer.vocab_file=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \
model.tokenizer.merge_file=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \
model.num_layers=8 \
model.hidden_size=256 \
model.num_attention_heads=8 \
model.activations_checkpoint_method=block \
model.activations_checkpoint_granularity=full \
model.activations_checkpoint_num_layers=1 \
model.data.validation_drop_last=False \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document,.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document] \
model.data.index_mapping_dir=examples/nlp/language_modeling/gpt_index_mappings
rm -rf examples/nlp/language_modeling/gpt_pretrain_results
rm -rf examples/nlp/language_modeling/gpt_index_mappings
L2_Megatron_GPT_Skip_Train:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_gpt_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \
model.skip_train=True \
model.tensor_model_parallel_size=2 \
model.max_position_embeddings=128 \
model.encoder_seq_length=128 \
model.data.seq_length=128 \
model.tokenizer.vocab_file=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \
model.tokenizer.merge_file=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \
model.num_layers=8 \
model.hidden_size=256 \
model.num_attention_heads=8 \
model.data.data_prefix=[] \
model.data.data_impl=mock \
model.dist_ckpt_format=torch_dist
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/gpt_pretrain_results
rm -rf examples/nlp/language_modeling/gpt_index_mappings
L2_Megatron_GPT_with_Rope_Pretraining_and_Resume_Training_TP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_GPT_with_Rope_Pretraining_and_Resume_Training_TP2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_gpt_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=2 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=3 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \
model.tensor_model_parallel_size=2 \
model.optim.name=fused_adam \
model.optim.lr=2e-4 \
model.optim.sched.warmup_steps=1 \
model.optim.sched.constant_steps=1 \
model.optim.sched.min_lr=8e-5 \
model.max_position_embeddings=128 \
model.encoder_seq_length=128 \
model.data.seq_length=128 \
model.position_embedding_type=rope \
model.rotary_percentage=0.5 \
model.bias=False \
model.bias_activation_fusion=False \
model.bias_dropout_add_fusion=False \
model.tokenizer.vocab_file=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \
model.tokenizer.merge_file=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \
model.num_layers=8 \
model.hidden_size=256 \
model.num_attention_heads=8 \
model.activations_checkpoint_method=block \
model.activations_checkpoint_granularity=full \
model.activations_checkpoint_num_layers=1 \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document,.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document] \
model.data.index_mapping_dir=examples/nlp/language_modeling/gpt_index_mappings
# commented out to save time on github ci @adithyare
# python examples/nlp/language_modeling/megatron_gpt_pretraining.py \
# trainer.devices=2 \
# trainer.accelerator=gpu \
# trainer.log_every_n_steps=1 \
# trainer.val_check_interval=2 \
# trainer.limit_val_batches=1 \
# trainer.accumulate_grad_batches=1 \
# trainer.max_steps=6 \
# trainer.gradient_clip_val=1.0 \
# exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \
# exp_manager.resume_if_exists=True \
# model.tensor_model_parallel_size=2 \
# model.optim.name=fused_adam \
# model.optim.lr=2e-4 \
# model.optim.sched.warmup_steps=2 \
# model.optim.sched.constant_steps=2 \
# model.optim.sched.min_lr=8e-5 \
# model.max_position_embeddings=128 \
# model.encoder_seq_length=128 \
# model.data.seq_length=128 \
# model.position_embedding_type=rope \
# model.rotary_percentage=0.5 \
# model.normalization=rmsnorm \
# model.bias=False \
# model.bias_activation_fusion=False \
# model.bias_dropout_add_fusion=False \
# model.tokenizer.vocab_file=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \
# model.tokenizer.merge_file=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \
# model.num_layers=8 \
# model.hidden_size=256 \
# model.num_attention_heads=8 \
# model.activations_checkpoint_method=block \
# model.activations_checkpoint_granularity=full \
# model.activations_checkpoint_num_layers=1 \
# model.data.data_prefix=[.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document,.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document] \
# model.data.index_mapping_dir=examples/nlp/language_modeling/gpt_index_mappings"
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/gpt_pretrain_results
rm -rf examples/nlp/language_modeling/gpt_index_mappings
# This test requires Ampere but some of the test GPUs are Volta
# Need to add a check for compute capability before uncommenting this test
# - name: L2: Megatron GPT with Rope Pretraining using Flash Attention and Resume Training TP=2
# when {
# anyOf {
# branch main
# changeRequest target: main
# }
# }
# failFast true
# - run: |
# python examples/nlp/language_modeling/megatron_gpt_pretraining.py \
# trainer.devices=2 \
# trainer.accelerator=gpu \
# trainer.log_every_n_steps=1 \
# trainer.val_check_interval=2 \
# trainer.limit_val_batches=2 \
# trainer.accumulate_grad_batches=1 \
# trainer.max_steps=3 \
# trainer.precision=16 \
# trainer.gradient_clip_val=1.0 \
# exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \
# model.tensor_model_parallel_size=2 \
# model.optim.name=fused_adam \
# model.optim.lr=2e-4 \
# model.optim.sched.warmup_steps=1 \
# model.optim.sched.constant_steps=1 \
# model.optim.sched.min_lr=8e-5 \
# model.max_position_embeddings=128 \
# model.encoder_seq_length=128 \
# model.data.seq_length=128 \
# model.position_embedding_type=rope \
# model.rotary_percentage=0.5 \
# model.normalization=rmsnorm \
# model.bias=False \
# model.bias_activation_fusion=False \
# model.bias_dropout_add_fusion=False \
# model.tokenizer.vocab_file=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \
# model.tokenizer.merge_file=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \
# model.num_layers=8 \
# model.hidden_size=256 \
# model.num_attention_heads=8 \
# model.activations_checkpoint_method=block \
# model.activations_checkpoint_granularity=full \
# model.activations_checkpoint_num_layers=1 \
# model.data.data_prefix=[.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document,.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document] \
# model.data.index_mapping_dir=examples/nlp/language_modeling/gpt_index_mappings \
# model.use_flash_attention=True "
# # commented out to save time on github ci @adithyare
# # python examples/nlp/language_modeling/megatron_gpt_pretraining.py \
# # trainer.devices=2 \
# # trainer.accelerator=gpu \
# # trainer.log_every_n_steps=1 \
# # trainer.val_check_interval=2 \
# # trainer.limit_val_batches=1 \
# # trainer.accumulate_grad_batches=1 \
# # trainer.max_steps=6 \
# # trainer.precision=16 \
# # trainer.gradient_clip_val=1.0 \
# # exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \
# # exp_manager.resume_if_exists=True \
# # model.tensor_model_parallel_size=2 \
# # model.optim.name=fused_adam \
# # model.optim.lr=2e-4 \
# # model.optim.sched.warmup_steps=2 \
# # model.optim.sched.constant_steps=2 \
# # model.optim.sched.min_lr=8e-5 \
# # model.max_position_embeddings=128 \
# # model.encoder_seq_length=128 \
# # model.data.seq_length=128 \
# # model.position_embedding_type=rope \
# # model.rotary_percentage=0.5 \
# # model.normalization=rmsnorm \
# # model.bias=False \
# # model.bias_activation_fusion=False \
# # model.bias_dropout_add_fusion=False \
# # model.tokenizer.vocab_file=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \
# # model.tokenizer.merge_file=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \
# # model.num_layers=8 \
# # model.hidden_size=256 \
# # model.num_attention_heads=8 \
# # model.activations_checkpoint_method=block \
# # model.activations_checkpoint_granularity=full \
# # model.activations_checkpoint_num_layers=1 \
# # model.data.data_prefix=[.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document,.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document] \
# # model.data.index_mapping_dir=examples/nlp/language_modeling/gpt_index_mappings \
# # model.use_flash_attention=True"
# rm -rf examples/nlp/language_modeling/gpt_pretrain_results"
# rm -rf examples/nlp/language_modeling/gpt_index_mappings"
# }
# }
L2_Megatron_GPT_with_ResetLR_Pretraining_and_Resume_Training_TP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_GPT_with_ResetLR_Pretraining_and_Resume_Training_TP2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_gpt_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=3 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=3 \
trainer.precision=bf16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \
model.tensor_model_parallel_size=2 \
model.megatron_amp_O2=True \
model.optim.name=distributed_fused_adam \
model.optim.lr=2e-4 \
model.optim.sched.warmup_steps=2 \
model.optim.sched.constant_steps=2 \
model.optim.sched.min_lr=8e-5 \
model.max_position_embeddings=128 \
model.encoder_seq_length=128 \
model.data.seq_length=128 \
model.tokenizer.vocab_file=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \
model.tokenizer.merge_file=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \
model.num_layers=8 \
model.hidden_size=256 \
model.num_attention_heads=8 \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document,.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document] \
model.data.index_mapping_dir=examples/nlp/language_modeling/gpt_index_mappings
python examples/nlp/language_modeling/megatron_gpt_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=3 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=6 \
trainer.precision=bf16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \
exp_manager.resume_if_exists=True \
model.reset_lr=True \
model.tensor_model_parallel_size=2 \
model.megatron_amp_O2=True \
model.optim.name=distributed_fused_adam \
model.optim.lr=2e-4 \
model.optim.sched.warmup_steps=2 \
model.optim.sched.constant_steps=2 \
model.optim.sched.min_lr=8e-5 \
model.max_position_embeddings=128 \
model.encoder_seq_length=128 \
model.data.seq_length=128 \
model.tokenizer.vocab_file=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \
model.tokenizer.merge_file=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \
model.num_layers=8 \
model.hidden_size=256 \
model.num_attention_heads=8 \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document,.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document] \
model.data.index_mapping_dir=examples/nlp/language_modeling/gpt_index_mappings
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/gpt_pretrain_results
rm -rf examples/nlp/language_modeling/gpt_index_mappings
L2_Megatron_GPT_with_Drop_Optimizer_States_TP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_gpt_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=2 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=6 \
trainer.precision=bf16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \
exp_manager.checkpoint_callback_params.save_last_n_optim_states=1 \
model.dist_ckpt_format="torch_dist" \
model.tensor_model_parallel_size=2 \
model.megatron_amp_O2=True \
model.optim.name=distributed_fused_adam \
model.optim.lr=2e-4 \
model.max_position_embeddings=128 \
model.encoder_seq_length=128 \
model.data.seq_length=128 \
model.tokenizer.vocab_file=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \
model.tokenizer.merge_file=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \
model.num_layers=8 \
model.hidden_size=256 \
model.num_attention_heads=8 \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document,.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document] \
model.data.index_mapping_dir=examples/nlp/language_modeling/gpt_index_mappings
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/gpt_pretrain_results
rm -rf examples/nlp/language_modeling/gpt_index_mappings
L2_Megatron_GPT_with_ALiBi_Pretraining_and_Resume_Training_TP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_GPT_with_ALiBi_Pretraining_and_Resume_Training_TP2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_gpt_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=2 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=3 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \
model.tensor_model_parallel_size=2 \
model.optim.name=fused_adam \
model.optim.lr=2e-4 \
model.optim.sched.warmup_steps=1 \
model.optim.sched.constant_steps=1 \
model.optim.sched.min_lr=8e-5 \
model.max_position_embeddings=128 \
model.encoder_seq_length=128 \
model.data.seq_length=128 \
model.position_embedding_type=alibi \
model.bias=False \
model.bias_activation_fusion=False \
model.bias_dropout_add_fusion=False \
model.tokenizer.vocab_file=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \
model.tokenizer.merge_file=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \
model.num_layers=8 \
model.hidden_size=256 \
model.num_attention_heads=8 \
model.activations_checkpoint_method=block \
model.activations_checkpoint_granularity=full \
model.activations_checkpoint_num_layers=1 \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document,.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document] \
model.data.index_mapping_dir=examples/nlp/language_modeling/gpt_index_mappings
# not testing resume functionality to save time on ci @adithyare
#python examples/nlp/language_modeling/megatron_gpt_pretraining.py \
#trainer.devices=2 \
#trainer.accelerator=gpu \
#trainer.log_every_n_steps=1 \
#trainer.val_check_interval=2 \
#trainer.limit_val_batches=1 \
#trainer.accumulate_grad_batches=1 \
#trainer.max_steps=6 \
#trainer.gradient_clip_val=1.0 \
#exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \
#exp_manager.resume_if_exists=True \
#model.tensor_model_parallel_size=2 \
#model.optim.name=fused_adam \
#model.optim.lr=2e-4 \
#model.optim.sched.warmup_steps=2 \
#model.optim.sched.constant_steps=2 \
#model.optim.sched.min_lr=8e-5 \
#model.max_position_embeddings=128 \
#model.encoder_seq_length=128 \
#model.data.seq_length=128 \
#model.position_embedding_type=alibi \
#model.normalization=rmsnorm \
#model.bias=False \
#model.bias_activation_fusion=False \
#model.bias_dropout_add_fusion=False \
#model.tokenizer.vocab_file=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \
#model.tokenizer.merge_file=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \
#model.num_layers=8 \
#model.hidden_size=256 \
#model.num_attention_heads=8 \
#model.activations_checkpoint_method=block \
#model.activations_checkpoint_granularity=full \
#model.activations_checkpoint_num_layers=1 \
#model.data.data_prefix=[.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document,.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document] \
#model.data.index_mapping_dir=examples/nlp/language_modeling/gpt_index_mappings"
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/gpt_pretrain_results
rm -rf examples/nlp/language_modeling/gpt_index_mappings
L2_Megatron_GPT_with_KERPLE_Pretraining_and_Resume_Training_TP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_GPT_with_KERPLE_Pretraining_and_Resume_Training_TP2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_gpt_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=2 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=3 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \
model.tensor_model_parallel_size=2 \
model.optim.name=fused_adam \
model.optim.lr=2e-4 \
model.optim.sched.warmup_steps=1 \
model.optim.sched.constant_steps=1 \
model.optim.sched.min_lr=8e-5 \
model.max_position_embeddings=128 \
model.encoder_seq_length=128 \
model.data.seq_length=128 \
model.position_embedding_type=kerple \
model.bias=False \
model.bias_activation_fusion=False \
model.bias_dropout_add_fusion=False \
model.tokenizer.vocab_file=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \
model.tokenizer.merge_file=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \
model.num_layers=8 \
model.hidden_size=256 \
model.num_attention_heads=8 \
model.activations_checkpoint_method=block \
model.activations_checkpoint_granularity=full \
model.activations_checkpoint_num_layers=1 \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document,.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document] \
model.data.index_mapping_dir=examples/nlp/language_modeling/gpt_index_mappings
# commented out to save time on github ci @adithyare
#python examples/nlp/language_modeling/megatron_gpt_pretraining.py \
#trainer.devices=2 \
#trainer.accelerator=gpu \
#trainer.log_every_n_steps=1 \
#trainer.val_check_interval=2 \
#trainer.limit_val_batches=1 \
#trainer.accumulate_grad_batches=1 \
#trainer.max_steps=6 \
#trainer.precision=16 \
#trainer.gradient_clip_val=1.0 \
#exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \
#exp_manager.resume_if_exists=True \
#model.tensor_model_parallel_size=2 \
#model.optim.name=fused_adam \
#model.optim.lr=2e-4 \
#model.optim.sched.warmup_steps=2 \
#model.optim.sched.constant_steps=2 \
#model.optim.sched.min_lr=8e-5 \
#model.max_position_embeddings=128 \
#model.encoder_seq_length=128 \
#model.data.seq_length=128 \
#model.position_embedding_type=kerple \
#model.normalization=rmsnorm \
#model.bias=False \
#model.bias_activation_fusion=False \
#model.bias_dropout_add_fusion=False \
#model.tokenizer.vocab_file=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \
#model.tokenizer.merge_file=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \
#model.num_layers=8 \
#model.hidden_size=256 \
#model.num_attention_heads=8 \
#model.activations_checkpoint_method=block \
#model.activations_checkpoint_granularity=full \
#model.activations_checkpoint_num_layers=1 \
#model.data.data_prefix=[.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document,.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document] \
#model.data.index_mapping_dir=examples/nlp/language_modeling/gpt_index_mappings"
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/gpt_pretrain_results
rm -rf examples/nlp/language_modeling/gpt_index_mappings
L2_Megatron_GPT_Pretraining_and_Resume_Training_PP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_GPT_Pretraining_and_Resume_Training_PP2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-2-h100
SCRIPT: |
python examples/nlp/language_modeling/megatron_gpt_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=2 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=3 \
trainer.precision=bf16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \
++model.transformer_engine=True \
++model.fp8=True \
++model.fp8_hybrid=True \
++model.fp8_amax_history_len=1024 \
++model.fp8_amax_compute_algo=max \
++model.reduce_amax=True \
++model.use_te_rng_tracker=True \
++model.name=megatron_gpt_full_te_layer_autocast \
model.ub_tp_comm_overlap=False \
model.pipeline_model_parallel_size=2 \
model.tensor_model_parallel_size=1 \
model.mcore_gpt=True \
model.megatron_amp_O2=True \
model.optim.name=distributed_fused_adam \
model.optim.lr=2e-4 \
model.optim.sched.warmup_steps=1 \
model.optim.sched.constant_steps=1 \
model.optim.sched.min_lr=8e-5 \
model.max_position_embeddings=128 \
model.encoder_seq_length=128 \
model.activation=fast-swiglu \
model.bias_activation_fusion=False \
model.hidden_dropout=0.0 \
model.attention_dropout=0.0 \
model.transformer_block_type=normformer \
model.headscale=True \
model.data.seq_length=128 \
model.tokenizer.vocab_file=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \
model.tokenizer.merge_file=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \
model.num_layers=8 \
model.hidden_size=256 \
model.num_attention_heads=8 \
model.activations_checkpoint_method=block \
model.activations_checkpoint_granularity=full \
model.activations_checkpoint_num_layers=1 \
model.data.validation_drop_last=False \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document,.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document] \
model.data.index_mapping_dir=examples/nlp/language_modeling/gpt_index_mappings
python examples/nlp/language_modeling/megatron_gpt_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=2 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=6 \
trainer.precision=bf16 \
trainer.gradient_clip_val=1.0 \
model.mcore_gpt=True \
model.megatron_amp_O2=True \
exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \
exp_manager.resume_if_exists=True \
++model.transformer_engine=True \
++model.fp8=True \
++model.fp8_hybrid=True \
++model.fp8_amax_history_len=1024 \
++model.fp8_amax_compute_algo=max \
++model.reduce_amax=True \
++model.use_te_rng_tracker=True \
++model.name=megatron_gpt_full_te_layer_autocast \
model.ub_tp_comm_overlap=False \
model.pipeline_model_parallel_size=2 \
model.tensor_model_parallel_size=1 \
model.optim.name=distributed_fused_adam \
model.optim.lr=2e-4 \
model.optim.sched.warmup_steps=2 \
model.optim.sched.constant_steps=2 \
model.optim.sched.min_lr=8e-5 \
model.max_position_embeddings=128 \
model.encoder_seq_length=128 \
model.activation=fast-swiglu \
model.bias_activation_fusion=False \
model.hidden_dropout=0.0 \
model.attention_dropout=0.0 \
model.transformer_block_type=normformer \
model.headscale=True \
model.data.seq_length=128 \
model.tokenizer.vocab_file=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \
model.tokenizer.merge_file=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \
model.num_layers=8 \
model.hidden_size=256 \
model.num_attention_heads=8 \
model.activations_checkpoint_method=block \
model.activations_checkpoint_granularity=full \
model.activations_checkpoint_num_layers=1 \
model.data.validation_drop_last=False \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document,.5,/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document] \
model.data.index_mapping_dir=examples/nlp/language_modeling/gpt_index_mappings
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/gpt_pretrain_results
rm -rf examples/nlp/language_modeling/gpt_index_mappings
OPTIONAL_L2_Megatron_GPT_Auto_Configurator_TP1_PP1_MBS124:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'OPTIONAL_L2_Megatron_GPT_Auto_Configurator_TP1_PP1_MBS124') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
mkdir examples/llm/auto_configurator/auto_conf_logs
python examples/llm/auto_configurator/auto_config.py \
--logs_dir=/workspace/examples/llm/auto_configurator/auto_conf_logs \
--data_path=/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document \
--tokenizer_path=/home/TestData/nlp/gpt2_tokenizer \
--run_number=1
python examples/llm/auto_configurator/auto_config.py \
--logs_dir=/workspace/examples/llm/auto_configurator/auto_conf_logs \
--data_path=/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document \
--tokenizer_path=/home/TestData/nlp/gpt2_tokenizer \
--run_number=2
python examples/llm/auto_configurator/auto_config.py \
--logs_dir=/workspace/examples/llm/auto_configurator/auto_conf_logs \
--data_path=/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document \
--tokenizer_path=/home/TestData/nlp/gpt2_tokenizer \
--run_number=3
python examples/llm/auto_configurator/auto_config.py \
--logs_dir=/workspace/examples/llm/auto_configurator/auto_conf_logs \
--data_path=/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document \
--tokenizer_path=/home/TestData/nlp/gpt2_tokenizer \
--get_results
AFTER_SCRIPT: |
rm -rf examples/llm/auto_configurator/auto_conf_logs
IS_OPTIONAL: true
L2_Megatron_GPT_Finetuning_PP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_GPT_Finetuning_PP2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/tuning/megatron_gpt_finetuning.py \
trainer.devices=2 \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=2 \
+trainer.limit_val_batches=2 \
trainer.max_steps=3 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/gpt_sft_results \
model.pipeline_model_parallel_size=2 \
model.tensor_model_parallel_size=1 \
model.restore_from_path=/home/TestData/nlp/megatron_gpt/PP2/gpt_pp2_tp1.nemo \
model.optim.name=fused_adam \
model.optim.lr=2e-4 \
model.peft.peft_scheme=null \
model.data.train_ds.micro_batch_size=1 \
model.data.train_ds.global_batch_size=4 \
model.data.train_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl,/home/TestData/nlp/megatron_sft/trec.jsonl] \
model.data.train_ds.concat_sampling_probabilities=[0.3,0.7] \
model.data.train_ds.num_workers=0 \
model.data.test_ds.micro_batch_size=1 \
model.data.test_ds.global_batch_size=1 \
model.data.test_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl] \
model.data.test_ds.names=[quarel] \
model.data.validation_ds.micro_batch_size=1 \
model.data.validation_ds.global_batch_size=1 \
model.data.validation_ds.num_workers=0 \
model.data.validation_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl] \
model.data.validation_ds.names=[quarel]
python examples/nlp/language_modeling/tuning/megatron_gpt_finetuning.py \
trainer.devices=2 \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=1 \
+trainer.limit_val_batches=2 \
trainer.max_steps=3 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/gpt_sft_results \
model.pipeline_model_parallel_size=2 \
model.tensor_model_parallel_size=1 \
model.restore_from_path=/home/TestData/nlp/megatron_gpt/PP2/gpt_pp2_tp1.nemo \
model.optim.name=fused_adam \
model.optim.lr=2e-4 \
model.peft.peft_scheme=null \
model.data.train_ds.micro_batch_size=1 \
model.data.train_ds.global_batch_size=4 \
model.data.train_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl,/home/TestData/nlp/megatron_sft/trec.jsonl] \
model.data.train_ds.concat_sampling_probabilities=[0.3,0.7] \
model.data.train_ds.num_workers=0 \
model.data.test_ds.micro_batch_size=1 \
model.data.test_ds.global_batch_size=1 \
model.data.test_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl] \
model.data.test_ds.names=[quarel] \
model.data.validation_ds.micro_batch_size=1 \
model.data.validation_ds.global_batch_size=1 \
model.data.validation_ds.num_workers=0 \
model.data.validation_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl] \
model.data.validation_ds.names=[quarel]
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/gpt_sft_results
L2_Megatron_GPT_Finetuning_StarCoder_PP1:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_GPT_Finetuning_StarCoder_PP1') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
python examples/nlp/language_modeling/tuning/megatron_gpt_finetuning.py \
trainer.devices=1 \
trainer.num_nodes=1 \
trainer.precision=bf16 \
trainer.max_steps=4 \
trainer.val_check_interval=4 \
trainer.enable_checkpointing=False \
+trainer.limit_val_batches=2 \
+trainer.limit_test_batches=2 \
exp_manager.checkpoint_callback_params.save_best_model=False \
exp_manager.exp_dir=examples/nlp/language_modeling/gpt_sft_results \
model.peft.peft_scheme=none \
model.optim.name=distributed_fused_adam \
model.restore_from_path=/home/TestData/nlp/megatron_gpt/starcoder-ci-nemo/megatron_starcoder_tp1_pp1.nemo \
model.tensor_model_parallel_size=1 \
model.pipeline_model_parallel_size=1 \
model.data.train_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl] \
model.data.train_ds.num_workers=0 \
model.data.test_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl] \
model.data.validation_ds.num_workers=0 \
model.data.validation_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl] \
model.data.test_ds.num_workers=0 \
model.data.train_ds.concat_sampling_probabilities=[1.0]
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/gpt_sft_results
L2_Megatron_GPT_Reranker:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_GPT_Reranker') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
rm -rf /home/TestData/nlp/megatron_ir/working_dir
python examples/nlp/information_retrieval/megatron_gpt_reranker_finetuning.py \
exp_manager.exp_dir="/home/TestData/nlp/megatron_ir/working_dir" \
model.global_batch_size=4 \
model.micro_batch_size=4 \
trainer.devices=1 \
trainer.num_nodes=1 \
trainer.max_epochs=null \
trainer.max_steps=20 \
trainer.val_check_interval=10 \
model.restore_from_path="/home/TestData/nlp/megatron_gpt/mcore_45M/megatron_llama.nemo" \
model.peft.lora_tuning.adapter_dim=8 \
model.data.validation_ds.file_names=[/home/TestData/nlp/megatron_ir/train.jsonl] \
model.data.validation_ds.write_embeddings_to_file=True \
model.data.validation_ds.output_file_path_prefix="/home/TestData/nlp/megatron_ir/working_dir/val_embs" \
model.data.train_ds.file_names=[/home/TestData/nlp/megatron_ir/train.jsonl]
AFTER_SCRIPT: |
rm -rf /home/TestData/nlp/megatron_ir/working_dir
L2_Megatron_GPT_Embedding:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_GPT_Embedding') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
rm -rf /home/TestData/nlp/megatron_ir/working_dir
python examples/nlp/information_retrieval/megatron_gpt_embedding_finetuning.py \
exp_manager.exp_dir="/home/TestData/nlp/megatron_ir/working_dir" \
model.global_batch_size=4 \
model.micro_batch_size=4 \
trainer.devices=1 \
trainer.num_nodes=1 \
trainer.max_epochs=null \
trainer.max_steps=20 \
trainer.val_check_interval=10 \
model.restore_from_path="/home/TestData/nlp/megatron_gpt/mcore_45M/megatron_llama.nemo" \
model.peft.lora_tuning.adapter_dim=8 \
model.data.validation_ds.query_file_names=[/home/TestData/nlp/megatron_ir/test_query.jsonl] \
model.data.validation_ds.doc_file_names=[/home/TestData/nlp/megatron_ir/test_doc.jsonl] \
model.data.validation_ds.write_embeddings_to_file=True \
model.data.validation_ds.output_file_path_prefix="/home/TestData/nlp/megatron_ir/working_dir/val_embs" \
model.data.train_ds.file_names=[/home/TestData/nlp/megatron_ir/train.jsonl]
python examples/nlp/information_retrieval/megatron_gpt_embedding_generate.py \
trainer.devices=1 \
trainer.num_nodes=1 \
model.restore_from_path="/home/TestData/nlp/megatron_gpt/mcore_45M/megatron_llama.nemo" \
model.peft.restore_from_path="/home/TestData/nlp/megatron_ir/working_dir/megatron_gpt_peft_lora_tuning/checkpoints/megatron_gpt_peft_lora_tuning.nemo" \
model.global_batch_size=4 \
model.micro_batch_size=4 \
model.peft.lora_tuning.adapter_dim=8 \
model.data.test_ds.write_embeddings_to_file=True \
model.data.test_ds.output_file_path_prefix="/home/TestData/nlp/megatron_ir/working_dir/test_embs" \
model.data.test_ds.query_file_names=[/home/TestData/nlp/megatron_ir/test_query.jsonl] \
model.data.test_ds.doc_file_names=[/home/TestData/nlp/megatron_ir/test_doc.jsonl]
AFTER_SCRIPT: |
rm -rf /home/TestData/nlp/megatron_ir/working_dir
L2_Megatron_GPT_PEFT_Lora_PP2_O2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_GPT_PEFT_Lora_PP2_O2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
rm -rf /home/TestData/nlp/lora_tuning_pp2
python examples/nlp/language_modeling/tuning/megatron_gpt_finetuning.py \
trainer.devices=2 \
trainer.log_every_n_steps=1 \
trainer.max_epochs=9999 \
trainer.max_steps=3 \
trainer.val_check_interval=3 \
++trainer.limit_val_batches=2 \
trainer.precision=bf16 \
exp_manager.exp_dir=/home/TestData/nlp/lora_tuning_pp2 \
model.pipeline_model_parallel_size=2 \
model.tensor_model_parallel_size=1 \
model.restore_from_path=/home/TestData/nlp/megatron_gpt/mcore_45M/megatron_llama.nemo \
model.megatron_amp_O2=True \
model.peft.peft_scheme=lora \
model.answer_only_loss=True \
model.micro_batch_size=1 \
model.global_batch_size=1 \
model.data.train_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl] \
model.data.train_ds.concat_sampling_probabilities=[1.0] \
model.data.train_ds.num_workers=0 \
model.data.validation_ds.num_workers=0 \
model.data.validation_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl] \
model.data.validation_ds.names=[quarel]
python examples/nlp/language_modeling/tuning/megatron_gpt_generate.py \
model.restore_from_path=/home/TestData/nlp/megatron_gpt/mcore_45M/megatron_llama.nemo \
model.peft.restore_from_path=/home/TestData/nlp/lora_tuning_pp2/megatron_gpt_peft_lora_tuning/checkpoints/megatron_gpt_peft_lora_tuning.nemo \
model.pipeline_model_parallel_size=2 \
model.tensor_model_parallel_size=1 \
trainer.devices=2 \
model.megatron_amp_O2=True \
model.data.test_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel_4.jsonl] \
model.data.test_ds.names=["quarel4"] \
model.global_batch_size=2 \
model.micro_batch_size=1 \
model.data.test_ds.tokens_to_generate=10 \
model.data.test_ds.write_predictions_to_file=True \
model.data.test_ds.output_file_path_prefix="/home/TestData/nlp/lora_tuning_pp2/out" \
inference.greedy=True \
inference.repetition_penalty=1.0 \
inference.outfile_path="/home/TestData/nlp/lora_tuning_pp2/out.jsonl"
AFTER_SCRIPT: |
rm -rf /home/TestData/nlp/lora_tuning_pp2
L2_Megatron_GPT_PEFT_Lora_TP2_O1:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_GPT_PEFT_Lora_TP2_O1') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
rm -rf /home/TestData/nlp/lora_tuning_tp2
python examples/nlp/language_modeling/tuning/megatron_gpt_finetuning.py \
trainer.devices=2 \
trainer.log_every_n_steps=1 \
trainer.max_epochs=9999 \
trainer.max_steps=3 \
trainer.val_check_interval=3 \
++trainer.limit_val_batches=2 \
trainer.precision=bf16 \
exp_manager.exp_dir=/home/TestData/nlp/lora_tuning_tp2 \
model.pipeline_model_parallel_size=1 \
model.tensor_model_parallel_size=2 \
model.restore_from_path=/home/TestData/nlp/megatron_gpt/mcore_45M/megatron_llama.nemo \
model.peft.peft_scheme="lora" \
model.answer_only_loss=True \
model.micro_batch_size=1 \
model.global_batch_size=1 \
model.data.train_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl] \
model.data.train_ds.concat_sampling_probabilities=[1.0] \
model.data.train_ds.num_workers=0 \
model.data.validation_ds.num_workers=0 \
model.data.validation_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl] \
model.data.validation_ds.names=[quarel]
python examples/nlp/language_modeling/tuning/megatron_gpt_generate.py \
model.restore_from_path=/home/TestData/nlp/megatron_gpt/mcore_45M/megatron_llama.nemo \
model.peft.restore_from_path=/home/TestData/nlp/lora_tuning_tp2/megatron_gpt_peft_lora_tuning/checkpoints/megatron_gpt_peft_lora_tuning.nemo \
model.tensor_model_parallel_size=2 \
trainer.devices=2 \
model.data.test_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel_4.jsonl] \
model.data.test_ds.names=["quarel4"] \
model.global_batch_size=2 \
model.micro_batch_size=1 \
model.data.test_ds.tokens_to_generate=10 \
model.data.test_ds.write_predictions_to_file=True \
model.data.test_ds.output_file_path_prefix="/home/TestData/nlp/lora_tuning_tp2/out" \
inference.greedy=True \
inference.repetition_penalty=1.0 \
inference.outfile_path="/home/TestData/nlp/lora_tuning_tp2/out.jsonl"
AFTER_SCRIPT: |
rm -rf /home/TestData/nlp/lora_tuning_tp2
L2_Megatron_GPT_PEFT_Lora_TP2SP1:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_GPT_PEFT_Lora_TP2SP1') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-2-h100
SCRIPT: |
rm -rf /home/TestData/nlp/lora_tuning_tp2_sp1
CUDA_DEVICE_MAX_CONNECTIONS=1 NVTE_FLASH_ATTN=0 NVTE_FUSED_ATTN=1 python examples/nlp/language_modeling/tuning/megatron_gpt_finetuning.py \
trainer.devices=2 \
trainer.log_every_n_steps=1 \
trainer.max_epochs=9999 \
trainer.max_steps=3 \
trainer.val_check_interval=3 \
++trainer.limit_val_batches=2 \
trainer.precision=bf16 \
exp_manager.exp_dir=/home/TestData/nlp/lora_tuning_tp2_sp1 \
+model.mcore_gpt=True \
model.pipeline_model_parallel_size=1 \
model.tensor_model_parallel_size=2 \
model.sequence_parallel=True \
model.megatron_amp_O2=True \
model.restore_from_path=/home/TestData/nlp/megatron_gpt/mcore_45M/megatron_llama.nemo \
+model.fp8=True \
+model.fp8_params=True \
+model.fp8_hybrid=True \
+model.fp8_e4m3=False \
+model.fp8_interval=1 \
+model.fp8_margin=0 \
+model.fp8_amax_history_len=32 \
+model.fp8_amax_compute_algo=max \
+model.reduce_amax=False \
+model.ub_tp_comm_overlap=False \
+model.tp_comm_overlap_ag=False \
+model.tp_comm_overlap_rs=False \
+model.tp_comm_overlap_disable_qkv=True \
model.peft.peft_scheme="lora" \
model.peft.lora_tuning.adapter_dim=16 \
model.peft.lora_tuning.alpha=32 \
model.peft.lora_tuning.column_init_method="kaiming" \
+model.peft.lora_tuning.dropout_position="pre" \
model.peft.lora_tuning.target_modules=["attention"] \
model.peft.lora_tuning.adapter_dropout=0.1 \
+model.peft.lora_tuning.a2a_experimental=1 \
model.answer_only_loss=True \
model.micro_batch_size=1 \
model.global_batch_size=1 \
model.data.train_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl] \
model.data.train_ds.concat_sampling_probabilities=[1.0] \
model.data.train_ds.num_workers=0 \
model.data.validation_ds.num_workers=0 \
model.data.validation_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl] \
model.data.validation_ds.names=[quarel]
AFTER_SCRIPT: |
rm -rf /home/TestData/nlp/lora_tuning_tp2_sp1
L2_Megatron_GPT_Eval:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_GPT_Eval') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_gpt_eval.py \
gpt_model_file=/home/TestData/nlp/megatron_gpt/125M/megatron_gpt.nemo \
prompts=["How to fix GPU memory? A:"] \
tensor_model_parallel_size=1 \
inference.tokens_to_generate=32 \
trainer.precision=32
L2_Megatron_GPT_Eval_PP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_GPT_Eval_PP2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_gpt_eval.py \
gpt_model_file=/home/TestData/nlp/megatron_gpt/PP2/gpt_pp2_tp1.nemo \
server=False \
tensor_model_parallel_size=1 \
pipeline_model_parallel_size=2 \
trainer.devices=2 \
trainer.num_nodes=1 \
trainer.precision=32
L2_Megatron_GPT_SFT_Eval_inference_seq_len_greaterThan_training_seq_len:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_GPT_SFT_Eval_inference_seq_len_greaterThan_training_seq_len') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/tuning/megatron_gpt_generate.py \
model.restore_from_path=/home/TestData/nlp/megatron_gpt_sft/megatron_gpt_rope_sft.nemo \
model.peft.restore_from_path=null \
model.data.test_ds.file_names=[/home/TestData/nlp/megatron_gpt_sft/sample.jsonl] \
model.data.test_ds.names=[test] \
model.data.test_ds.global_batch_size=1 \
model.data.test_ds.micro_batch_size=1 \
model.data.test_ds.tokens_to_generate=30 \
model.data.test_ds.max_seq_length=6000 \
model.data.test_ds.write_predictions_to_file=True \
model.data.test_ds.output_file_path_prefix=examples/nlp/language_modeling/out \
inference.greedy=True \
inference.repetition_penalty=1.0 \
inference.outfile_path=examples/nlp/language_modeling/out.jsonl
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/out.jsonl
# TODO: Add this test back. Test was failing on CI machines due to HW error
# - name: L2: Megatron GPT Convert from Megatron-LM checkpoing and Eval
# when {
# anyOf {
# branch main
# changeRequest target: main
# }
# }
# failFast true
# - run: |
# python -m torch.distributed.launch --nproc_per_node=2 \
# examples/nlp/language_modeling/megatron_lm_ckpt_to_nemo.py \
# --checkpoint_folder=/home/TestData/nlp/megatron_gpt/data/gpt/iter_0008700 \
# --checkpoint_name=model_optim_rng.pt \
# --hparams_file=/home/TestData/nlp/megatron_gpt/data/gpt/iter_0008700/hparams.yaml \
# --nemo_file_path=examples/nlp/language_modeling/small_gpt.nemo \
# --model_type=gpt \
# --pipeline_model_parallel_size=1 \
# --gpus_per_node=2 \
# --tensor_model_parallel_size=2"
# python examples/nlp/language_modeling/megatron_gpt_eval.py \
# --gpt_model_file=examples/nlp/language_modeling/small_gpt.nemo \
# --tokens_to_generate=32 \
# --tensor_model_parallel_size=2 \
# --prompt=This is a test.
# rm examples/nlp/language_modeling/small_gpt.nemo
# L2_Megatron_Change_Partitions
L2_Megatron_Change_Partitions_Reduce_TP_Num_Partitions_-2_to_1-_and_PP_Num_Partitions_-1_to_2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_Change_Partitions_Reduce_TP_Num_Partitions_-2_to_1-_and_PP_Num_Partitions_-1_to_2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_change_num_partitions.py \
--model_file /home/TestData/nlp/megatron_gpt/TP2/megatron_gpt_tp2.nemo \
--target_file /home/TestData/nlp/megatron_gpt/TP2-Temp/test-reduce.nemo \
--tensor_model_parallel_size 2 \
--target_tensor_model_parallel_size 1 \
--pipeline_model_parallel_size 1 \
--target_pipeline_model_parallel_size 2
AFTER_SCRIPT: |
rm /home/TestData/nlp/megatron_gpt/TP2-Temp/test-reduce.nemo
L2_Megatron_Change_Partitions_Increase_TP_Num_Partitions_-2_to_4-_and_PP_Num_Partitions_-1_to_2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_Change_Partitions_Increase_TP_Num_Partitions_-2_to_4-_and_PP_Num_Partitions_-1_to_2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_change_num_partitions.py \
--model_file /home/TestData/nlp/megatron_gpt/TP2/megatron_gpt_tp2.nemo \
--target_file /home/TestData/nlp/megatron_gpt/TP2-Temp/test-increase.nemo \
--tensor_model_parallel_size 2 \
--target_tensor_model_parallel_size 4 \
--pipeline_model_parallel_size 1 \
--target_pipeline_model_parallel_size 1
AFTER_SCRIPT: |
rm /home/TestData/nlp/megatron_gpt/TP2-Temp/test-increase.nemo
L2_Megatron_T5_Pretraining_and_Resume_Training_TP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_T5_Pretraining_and_Resume_Training_TP2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_t5_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=10 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=bf16 \
model.megatron_amp_O2=True \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \
model.tensor_model_parallel_size=2 \
model.seq_length=128 \
model.encoder.num_layers=4 \
model.encoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.encoder.activation=swiglu \
model.encoder.masked_softmax_fusion=False \
model.encoder.bias_activation_fusion=False \
model.encoder.activations_checkpoint_method=block \
model.encoder.activations_checkpoint_num_layers=1 \
model.encoder.position_embedding_type=relative \
model.decoder.num_layers=2 \
model.decoder.hidden_size=64 \
model.decoder.num_attention_heads=8 \
model.decoder.activation=fast-swiglu \
model.decoder.masked_softmax_fusion=False \
model.decoder.bias_activation_fusion=False \
model.decoder.activations_checkpoint_method=block \
model.decoder.activations_checkpoint_num_layers=1 \
model.encoder.transformer_block_type=pre_ln \
model.decoder.transformer_block_type=pre_ln \
model.data.data_prefix=[.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src,.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref] \
model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings \
model.data.data_impl=text_mmap \
+model.data.data_impl_kwargs.newline_int=10 \
+model.data.data_impl_kwargs.header_lines=0 \
+model.data.data_impl_kwargs.workers=null \
+model.data.data_impl_kwargs.sort_dataset_paths=False \
model.share_token_embeddings=False \
model.share_decoder_tokens_head_embeddings=False
python examples/nlp/language_modeling/megatron_t5_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=1 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=bf16 \
model.megatron_amp_O2=True \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \
exp_manager.resume_if_exists=True \
model.tensor_model_parallel_size=2 \
model.seq_length=128 \
model.encoder.num_layers=4 \
model.encoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.encoder.activation=swiglu \
model.encoder.masked_softmax_fusion=False \
model.encoder.bias_activation_fusion=False \
model.encoder.activations_checkpoint_method=block \
model.encoder.activations_checkpoint_num_layers=1 \
model.encoder.position_embedding_type=relative \
model.decoder.num_layers=2 \
model.decoder.hidden_size=64 \
model.decoder.num_attention_heads=8 \
model.decoder.activation=fast-swiglu \
model.decoder.masked_softmax_fusion=False \
model.decoder.bias_activation_fusion=False \
model.decoder.activations_checkpoint_method=block \
model.decoder.activations_checkpoint_num_layers=1 \
model.encoder.transformer_block_type=pre_ln \
model.decoder.transformer_block_type=pre_ln \
model.data.data_prefix=[.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src,.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref] \
model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings \
model.data.data_impl=text_mmap \
+model.data.data_impl_kwargs.newline_int=10 \
+model.data.data_impl_kwargs.header_lines=0 \
+model.data.data_impl_kwargs.workers=null \
+model.data.data_impl_kwargs.sort_dataset_paths=False \
model.share_token_embeddings=False \
model.share_decoder_tokens_head_embeddings=False
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/t5_pretrain_results
rm -rf examples/nlp/language_modeling/t5_index_mappings
L2_Megatron_Core_T5_Pretraining_and_Resume_Training_TP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_Core_T5_Pretraining_and_Resume_Training_TP2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
NVTE_FUSED_ATTN=0 NVTE_FLASH_ATTN=0 python examples/nlp/language_modeling/megatron_t5_pretraining.py \
trainer.devices=2 \
trainer.log_every_n_steps=1 \
trainer.max_epochs=null \
trainer.max_steps=10 \
trainer.val_check_interval=10 \
trainer.accumulate_grad_batches=1 \
trainer.precision=bf16 \
model.megatron_amp_O2=True \
exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \
model.mcore_t5=True \
model.transformer_engine=True \
model.tensor_model_parallel_size=2 \
model.micro_batch_size=4 \
model.global_batch_size=4 \
model.seq_length=128 \
model.encoder.num_layers=4 \
model.encoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.decoder.num_layers=4 \
model.decoder.hidden_size=64 \
model.decoder.num_attention_heads=8 \
model.encoder.transformer_block_type="pre_ln" \
model.decoder.transformer_block_type="pre_ln" \
model.data.data_prefix=[.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src,.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref] \
model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings \
model.data.data_impl=text_mmap \
+model.data.data_impl_kwargs.newline_int=10 \
+model.data.data_impl_kwargs.header_lines=0 \
+model.data.data_impl_kwargs.workers=null \
+model.data.data_impl_kwargs.sort_dataset_paths=False
NVTE_FUSED_ATTN=0 NVTE_FLASH_ATTN=0 python examples/nlp/language_modeling/megatron_t5_pretraining.py \
trainer.devices=2 \
trainer.log_every_n_steps=1 \
trainer.max_epochs=null \
trainer.max_steps=10 \
trainer.val_check_interval=10 \
trainer.accumulate_grad_batches=1 \
trainer.precision=bf16 \
model.megatron_amp_O2=True \
exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \
exp_manager.resume_if_exists=True \
model.mcore_t5=True \
model.transformer_engine=True \
model.tensor_model_parallel_size=2 \
model.micro_batch_size=4 \
model.global_batch_size=4 \
model.seq_length=128 \
model.encoder.num_layers=4 \
model.encoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.decoder.num_layers=4 \
model.decoder.hidden_size=64 \
model.decoder.num_attention_heads=8 \
model.encoder.transformer_block_type="pre_ln" \
model.decoder.transformer_block_type="pre_ln" \
model.data.data_prefix=[.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src,.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref] \
model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings \
model.data.data_impl=text_mmap \
+model.data.data_impl_kwargs.newline_int=10 \
+model.data.data_impl_kwargs.header_lines=0 \
+model.data.data_impl_kwargs.workers=null \
+model.data.data_impl_kwargs.sort_dataset_paths=False
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/t5_pretrain_results
rm -rf examples/nlp/language_modeling/t5_index_mappings
L2_Megatron_T5_with_ALiBi_Pretraining_and_Resume_Training_TP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_T5_with_ALiBi_Pretraining_and_Resume_Training_TP2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_t5_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=10 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \
model.tensor_model_parallel_size=2 \
model.seq_length=128 \
model.encoder.num_layers=4 \
model.encoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.encoder.activation=swiglu \
model.encoder.masked_softmax_fusion=False \
model.encoder.bias_activation_fusion=False \
model.encoder.activations_checkpoint_method=block \
model.encoder.activations_checkpoint_num_layers=1 \
model.encoder.position_embedding_type=alibi \
model.decoder.num_layers=2 \
model.decoder.hidden_size=64 \
model.decoder.num_attention_heads=8 \
model.decoder.activation=swiglu \
model.decoder.masked_softmax_fusion=False \
model.decoder.bias_activation_fusion=False \
model.decoder.activations_checkpoint_method=block \
model.decoder.activations_checkpoint_num_layers=1 \
model.encoder.transformer_block_type=pre_ln \
model.decoder.transformer_block_type=pre_ln \
model.data.data_prefix=[.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src,.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref] \
model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings \
model.data.data_impl=text_mmap \
+model.data.data_impl_kwargs.newline_int=10 \
+model.data.data_impl_kwargs.header_lines=0 \
+model.data.data_impl_kwargs.workers=null \
+model.data.data_impl_kwargs.sort_dataset_paths=False \
model.share_token_embeddings=False \
model.share_decoder_tokens_head_embeddings=False
python examples/nlp/language_modeling/megatron_t5_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=1 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \
exp_manager.resume_if_exists=True \
model.tensor_model_parallel_size=2 \
model.seq_length=128 \
model.encoder.num_layers=4 \
model.encoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.encoder.activation=swiglu \
model.encoder.masked_softmax_fusion=False \
model.encoder.bias_activation_fusion=False \
model.encoder.activations_checkpoint_method=block \
model.encoder.activations_checkpoint_num_layers=1 \
model.encoder.position_embedding_type=alibi \
model.decoder.num_layers=2 \
model.decoder.hidden_size=64 \
model.decoder.num_attention_heads=8 \
model.decoder.activation=swiglu \
model.decoder.masked_softmax_fusion=False \
model.decoder.bias_activation_fusion=False \
model.decoder.activations_checkpoint_method=block \
model.decoder.activations_checkpoint_num_layers=1 \
model.encoder.transformer_block_type=pre_ln \
model.decoder.transformer_block_type=pre_ln \
model.data.data_prefix=[.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src,.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref] \
model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings \
model.data.data_impl=text_mmap \
+model.data.data_impl_kwargs.newline_int=10 \
+model.data.data_impl_kwargs.header_lines=0 \
+model.data.data_impl_kwargs.workers=null \
+model.data.data_impl_kwargs.sort_dataset_paths=False \
model.share_token_embeddings=False \
model.share_decoder_tokens_head_embeddings=False
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/t5_pretrain_results
rm -rf examples/nlp/language_modeling/t5_index_mappings
L2_Megatron_T5_with_KERPLE_Pretraining_and_Resume_Training_TP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_T5_with_KERPLE_Pretraining_and_Resume_Training_TP2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_t5_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=10 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \
model.tensor_model_parallel_size=2 \
model.seq_length=128 \
model.encoder.num_layers=4 \
model.encoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.encoder.activation=swiglu \
model.encoder.masked_softmax_fusion=False \
model.encoder.bias_activation_fusion=False \
model.encoder.activations_checkpoint_method=block \
model.encoder.activations_checkpoint_num_layers=1 \
model.encoder.position_embedding_type=kerple \
model.decoder.num_layers=2 \
model.decoder.hidden_size=64 \
model.decoder.num_attention_heads=8 \
model.decoder.activation=swiglu \
model.decoder.masked_softmax_fusion=False \
model.decoder.bias_activation_fusion=False \
model.decoder.activations_checkpoint_method=block \
model.decoder.activations_checkpoint_num_layers=1 \
model.encoder.transformer_block_type=pre_ln \
model.decoder.transformer_block_type=pre_ln \
model.data.data_prefix=[.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src,.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref] \
model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings \
model.data.data_impl=text_mmap \
+model.data.data_impl_kwargs.newline_int=10 \
+model.data.data_impl_kwargs.header_lines=0 \
+model.data.data_impl_kwargs.workers=null \
+model.data.data_impl_kwargs.sort_dataset_paths=False \
model.share_token_embeddings=False \
model.share_decoder_tokens_head_embeddings=False
python examples/nlp/language_modeling/megatron_t5_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=1 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \
exp_manager.resume_if_exists=True \
model.tensor_model_parallel_size=2 \
model.seq_length=128 \
model.encoder.num_layers=4 \
model.encoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.encoder.activation=swiglu \
model.encoder.masked_softmax_fusion=False \
model.encoder.bias_activation_fusion=False \
model.encoder.activations_checkpoint_method=block \
model.encoder.activations_checkpoint_num_layers=1 \
model.encoder.position_embedding_type=kerple \
model.decoder.num_layers=2 \
model.decoder.hidden_size=64 \
model.decoder.num_attention_heads=8 \
model.decoder.activation=swiglu \
model.decoder.masked_softmax_fusion=False \
model.decoder.bias_activation_fusion=False \
model.decoder.activations_checkpoint_method=block \
model.decoder.activations_checkpoint_num_layers=1 \
model.encoder.transformer_block_type=pre_ln \
model.decoder.transformer_block_type=pre_ln \
model.data.data_prefix=[.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.src,.5,/home/TestData/nlp/nmt/toy_data/wmt14-de-en.ref] \
model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings \
model.data.data_impl=text_mmap \
+model.data.data_impl_kwargs.newline_int=10 \
+model.data.data_impl_kwargs.header_lines=0 \
+model.data.data_impl_kwargs.workers=null \
+model.data.data_impl_kwargs.sort_dataset_paths=False \
model.share_token_embeddings=False \
model.share_decoder_tokens_head_embeddings=False
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/t5_pretrain_results
rm -rf examples/nlp/language_modeling/t5_index_mappings
L2_Megatron_T5_Pretraining_and_Resume_Training_PP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_T5_Pretraining_and_Resume_Training_PP2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_t5_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=10 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \
model.pipeline_model_parallel_size=2 \
model.pipeline_model_parallel_split_rank=1 \
model.seq_length=256 \
model.encoder.num_layers=4 \
model.decoder.num_layers=1 \
model.encoder.hidden_size=64 \
model.decoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.decoder.num_attention_heads=8 \
model.decoder.ffn_hidden_size=2048 \
model.encoder.activation=gelu \
model.encoder.activations_checkpoint_method=block \
model.encoder.activations_checkpoint_num_layers=1 \
model.encoder.transformer_block_type=pre_ln \
model.decoder.transformer_block_type=post_ln \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document,.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document] \
model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings
python examples/nlp/language_modeling/megatron_t5_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=1 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \
exp_manager.resume_if_exists=True \
model.pipeline_model_parallel_size=2 \
model.pipeline_model_parallel_split_rank=1 \
model.seq_length=256 \
model.encoder.num_layers=4 \
model.decoder.num_layers=1 \
model.encoder.hidden_size=64 \
model.decoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.decoder.num_attention_heads=8 \
model.decoder.ffn_hidden_size=2048 \
model.encoder.activation=gelu \
model.encoder.activations_checkpoint_method=block \
model.encoder.activations_checkpoint_num_layers=1 \
model.encoder.transformer_block_type=pre_ln \
model.decoder.transformer_block_type=post_ln \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document,.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document] \
model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/t5_pretrain_results
rm -rf examples/nlp/language_modeling/t5_index_mappings
L2_Megatron_T5_w_Mixture_of_Expert_Pretraining:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_T5_w_Mixture_of_Expert_Pretraining') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_t5_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=10 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \
model.pipeline_model_parallel_split_rank=0 \
model.seq_length=256 \
model.encoder.num_layers=4 \
model.decoder.num_layers=1 \
model.encoder.num_moe_experts=4 \
model.decoder.num_moe_experts=4 \
model.encoder.moe_frequency=3 \
model.decoder.moe_frequency=1 \
model.encoder.hidden_size=64 \
model.decoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.decoder.num_attention_heads=8 \
model.decoder.ffn_hidden_size=2048 \
model.encoder.activation=gelu \
model.encoder.activations_checkpoint_method=block \
model.encoder.activations_checkpoint_num_layers=1 \
model.encoder.transformer_block_type=pre_ln \
model.decoder.transformer_block_type=post_ln \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document,.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document] \
model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/t5_pretrain_results
rm -rf examples/nlp/language_modeling/t5_index_mappings
L2_Megatron_UL2_Pretraining_and_Resume_Training_TP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_UL2_Pretraining_and_Resume_Training_TP2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_t5_pretraining.py -cn megatron_ul2_config \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=10 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \
model.tensor_model_parallel_size=2 \
model.seq_length=128 \
model.encoder.num_layers=4 \
model.encoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.encoder.activation=swiglu \
model.encoder.bias_activation_fusion=False \
model.encoder.activations_checkpoint_method=block \
model.encoder.activations_checkpoint_num_layers=1 \
model.encoder.transformer_block_type=normformer \
model.encoder.headscale=True \
model.decoder.num_layers=4 \
model.decoder.hidden_size=64 \
model.decoder.num_attention_heads=8 \
model.decoder.activation=geglu \
model.decoder.bias_activation_fusion=False \
model.decoder.activations_checkpoint_method=block \
model.decoder.activations_checkpoint_num_layers=1 \
model.decoder.transformer_block_type=normformer \
model.decoder.headscale=False \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document,.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document] \
model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings
python examples/nlp/language_modeling/megatron_t5_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=1 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \
exp_manager.resume_if_exists=True \
model.tensor_model_parallel_size=2 \
model.seq_length=128 \
model.encoder.num_layers=4 \
model.encoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.encoder.activation=swiglu \
model.encoder.bias_activation_fusion=False \
model.encoder.activations_checkpoint_method=block \
model.encoder.activations_checkpoint_num_layers=1 \
model.encoder.transformer_block_type=normformer \
model.encoder.headscale=True \
model.decoder.num_layers=4 \
model.decoder.hidden_size=64 \
model.decoder.num_attention_heads=8 \
model.decoder.activation=geglu \
model.decoder.bias_activation_fusion=False \
model.decoder.activations_checkpoint_method=block \
model.decoder.activations_checkpoint_num_layers=1 \
model.decoder.transformer_block_type=normformer \
model.decoder.headscale=False \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document,.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document] \
model.data.index_mapping_dir=examples/nlp/language_modeling/t5_index_mappings
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/t5_pretrain_results
rm -rf examples/nlp/language_modeling/t5_index_mappings
L2_Megatron_T5_Eval:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_T5_Eval') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_t5_eval.py \
--model_file /home/TestData/nlp/megatron_t5/8m/megatron_t5_8m-refactor.nemo \
--prompt "How do I fix my GPU memory issue? I am seeing <mask> out of memory." \
--tensor_model_parallel_size 1
L2_Megatron_Core_T5_Eval:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_Core_T5_Eval') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
NVTE_FLASH_ATTN=0 NVTE_FUSED_ATTN=0 python examples/nlp/language_modeling/megatron_t5_eval.py \
--model_file /home/TestData/nlp/megatron_t5/220m/megatron_mcore_t5_220m.nemo \
--prompt "How do I fix my GPU memory issue? I am seeing <mask> out of memory." \
--tensor_model_parallel_size 1
L2_Megatron_BART_Pretraining_and_Resume_Training_TP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_BART_Pretraining_and_Resume_Training_TP2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_bart_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=2 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=3 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/bart_pretrain_results \
model.tensor_model_parallel_size=2 \
model.seq_length=128 \
model.encoder.num_layers=4 \
model.encoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.encoder.activation="reglu" \
model.encoder.bias_activation_fusion=False \
model.encoder.activations_checkpoint_method="block" \
model.encoder.activations_checkpoint_num_layers=1 \
model.decoder.num_layers=4 \
model.decoder.hidden_size=64 \
model.decoder.num_attention_heads=8 \
model.decoder.activation="reglu" \
model.decoder.bias_activation_fusion=False \
model.decoder.activations_checkpoint_method="block" \
model.decoder.activations_checkpoint_num_layers=1 \
model.data.data_prefix="{train:[1.0,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document],test:[/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document], validation:[/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document]}"
python examples/nlp/language_modeling/megatron_bart_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=2 \
trainer.limit_val_batches=5 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=6 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/bart_pretrain_results \
exp_manager.resume_if_exists=True \
model.tensor_model_parallel_size=2 \
model.seq_length=128 \
model.encoder.num_layers=4 \
model.encoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.encoder.activation="reglu" \
model.encoder.bias_activation_fusion=False \
model.encoder.activations_checkpoint_method="block" \
model.encoder.activations_checkpoint_num_layers=1 \
model.decoder.num_layers=4 \
model.decoder.hidden_size=64 \
model.decoder.num_attention_heads=8 \
model.decoder.activation="reglu" \
model.decoder.bias_activation_fusion=False \
model.decoder.activations_checkpoint_method="block" \
model.decoder.activations_checkpoint_num_layers=1 \
model.data.data_prefix="{train:[1.0,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document],test:[/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document], validation:[/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document]}"
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/bart_pretrain_results
L2_Megatron_BART_Pretraining_and_Resume_Training_PP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_BART_Pretraining_and_Resume_Training_PP2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_bart_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=10 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/bart_pretrain_results \
model.pipeline_model_parallel_size=2 \
model.pipeline_model_parallel_split_rank=1 \
model.seq_length=256 \
model.encoder.num_layers=4 \
model.encoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.encoder.activation=geglu \
model.encoder.bias_activation_fusion=False \
model.encoder.activations_checkpoint_method=block \
model.encoder.activations_checkpoint_num_layers=1 \
model.decoder.num_layers=4 \
model.decoder.hidden_size=64 \
model.decoder.num_attention_heads=8 \
model.decoder.activation=geglu \
model.decoder.bias_activation_fusion=False \
model.decoder.activations_checkpoint_method=block \
model.decoder.activations_checkpoint_num_layers=1 \
model.data.respect_document_boundaries=False \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document,.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document]
python examples/nlp/language_modeling/megatron_bart_pretraining.py \
trainer.devices=2 \
trainer.accelerator=gpu \
trainer.log_every_n_steps=1 \
trainer.val_check_interval=1 \
trainer.limit_val_batches=2 \
trainer.accumulate_grad_batches=1 \
trainer.max_steps=10 \
trainer.precision=16 \
trainer.gradient_clip_val=1.0 \
exp_manager.exp_dir=examples/nlp/language_modeling/bart_pretrain_results \
exp_manager.resume_if_exists=True \
model.pipeline_model_parallel_size=2 \
model.pipeline_model_parallel_split_rank=1 \
model.seq_length=256 \
model.encoder.num_layers=4 \
model.encoder.hidden_size=64 \
model.encoder.num_attention_heads=8 \
model.encoder.activation=geglu \
model.encoder.bias_activation_fusion=False \
model.encoder.activations_checkpoint_method=block \
model.encoder.activations_checkpoint_num_layers=1 \
model.decoder.num_layers=4 \
model.decoder.hidden_size=64 \
model.decoder.num_attention_heads=8 \
model.decoder.activation=geglu \
model.decoder.bias_activation_fusion=False \
model.decoder.activations_checkpoint_method=block \
model.decoder.activations_checkpoint_num_layers=1 \
model.data.respect_document_boundaries=False \
model.data.data_prefix=[.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document,.5,/home/TestData/nlp/megatron_t5/data/pile_val_small_bert_tokenizer_text_document]
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/bart_pretrain_results
L2_Megatron_T5_PEFT_Lora_TP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_T5_PEFT_Lora_TP2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
rm -rf /home/TestData/nlp/t5_lora_tuning_tp2
python examples/nlp/language_modeling/tuning/megatron_t5_finetuning.py \
trainer.devices=2 \
trainer.log_every_n_steps=1 \
trainer.max_epochs=9999 \
trainer.max_steps=3 \
trainer.val_check_interval=3 \
++trainer.limit_val_batches=2 \
trainer.precision=16 \
exp_manager.exp_dir=/home/TestData/nlp/t5_lora_tuning_tp2 \
model.pipeline_model_parallel_size=1 \
model.tensor_model_parallel_size=2 \
model.restore_from_path=/home/TestData/nlp/megatron_t5/8m/megatron_t5_8m_tp2.nemo \
model.peft.peft_scheme=lora \
model.answer_only_loss=True \
model.micro_batch_size=1 \
model.global_batch_size=1 \
model.data.train_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl] \
model.data.train_ds.concat_sampling_probabilities=[1.0] \
model.data.train_ds.num_workers=0 \
model.data.validation_ds.num_workers=0 \
model.data.validation_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl] \
model.data.validation_ds.names=[quarel]
python examples/nlp/language_modeling/tuning/megatron_t5_generate.py \
model.restore_from_path=/home/TestData/nlp/megatron_t5/8m/megatron_t5_8m_tp2.nemo \
model.peft.restore_from_path=/home/TestData/nlp/t5_lora_tuning_tp2/megatron_t5_peft_lora_tuning/checkpoints/megatron_t5_peft_lora_tuning.nemo \
model.peft.restore_from_ckpt_name=null \
model.peft.restore_from_hparams_path=null \
model.tensor_model_parallel_size=2 \
trainer.devices=2 \
model.data.test_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel_4.jsonl] \
model.data.test_ds.names=[quarel4] \
model.global_batch_size=2 \
model.micro_batch_size=1 \
model.data.test_ds.tokens_to_generate=10 \
model.data.test_ds.write_predictions_to_file=True \
model.data.test_ds.output_file_path_prefix=/home/TestData/nlp/t5_lora_tuning_tp2/out \
inference.greedy=True \
inference.repetition_penalty=1.0 \
inference.outfile_path=/home/TestData/nlp/t5_lora_tuning_tp2/out.jsonl
AFTER_SCRIPT: |
rm -rf /home/TestData/nlp/t5_lora_tuning_tp2
L2_Megatron_Core_T5_PEFT_Lora_TP2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_Core_T5_PEFT_Lora_TP2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
rm -rf /home/TestData/nlp/mcore_t5_lora_tuning_tp2
NVTE_FUSED_ATTN=0 NVTE_FLASH_ATTN=0 python examples/nlp/language_modeling/tuning/megatron_t5_finetuning.py \
trainer.devices=2 \
trainer.log_every_n_steps=1 \
trainer.max_epochs=9999 \
trainer.max_steps=3 \
trainer.val_check_interval=3 \
++trainer.limit_val_batches=2 \
trainer.precision=16 \
exp_manager.exp_dir=/home/TestData/nlp/mcore_t5_lora_tuning_tp2 \
model.pipeline_model_parallel_size=1 \
model.tensor_model_parallel_size=2 \
model.restore_from_path=/home/TestData/nlp/megatron_t5/220m/megatron_mcore_t5_220m.nemo \
model.peft.peft_scheme=lora \
model.answer_only_loss=True \
model.micro_batch_size=1 \
model.global_batch_size=1 \
model.data.train_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl] \
model.data.train_ds.concat_sampling_probabilities=[1.0] \
model.data.train_ds.num_workers=0 \
model.data.validation_ds.num_workers=0 \
model.data.validation_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel.jsonl] \
model.data.validation_ds.names=[quarel]
NVTE_FUSED_ATTN=0 NVTE_FLASH_ATTN=0 python examples/nlp/language_modeling/tuning/megatron_t5_generate.py \
model.restore_from_path=/home/TestData/nlp/megatron_t5/220m/megatron_mcore_t5_220m.nemo \
model.peft.restore_from_path=/home/TestData/nlp/mcore_t5_lora_tuning_tp2/megatron_t5_peft_lora_tuning/checkpoints/megatron_t5_peft_lora_tuning.nemo \
model.peft.restore_from_ckpt_name=null \
model.peft.restore_from_hparams_path=null \
model.tensor_model_parallel_size=2 \
trainer.devices=2 \
model.data.test_ds.file_names=[/home/TestData/nlp/megatron_sft/quarel_4.jsonl] \
model.data.test_ds.names=[quarel4] \
model.global_batch_size=1 \
model.micro_batch_size=1 \
model.data.test_ds.tokens_to_generate=10 \
model.data.test_ds.write_predictions_to_file=True \
model.data.test_ds.output_file_path_prefix=/home/TestData/nlp/mcore_t5_lora_tuning_tp2/out \
inference.greedy=True \
inference.repetition_penalty=1.0 \
inference.outfile_path=/home/TestData/nlp/mcore_t5_lora_tuning_tp2/out.jsonl
AFTER_SCRIPT: |
rm -rf /home/TestData/nlp/mcore_t5_lora_tuning_tp2
# L2: Megatron Mock Data Generation
L2_Megatron_Mock_Data_Generation_MockGPTDataset:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_Mock_Data_Generation_MockGPTDataset') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_gpt_pretraining.py \
trainer.max_steps=10 \
trainer.limit_val_batches=7 \
trainer.val_check_interval=10 \
exp_manager.exp_dir=examples/nlp/language_modeling/gpt_pretrain_results \
model.mcore_gpt=True \
model.data.data_impl=mock \
model.data.data_prefix=[]
L2_Megatron_Mock_Data_Generation_MockT5Dataset:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_Megatron_Mock_Data_Generation_MockT5Dataset') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/nlp/language_modeling/megatron_t5_pretraining.py \
trainer.max_steps=10 \
trainer.limit_val_batches=3 \
trainer.val_check_interval=10 \
exp_manager.exp_dir=examples/nlp/language_modeling/t5_pretrain_results \
model.data.data_impl=mock \
model.data.data_prefix=[]
AFTER_SCRIPT: |
rm -rf examples/nlp/language_modeling/t5_pretrain_results
# L2: TTS Fast dev runs 1
L2_TTS_Fast_dev_runs_1_Tacotron_2:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_TTS_Fast_dev_runs_1_Tacotron_2') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
python examples/tts/tacotron2.py \
train_dataset=/home/TestData/an4_dataset/an4_train.json \
validation_datasets=/home/TestData/an4_dataset/an4_val.json \
trainer.devices=1 \
trainer.accelerator="gpu" \
+trainer.limit_train_batches=1 +trainer.limit_val_batches=1 trainer.max_epochs=1 \
trainer.strategy=auto \
model.decoder.decoder_rnn_dim=256 \
model.decoder.attention_rnn_dim=1024 \
model.decoder.prenet_dim=128 \
model.postnet.postnet_n_convolutions=3 \
model.train_ds.dataloader_params.batch_size=4 \
model.train_ds.dataloader_params.num_workers=0 \
model.validation_ds.dataloader_params.batch_size=4 \
model.validation_ds.dataloader_params.num_workers=0 \
~model.text_normalizer \
~model.text_normalizer_call_kwargs \
~trainer.check_val_every_n_epoch
L2_TTS_Fast_dev_runs_1_WaveGlow:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_TTS_Fast_dev_runs_1_WaveGlow') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/tts/waveglow.py \
train_dataset=/home/TestData/an4_dataset/an4_train.json \
validation_datasets=/home/TestData/an4_dataset/an4_val.json \
trainer.devices="[0]" \
+trainer.limit_train_batches=1 +trainer.limit_val_batches=1 trainer.max_epochs=1 \
trainer.strategy=auto \
model.train_ds.dataloader_params.batch_size=4 \
model.train_ds.dataloader_params.num_workers=0 \
model.validation_ds.dataloader_params.batch_size=4 \
model.validation_ds.dataloader_params.num_workers=0 \
model.waveglow.n_flows=4 \
model.waveglow.n_wn_layers=2 \
model.waveglow.n_wn_channels=32 \
~trainer.check_val_every_n_epoch
L2_TTS_Fast_dev_runs_1_FastPitch:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_TTS_Fast_dev_runs_1_FastPitch') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/tts/fastpitch.py \
--config-name fastpitch_align_v1.05 \
train_dataset=/home/TestData/an4_dataset/an4_train.json \
validation_datasets=/home/TestData/an4_dataset/an4_val.json \
sup_data_path=/home/TestData/an4_dataset/beta_priors \
trainer.devices="[0]" \
+trainer.limit_train_batches=1 \
+trainer.limit_val_batches=1 \
trainer.max_epochs=1 \
trainer.strategy=auto \
model.pitch_mean=212.35873413085938 \
model.pitch_std=68.52806091308594 \
model.train_ds.dataloader_params.batch_size=4 \
model.train_ds.dataloader_params.num_workers=0 \
model.validation_ds.dataloader_params.batch_size=4 \
model.validation_ds.dataloader_params.num_workers=0 \
model.symbols_embedding_dim=64 \
model.input_fft.d_inner=384 \
model.input_fft.n_layer=2 \
model.output_fft.d_inner=384 \
model.output_fft.n_layer=2 \
~trainer.check_val_every_n_epoch \
~model.text_normalizer \
~model.text_normalizer_call_kwargs
# OPTIONAL_L2_TTS_Fast_dev_runs_1_RADTTS:
# needs: [cicd-test-container-setup]
# runs-on: self-hosted-azure
# timeout-minutes: 10
# container:
# image: nemoci.azurecr.io/nemo_container_${{ github.run_id }}
# options:
# # --user 0:128
# --device=/dev/nvidia0
# --gpus all
# --shm-size=8g
# --env TRANSFORMERS_OFFLINE=0
# --env HYDRA_FULL_ERROR=1
# --volume /mnt/datadrive/TestData:/home/TestData
# steps:
# - name: Checkout repository
# uses: actions/checkout@v4
# - run: |
# python examples/tts/radtts.py \
# train_dataset=/home/TestData/an4_dataset/an4_train.json \
# validation_datasets=/home/TestData/an4_dataset/an4_val.json \
# sup_data_path=/home/TestData/an4_dataset/radtts_beta_priors \
# trainer.devices="[0]" \
# +trainer.limit_train_batches=1 \
# +trainer.limit_val_batches=1 \
# trainer.max_epochs=1 \
# trainer.strategy=auto \
# model.pitch_mean=212.35873413085938 \
# model.pitch_std=68.52806091308594 \
# model.train_ds.dataloader_params.batch_size=4 \
# model.train_ds.dataloader_params.num_workers=0 \
# model.validation_ds.dataloader_params.batch_size=4 \
# model.validation_ds.dataloader_params.num_workers=0 \
# export_dir=/home/TestData/radtts_test \
# model.optim.lr=0.0001 \
# model.modelConfig.decoder_use_partial_padding=True \
# ~trainer.check_val_every_n_epoch \
# ~model.text_normalizer \
# ~model.text_normalizer_call_kwargs
# #- uses: "NVIDIA/NeMo/.github/actions/cancel-workflow@main"
# # if: "failure()"
L2_TTS_Fast_dev_runs_1_Mixer-TTS:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_TTS_Fast_dev_runs_1_Mixer-TTS') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/tts/mixer_tts.py \
train_dataset=/home/TestData/an4_dataset/an4_train.json \
validation_datasets=/home/TestData/an4_dataset/an4_val.json \
sup_data_path=/home/TestData/an4_dataset/sup_data \
trainer.devices="[0]" \
+trainer.limit_train_batches=1 \
+trainer.limit_val_batches=1 \
trainer.max_epochs=1 \
trainer.strategy=auto \
model.pitch_mean=212.35873413085938 \
model.pitch_std=68.52806091308594 \
model.train_ds.dataloader_params.batch_size=4 \
model.train_ds.dataloader_params.num_workers=0 \
model.validation_ds.dataloader_params.batch_size=4 \
model.validation_ds.dataloader_params.num_workers=0 \
~trainer.check_val_every_n_epoch \
~model.text_normalizer \
~model.text_normalizer_call_kwargs
L2_TTS_Fast_dev_runs_1_Hifigan:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_TTS_Fast_dev_runs_1_Hifigan') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python examples/tts/hifigan.py \
train_dataset=/home/TestData/an4_dataset/an4_train.json \
validation_datasets=/home/TestData/an4_dataset/an4_val.json \
trainer.devices="[0]" \
+trainer.limit_train_batches=1 \
+trainer.limit_val_batches=1 \
+trainer.max_epochs=1 \
trainer.strategy=auto \
model.train_ds.dataloader_params.batch_size=4 \
model.train_ds.dataloader_params.num_workers=0 \
model.validation_ds.dataloader_params.batch_size=4 \
model.validation_ds.dataloader_params.num_workers=0 \
model.generator.upsample_initial_channel=64 \
+model.debug=true \
~trainer.check_val_every_n_epoch
# L2: NeRF
# L2_NeRF_DreamFusion:
# needs: [cicd-test-container-setup]
# runs-on: self-hosted-azure
# container:
# image: nemoci.azurecr.io/nemo_container_${{ github.run_id }}
# options:
# # --user 0:128
# --device=/dev/nvidia0
# --gpus all
# --shm-size=8g
# --env TRANSFORMERS_OFFLINE=0
# --env HYDRA_FULL_ERROR=1
# --volume /mnt/datadrive/TestData:/home/TestData
# steps:
# - name: Checkout repository
# uses: actions/checkout@v4
# - run: |
# python examples/multimodal/text_to_image/nerf/main.py \
# trainer.num_nodes=1 \
# trainer.devices="[0]" \
# trainer.max_steps=1000 \
# model.prompt="a DSLR photo of a delicious hamburger" \
# exp_manager.exp_dir=examples/multimodal/text_to_image/nerf/dreamfusion_results
#
# rm -rf examples/multimodal/text_to_image/nerf/dreamfusion_results
# - uses: "NVIDIA/NeMo/.github/actions/cancel-workflow@main"
# if: "failure()"
Speech_Checkpoints_tests:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'Speech_Checkpoints_tests') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
TIMEOUT: 20
SCRIPT: |
CUDA_VISIBLE_DEVICES=0 python examples/asr/speech_to_text_eval.py \
pretrained_name=QuartzNet15x5Base-En \
dataset_manifest=/home/TestData/librispeech/librivox-dev-other.json \
batch_size=64 \
tolerance=0.1012
AFTER_SCRIPT: |
rm -f examples/asr/evaluation_transcripts.json
OPTIONAL_L2_Stable_Diffusion_Training:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'OPTIONAL_L2_Stable_Diffusion_Training') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure-gpus-1
SCRIPT: |
rm -rf examples/multimodal/text_to_image/sd_train_results
python examples/multimodal/text_to_image/stable_diffusion/sd_train.py \
trainer.devices=1 \
trainer.max_steps=3 \
+trainer.val_check_interval=10 \
trainer.limit_val_batches=2 \
trainer.gradient_clip_val=0 \
exp_manager.exp_dir=examples/multimodal/text_to_image/sd_train_results \
exp_manager.create_checkpoint_callback=False \
exp_manager.resume_if_exists=False \
model.resume_from_checkpoint=null \
model.precision=16 \
model.micro_batch_size=1 \
model.global_batch_size=1 \
model.first_stage_key=moments \
model.cond_stage_key=encoded \
+model.load_vae=False \
+model.load_unet=False \
+model.load_encoder=False \
model.parameterization=v \
model.load_only_unet=False \
model.text_embedding_dropout_rate=0.0 \
model.inductor=True \
model.inductor_cudagraphs=False \
model.capture_cudagraph_iters=15 \
+model.unet_config.num_head_channels=64 \
+model.unet_config.use_linear_in_transformer=True \
model.unet_config.context_dim=1024 \
model.unet_config.use_flash_attention=null \
model.unet_config.resblock_gn_groups=16 \
model.unet_config.unet_precision=fp16 \
+model.unet_config.timesteps=1000 \
model.optim.name=megatron_fused_adam \
+model.optim.capturable=True \
+model.optim.master_weights=True \
model.optim.weight_decay=0.01 \
model.first_stage_config.from_pretrained=null \
model.data.num_workers=16 \
model.data.synthetic_data=True
AFTER_SCRIPT: |
rm -rf examples/multimodal/text_to_image/sd_train_results
IS_OPTIONAL: true
L2_NeMo_2_GPT_Pretraining_no_transformer_engine:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_NeMo_2_GPT_Pretraining_no_transformer_engine') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
pip uninstall -y apex ## TODO: remove when apex is no longer a dependency
pip uninstall -y transformer_engine
python tests/collections/llm/megatron_gpt_pretraining.py \
--devices=2 \
--max-steps=3 \
--experiment-dir=tests/collections/llm/gpt_pretrain_results \
--vocab-path=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \
--merges-path=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \
--data-path=/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document \
--index-mapping-dir=tests/collections/llm/gpt_index_mappings \
--no-masked-softmax-fusion
python tests/collections/llm/megatron_gpt_pretraining.py \
--devices=2 \
--max-steps=6 \
--experiment-dir=tests/collections/llm/gpt_pretrain_results \
--vocab-path=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \
--merges-path=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \
--data-path=/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document \
--index-mapping-dir=tests/collections/llm/gpt_index_mappings \
--no-masked-softmax-fusion
AFTER_SCRIPT: |
rm -rf tests/collections/llm/gpt_pretrain_results
rm -rf tests/collections/llm/gpt_index_mappings
L2_NeMo_2_GPT_DDP_Param_Parity_check:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'L2_NeMo_2_GPT_DDP_Param_Parity_check') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python tests/lightning/test_ddp_parity_checker.py \
--vocab-path=/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json \
--merges-path=/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt \
--data-path=/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document
AFTER_SCRIPT: |
rm -rf tests/collections/llm/gpt_pretrain_results
rm -rf tests/collections/llm/gpt_index_mappings
OPTIONAL_L2_NeMo_2_SSM_Pretraining:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'OPTIONAL_L2_NeMo_2_SSM_Pretraining') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python tests/collections/llm/gpt/model/megatron_ssm_pretraining.py \
--devices 1 \
--experiment-dir /home/TestData/nlp/megatron_mamba/nemo-ux-mamba/cicd_test_pretrain \
--max-steps 10 \
--data-path /home/TestData/nlp/megatron_mamba/toy_ssm_dataset/legal_pile_text_document
AFTER_SCRIPT: |
rm -rf /home/TestData/nlp/megatron_mamba/nemo-ux-mamba/cicd_test_pretrain
IS_OPTIONAL: true
OPTIONAL_L2_NeMo_2_SSM_Finetuning:
needs: [cicd-test-container-setup]
uses: ./.github/workflows/_test_template.yml
if: contains(fromJSON(needs.cicd-test-container-setup.outputs.test_to_run), 'OPTIONAL_L2_NeMo_2_SSM_Finetuning') || needs.cicd-test-container-setup.outputs.all == 'true'
with:
RUNNER: self-hosted-azure
SCRIPT: |
python tests/collections/llm/gpt/model/megatron_ssm_finetuning.py \
--devices 1 \
--experiment-dir /home/TestData/nlp/megatron_mamba/nemo-ux-mamba/cicd_test_sft \
--max-steps 10 \
--model-path /home/TestData/nlp/megatron_mamba/model_optim_rng.pt
AFTER_SCRIPT: |
rm -rf /home/TestData/nlp/megatron_mamba/nemo-ux-mamba/cicd_test_sft
IS_OPTIONAL: true
Nemo_CICD_Test:
needs:
- pre-flight
- gpu-test
- cicd-test-container-setup
#- OPTIONAL_L0_Unit_Tests_GPU_ASR
#- OPTIONAL_L0_Unit_Tests_GPU_Audio
- L0_Unit_Tests_GPU_Common
- L0_Unit_Tests_GPU_LLM
- L0_Unit_Tests_GPU_Multimodal
#- OPTIONAL_L0_Unit_Tests_GPU_NLP
#- OPTIONAL_L0_Unit_Tests_GPU_TTS
#- OPTIONAL_L0_Unit_Tests_GPU_Core
- L0_Unit_Tests_GPU_Hydra
#- OPTIONAL_L0_Unit_Tests_GPU_Lightning
- L0_Unit_Tests_GPU_Others
#- OPTIONAL_L0_Unit_Tests_CPU_ASR
#- OPTIONAL_L0_Unit_Tests_CPU_Audio
#- OPTIONAL_L0_Unit_Tests_CPU_Common
- L0_Unit_Tests_CPU_LLM
- L0_Unit_Tests_CPU_Multimodal
#- OPTIONAL_L0_Unit_Tests_CPU_NLP
#- OPTIONAL_L0_Unit_Tests_CPU_TTS
#- OPTIONAL_L0_Unit_Tests_CPU_Core
- L0_Unit_Tests_CPU_Hydra
- L0_Unit_Tests_CPU_Lightning
- L0_Unit_Tests_CPU_Others
- L2_Community_LLM_Checkpoints_tests_Bert
- L2_Community_LLM_Checkpoints_tests_Mamba2
- L2_Community_LLM_Checkpoints_tests_Llama
- L2_Community_LLM_Checkpoints_tests_StarCoder
- L2_Community_LLM_Checkpoints_tests_Falcon
- L2_Community_vita_Checkpoints_tests_Llama3
#- OPTIONAL_L2_Community_LLM_Checkpoints_tests_Baichuan2
- ASR_dev_run_Speech_to_Text
- ASR_dev_run_Speech_to_Text_WPE_-_CitriNet
- ASR_dev_run_Speech_Pre-training_-_CitriNet
- ASR_dev_run_Speech_To_Text_Finetuning
#- OPTIONAL_ASR_dev_run_Speech_To_Text_HF_Finetuning
- ASR_dev_run_Speech_to_Text_WPE_-_Conformer
- ASR_dev_run-part_two_Speech_to_Text_WPE_-_Squeezeformer
- L2_Speech_to_Text_EMA
- L2_Speaker_dev_run_Speaker_Recognition
- L2_Speaker_dev_run_Speaker_Diarization
- L2_Speaker_dev_run_Speech_to_Label
- L2_Speaker_dev_run_Speaker_Diarization_with_ASR_Inference
- L2_Speaker_dev_run_Clustering_Diarizer_Inference
- L2_Speaker_dev_run_Neural_Diarizer_Inference
- L2_Speaker_dev_run_Multispeaker_ASR_Data_Simulation
- L2_ASR_Multi-dataloader_dev_run_Speech_to_Text_multi-dataloader
- L2_ASR_Multi-dataloader_dev_run_Speech_to_Label_multi-dataloader
- L2_ASR_Adapters_Linear_Adapters
- L2_ASR_Adapters_RelPos_MHA_Adapters
- L2_Speech_Transcription_Speech_to_Text_Transcribe
- L2_Transducer_alignment_Running_pytest
- L2_Segmentation_Tool_Parallel_ctc_segmentation_test_L2_Eng_CitriNet_with_wav
- L2_Segmentation_Tool_Parallel_ctc_segmentation_test_L2_Ru_QN_with_mp3
- L2_G2P_Models_G2P_Conformer_training_evaluation_and_inference
- L2_G2P_Models_HeteronymClassificationModel_training_evaluation_and_inference
- L2_Duplex_Text_Normalization_with_Tarred_dataset
- L2_Intent_and_Slot_Classification_Tasks_Intent_and_Slot_Classification
- L2_Intent_and_Slot_Classification_Tasks_Multi-Label_Intent_and_Slot_Classification
- L2_Parallel_NLP_Examples2_NER_finetuning_from_pretrained_Test
- L2_Parallel_NLP_Examples2_Punctuation_and_capitalization_finetuning_from_pretrained_test
- L2_Parallel_NLP_Examples2_NER_with_TurkuNLP__bert-base-finnish-cased-v1
- L2_Parallel_NLP_Examples2_Evaluation_script_for_Token_Classification
- L2_Parallel_NLP_Examples2_Evaluation_script_for_Punctuation
- L2_Pretraining_BERT_pretraining_from_Text
- L2_Pretraining_BERT_from_Preprocessed
- L2_NMT_Attention_is_All_You_Need_Training_NMT_Training_Post-LN
- L2_NMT_Attention_is_All_You_Need_Training_NMT_Training_Pre-LN
- L2_NMT_Attention_is_All_You_Need_Training_NMT_Multi-Validation
- L2_NMT_Attention_is_All_You_Need_Inference
- L2_NMT_Attention_is_All_You_Need_Finetuning
- L2_NMT_Tarred_Dataset_Creation_Auto_Tarred_Dataset_Creation
- L2_NMT_Tarred_Dataset_Creation_Script_Tarred_Dataset_Creation
- L2_Megatron_NMT_Training_TP2
- L2_Megatron_BART_Perceiver_MIM_Training_TP2
- L2_Megatron_Bert_Pretraining_and_Resume_Training_with_Pipeline_Parallelism
- L2_Megatron_Bert_Pretraining_and_Resume_Training
- L2_Megatron_Core_Bert_Pretraining_and_Resume_Training
- L2_Legacy_Megatron_RETRO_Pretraining_and_Resume_Training
- L2_Megatron_RETRO_Pretraining_and_Resume_Training
- L2_RAG_Pipeline_Indexing
- L2_RAG_Pipeline_Generating
- L2_BioMegatron_Bert_NER_Task
- L2_Megatron_GPT_Pretraining_and_Resume_Training_TP2
- L2_Megatron_GPT_Skip_Train
- L2_Megatron_GPT_with_Rope_Pretraining_and_Resume_Training_TP2
- L2_Megatron_GPT_with_ResetLR_Pretraining_and_Resume_Training_TP2
- L2_Megatron_GPT_with_Drop_Optimizer_States_TP2
- L2_Megatron_GPT_with_ALiBi_Pretraining_and_Resume_Training_TP2
- L2_Megatron_GPT_with_KERPLE_Pretraining_and_Resume_Training_TP2
- L2_Megatron_GPT_Pretraining_and_Resume_Training_PP2
#- OPTIONAL_L2_Megatron_GPT_Auto_Configurator_TP1_PP1_MBS124
- L2_Megatron_GPT_Finetuning_PP2
- L2_Megatron_GPT_Finetuning_StarCoder_PP1
- L2_Megatron_GPT_Embedding
- L2_Megatron_GPT_PEFT_Lora_PP2_O2
- L2_Megatron_GPT_PEFT_Lora_TP2_O1
- L2_Megatron_GPT_PEFT_Lora_TP2SP1
- L2_Megatron_GPT_Eval
- L2_Megatron_GPT_Eval_PP2
- L2_Megatron_GPT_SFT_Eval_inference_seq_len_greaterThan_training_seq_len
- L2_Megatron_Change_Partitions_Reduce_TP_Num_Partitions_-2_to_1-_and_PP_Num_Partitions_-1_to_2
- L2_Megatron_Change_Partitions_Increase_TP_Num_Partitions_-2_to_4-_and_PP_Num_Partitions_-1_to_2
- L2_Megatron_T5_Pretraining_and_Resume_Training_TP2
- L2_Megatron_Core_T5_Pretraining_and_Resume_Training_TP2
- L2_Megatron_T5_with_ALiBi_Pretraining_and_Resume_Training_TP2
- L2_Megatron_T5_with_KERPLE_Pretraining_and_Resume_Training_TP2
- L2_Megatron_T5_Pretraining_and_Resume_Training_PP2
- L2_Megatron_T5_w_Mixture_of_Expert_Pretraining
- L2_Megatron_UL2_Pretraining_and_Resume_Training_TP2
- L2_Megatron_T5_Eval
- L2_Megatron_Core_T5_Eval
- L2_Megatron_BART_Pretraining_and_Resume_Training_TP2
- L2_Megatron_BART_Pretraining_and_Resume_Training_PP2
- L2_Megatron_T5_PEFT_Lora_TP2
- L2_Megatron_Core_T5_PEFT_Lora_TP2
- L2_Megatron_Mock_Data_Generation_MockGPTDataset
- L2_Megatron_Mock_Data_Generation_MockT5Dataset
- L2_TTS_Fast_dev_runs_1_Tacotron_2
- L2_TTS_Fast_dev_runs_1_WaveGlow
- L2_TTS_Fast_dev_runs_1_FastPitch
#- OPTIONAL_L2_TTS_Fast_dev_runs_1_RADTTS
- L2_TTS_Fast_dev_runs_1_Mixer-TTS
- L2_TTS_Fast_dev_runs_1_Hifigan
- Speech_Checkpoints_tests
#- OPTIONAL_L2_Stable_Diffusion_Training
- L2_NeMo_2_GPT_Pretraining_no_transformer_engine
- L2_NeMo_2_GPT_DDP_Param_Parity_check
#- OPTIONAL_L2_NeMo_2_SSM_Pretraining
#- OPTIONAL_L2_NeMo_2_SSM_Finetuning
if: always()
runs-on: ubuntu-latest
steps:
- if: ${{ always() }}
id: pipeline-conclusion
run: |
# Slack notifications are send only on test failure (not cancelled):
FAILED=${{ contains(needs.*.outputs.conclusion, 'failure') }}
echo "FAILED=$FAILED" >> $GITHUB_OUTPUT
# Mark as successful if no job was cancelled:
SUCCESS=${{ !contains(needs.*.result, 'cancelled') }}
echo "SUCCESS=$SUCCESS" >> $GITHUB_OUTPUT
# This should depend on all the tests so we block/unblock based on all tests passing
- if: ${{ always() && steps.pipeline-conclusion.outputs.SUCCESS == 'true' }}
run: exit 0
- if: ${{ always() && steps.pipeline-conclusion.outputs.FAILED == 'true' }}
name: Checkout repository
uses: actions/checkout@v4
- if: ${{ always() && steps.pipeline-conclusion.outputs.FAILED == 'true' && env.SLACK_WEBHOOK != '' }}
env:
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
run: |
set -x
PR_INFO=$(curl -L \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" \
-H "X-GitHub-Api-Version: 2022-11-28" \
https://api.github.com/repos/${{ github.repository }}/pulls/${{ github.event.number }}
)
PR_URL=$(echo -E $PR_INFO | jq '.html_url' | tr -d '"')
PR_TITLE=$(echo -E $PR_INFO | jq '.title' | tr -d '"')
PIPELINE_URL=${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
BASE_MESSAGE='
{
"blocks": [
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": "🚨 *CI/CD failure at <'$PIPELINE_URL'|NeMo CI>*."
}
}
]
}
'
# We are close to reaching 100 jobs: Once we break that barrier, we have to iterate pages
JOBS_URL="https://api.github.com/repos/${{ github.repository }}/actions/runs/${{ github.run_id }}/jobs?per_page=100"
SUMMARY="[]"
while IFS= read -r JOB; do
JOB_NAME="$(echo $JOB | jq '.key' | tr -d '"') / main"
JOB_ID=$(curl -s -H "Authorization: token ${{ secrets.GITHUB_TOKEN }}" $JOBS_URL | jq --arg job_name "$JOB_NAME" -r '.jobs[] | select(.name == $job_name) | .id')
JOB_URL="https://github.com/${{ github.repository }}/actions/runs/${{ github.run_id }}/job/$JOB_ID"
LOGS=$(echo $JOB | yq '(.value.outputs.log | @base64d)' | tr -d '"')
SUMMARY=$(echo "$SUMMARY" | jq \
--arg pr "<$PR_URL|$PR_TITLE>" \
--arg job "<$JOB_URL|$JOB_NAME>" \
--arg logs "$LOGS" \
--arg author "<https://github.com/${{ github.actor }}|${{ github.actor }}>" \
--arg branch "<https://github.com/${{ github.repository }}/tree/${{ github.head_ref || github.ref_name }}|${{ github.head_ref || github.ref_name }}>"\
'. += [
{
"type": "section",
"text": {
"type": "mrkdwn",
"text": (
"PR: " + $pr
+ "\nJob: " + $job
+ "\nAuthor: " + $author
+ "\nBranch: " + $branch
+ "\nLogs:"
+ "```\n" + $logs + "\n```"
)
}
}
]')
done <<<$(echo '${{ toJSON(needs) }}' | jq -c 'to_entries | .[] | select(.value.outputs.conclusion == "failure")')
MESSAGE=$(echo $BASE_MESSAGE | jq -c --argjson summary "$SUMMARY" '.blocks += $summary')
curl -X POST -H "Content-type: application/json" --data "$MESSAGE" ${{ secrets.SLACK_WEBHOOK }}
- if: ${{ always() && steps.pipeline-conclusion.outputs.SUCCESS == 'false' }}
run: |
exit 1