- 
                Notifications
    You must be signed in to change notification settings 
- Fork 190
Add functional test cases for published checkpoints on HF #455
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
          
     Open
      
      
            noeyy-mino
  wants to merge
  10
  commits into
  NVIDIA:main
  
    
      
        
          
  
    
      Choose a base branch
      
     
    
      
        
      
      
        
          
          
        
        
          
            
              
              
              
  
           
        
        
          
            
              
              
           
        
       
     
  
        
          
            
          
            
          
        
       
    
      
from
noeyy-mino:noeyy/test_ckpts_on_hf
  
      
      
   
  
    
  
  
  
 
  
      
    base: main
Could not load branches
            
              
  
    Branch not found: {{ refName }}
  
            
                
      Loading
              
            Could not load tags
            
            
              Nothing to show
            
              
  
            
                
      Loading
              
            Are you sure you want to change the base?
            Some commits from the old base branch may be removed from the timeline,
            and old review comments may become outdated.
          
          
      
        
          +937
        
        
          −5
        
        
          
        
      
    
  
  
     Open
                    Changes from all commits
      Commits
    
    
            Show all changes
          
          
            10 commits
          
        
        Select commit
          Hold shift + click to select a range
      
      4927fee
              
                tests for published checkpoints on HF
              
              
                noeyy-mino 3bd217a
              
                initial gpt-oss example test
              
              
                noeyy-mino 88c1335
              
                Merge branch 'NVIDIA:main' into noeyy/test_ckpts_on_hf
              
              
                noeyy-mino 4c8261a
              
                Merge branch 'NVIDIA:main' into noeyy/test_ckpts_on_hf
              
              
                noeyy-mino f922be5
              
                Update tests/_test_utils/deploy_utils.py
              
              
                noeyy-mino 5c379e0
              
                add megatron chekpoints cases
              
              
                noeyy-mino 12943bb
              
                Merge branch 'main' into noeyy/test_ckpts_on_hf
              
              
                noeyy-mino 24e7e5f
              
                collect test case without imagenet
              
              
                noeyy-mino 6300709
              
                Merge branch 'NVIDIA:main' into noeyy/test_ckpts_on_hf
              
              
                noeyy-mino 54cab77
              
                fix path error
              
              
                noeyy-mino File filter
Filter by extension
Conversations
          Failed to load comments.   
        
        
          
      Loading
        
  Jump to
        
          Jump to file
        
      
      
          Failed to load files.   
        
        
          
      Loading
        
  Diff view
Diff view
There are no files selected for viewing
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              | Original file line number | Diff line number | Diff line change | 
|---|---|---|
| @@ -0,0 +1,227 @@ | ||
| # SPDX-FileCopyrightText: Copyright (c) 2023-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
| # SPDX-License-Identifier: Apache-2.0 | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|  | ||
| import itertools | ||
| import subprocess | ||
|  | ||
| import pytest | ||
| import torch | ||
|  | ||
| # Common test prompts for all backends | ||
| COMMON_PROMPTS = [ | ||
| "Hello, my name is", | ||
| "The president of the United States is", | ||
| "The capital of France is", | ||
| "The future of AI is", | ||
| ] | ||
|  | ||
|  | ||
| class ModelDeployer: | ||
| def __init__( | ||
| self, | ||
| backend: str = "trtllm", | ||
| model_id: str = "", | ||
| tensor_parallel_size: int = 1, | ||
| mini_sm: int = 89, | ||
| attn_backend: str = "TRTLLM", | ||
| base_model: str = "", | ||
| eagle3_one_model: bool = True, | ||
| ): | ||
| """ | ||
| Initialize the ModelDeployer. | ||
|  | ||
| Args: | ||
| backend: The backend to use ('vllm', 'trtllm', or 'sglang') | ||
| model_id: Path to the model | ||
| tensor_parallel_size: Tensor parallel size for distributed inference | ||
| mini_sm: Minimum SM (Streaming Multiprocessor) requirement for the model | ||
| """ | ||
| self.backend = backend | ||
| self.model_id = model_id | ||
| self.tensor_parallel_size = tensor_parallel_size | ||
| self.mini_sm = mini_sm | ||
| self.attn_backend = attn_backend | ||
| self.base_model = base_model | ||
| self.eagle3_one_model = eagle3_one_model | ||
|  | ||
| def run(self): | ||
| """Run the deployment based on the specified backend.""" | ||
| if not torch.cuda.is_available() or torch.cuda.device_count() == 0: | ||
| pytest.skip("CUDA is not available") | ||
| return | ||
| if torch.cuda.get_device_capability() < ( | ||
| self.mini_sm // 10, | ||
| self.mini_sm % 10, | ||
| ): | ||
| pytest.skip(reason=f"Requires sm{self.mini_sm} or higher") | ||
| return | ||
|  | ||
| if torch.cuda.device_count() < self.tensor_parallel_size: | ||
| pytest.skip(reason=f"Requires at least {self.tensor_parallel_size} GPUs") | ||
| return | ||
| if self.backend == "vllm": | ||
| self._deploy_vllm() | ||
| elif self.backend == "trtllm": | ||
| self._deploy_trtllm() | ||
| elif self.backend == "sglang": | ||
| self._deploy_sglang() | ||
| else: | ||
| raise ValueError(f"Unknown backend: {self.backend}") | ||
| # check gpu status | ||
| gpu_status = subprocess.run( | ||
| "nvidia-smi || true", shell=True, capture_output=True, text=True, check=True | ||
| ) | ||
| print("\n=== GPU Status Before Test ===") | ||
| print(gpu_status.stdout) | ||
| print("=============================\n") | ||
|  | ||
| def _deploy_trtllm(self): | ||
| """Deploy a model using TensorRT-LLM.""" | ||
| try: | ||
| from tensorrt_llm import LLM, SamplingParams | ||
| from tensorrt_llm.llmapi import CudaGraphConfig, EagleDecodingConfig, KvCacheConfig | ||
| except ImportError: | ||
| pytest.skip("tensorrt_llm package not available") | ||
|  | ||
| sampling_params = SamplingParams(max_tokens=32) | ||
| spec_config = None | ||
| llm = None | ||
| kv_cache_config = KvCacheConfig(enable_block_reuse=True, free_gpu_memory_fraction=0.8) | ||
| if "eagle" in self.model_id.lower(): | ||
| spec_config = EagleDecodingConfig( | ||
| max_draft_len=3, | ||
| speculative_model_dir=self.model_id, | ||
| eagle3_one_model=self.eagle3_one_model, | ||
| ) | ||
| cuda_graph = CudaGraphConfig( | ||
| max_batch_size=1, | ||
| ) | ||
| llm = LLM( | ||
| model=self.base_model, | ||
| tensor_parallel_size=self.tensor_parallel_size, | ||
| enable_attention_dp=False, | ||
| disable_overlap_scheduler=True, | ||
| enable_autotuner=False, | ||
| speculative_config=spec_config, | ||
| cuda_graph_config=cuda_graph, | ||
| kv_cache_config=kv_cache_config, | ||
| ) | ||
| else: | ||
| llm = LLM( | ||
| model=self.model_id, | ||
| tensor_parallel_size=self.tensor_parallel_size, | ||
| enable_attention_dp=False, | ||
| attn_backend=self.attn_backend, | ||
| trust_remote_code=True, | ||
| max_batch_size=8, | ||
| kv_cache_config=kv_cache_config, | ||
| ) | ||
|  | ||
| outputs = llm.generate(COMMON_PROMPTS, sampling_params) | ||
|  | ||
| # Print outputs | ||
| for output in outputs: | ||
| prompt = output.prompt | ||
| generated_text = output.outputs[0].text | ||
| print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") | ||
|  | ||
| def _deploy_vllm(self): | ||
| """Deploy a model using vLLM.""" | ||
| try: | ||
| from vllm import LLM, SamplingParams | ||
| except ImportError: | ||
| pytest.skip("vllm package not available") | ||
|  | ||
| quantization_method = "modelopt" | ||
| if "FP4" in self.model_id: | ||
| quantization_method = "modelopt_fp4" | ||
| llm = LLM( | ||
| model=self.model_id, | ||
| quantization=quantization_method, | ||
| tensor_parallel_size=self.tensor_parallel_size, | ||
| trust_remote_code=True, | ||
| ) | ||
| sampling_params = SamplingParams(temperature=0.8, top_p=0.9) | ||
| outputs = llm.generate(COMMON_PROMPTS, sampling_params) | ||
|  | ||
| # Assertions and output | ||
| assert len(outputs) == len(COMMON_PROMPTS), ( | ||
| f"Expected {len(COMMON_PROMPTS)} outputs, got {len(outputs)}" | ||
| ) | ||
|  | ||
| for i, output in enumerate(outputs): | ||
| assert output.prompt == COMMON_PROMPTS[i], f"Prompt mismatch at index {i}" | ||
| assert hasattr(output, "outputs"), f"Output {i} missing 'outputs' attribute" | ||
| assert len(output.outputs) > 0, f"Output {i} has no generated text" | ||
| assert hasattr(output.outputs[0], "text"), f"Output {i} missing 'text' attribute" | ||
| assert isinstance(output.outputs[0].text, str), f"Output {i} text is not a string" | ||
| assert len(output.outputs[0].text) > 0, f"Output {i} generated empty text" | ||
|  | ||
| print(f"Model: {self.model_id}") | ||
| print(f"Prompt: {output.prompt!r}, Generated text: {output.outputs[0].text!r}") | ||
| print("-" * 50) | ||
|  | ||
| def _deploy_sglang(self): | ||
| """Deploy a model using SGLang.""" | ||
| try: | ||
| import sglang as sgl | ||
| except ImportError: | ||
| pytest.skip("sglang package not available") | ||
| quantization_method = "modelopt" | ||
| if "FP4" in self.model_id: | ||
| quantization_method = "modelopt_fp4" | ||
| llm = sgl.Engine( | ||
| model_path=self.model_id, | ||
| quantization=quantization_method, | ||
| tp_size=self.tensor_parallel_size, | ||
| trust_remote_code=True, | ||
| ) | ||
| print(llm.generate(["What's the age of the earth? "])) | ||
| llm.shutdown() | ||
|  | ||
|  | ||
| class ModelDeployerList: | ||
| def __init__(self, **params): | ||
| self.params = {} | ||
| for key, value in params.items(): | ||
| if isinstance(value, (list, tuple)): | ||
| self.params[key] = list(value) | ||
| else: | ||
| self.params[key] = [value] | ||
|  | ||
| # Pre-generate all deployers for pytest compatibility | ||
| self._deployers = list(self._generate_deployers()) | ||
|  | ||
| def _generate_deployers(self): | ||
| for values in itertools.product(*self.params.values()): | ||
| deployer = ModelDeployer(**dict(zip(self.params.keys(), values))) | ||
| # Set test case ID in format "model_id_backend" | ||
| deployer.test_id = f"{deployer.model_id}_{deployer.backend}" | ||
| yield deployer | ||
|  | ||
| def __iter__(self): | ||
| return iter(self._deployers) | ||
|  | ||
| def __len__(self): | ||
| return len(self._deployers) | ||
|  | ||
| def __getitem__(self, index): | ||
| return self._deployers[index] | ||
|  | ||
| def __str__(self): | ||
| return f"ModelDeployerList({len(self._deployers)} items)" | ||
|  | ||
| def __repr__(self): | ||
| return f"ModelDeployerList({len(self._deployers)} items)" | ||
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
              
      
      Oops, something went wrong.
        
    
  
      
      Oops, something went wrong.
        
    
  
  Add this suggestion to a batch that can be applied as a single commit.
  This suggestion is invalid because no changes were made to the code.
  Suggestions cannot be applied while the pull request is closed.
  Suggestions cannot be applied while viewing a subset of changes.
  Only one suggestion per line can be applied in a batch.
  Add this suggestion to a batch that can be applied as a single commit.
  Applying suggestions on deleted lines is not supported.
  You must change the existing code in this line in order to create a valid suggestion.
  Outdated suggestions cannot be applied.
  This suggestion has been applied or marked resolved.
  Suggestions cannot be applied from pending reviews.
  Suggestions cannot be applied on multi-line comments.
  Suggestions cannot be applied while the pull request is queued to merge.
  Suggestion cannot be applied right now. Please check back later.
  
    
  
    
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
🧩 Analysis chain
vLLM quantization string may vary by version; confirm.
Some versions expect "modelopt" vs "modelopt_fp4" or different aliases. Please confirm the CI vLLM version supports these strings.
🌐 Web query:
💡 Result:
vLLM accepts the following ModelOpt quantization strings in the hf_quant_config.json "quant_algo" / "kv_cache_quant_algo" fields:
Incorrect quantization string identifiers; use "FP8" and "NVFP4" instead.
vLLM accepts "FP8" for FP8 checkpoints and "NVFP4" for ModelOpt NVFP4/FP4 checkpoints (specified in hf_quant_config.json "quant_algo" fields). The code currently uses "modelopt" and "modelopt_fp4", which are not recognized by vLLM and will fail at runtime. Update lines 141–142 to use the correct identifiers:
"modelopt"with"FP8""modelopt_fp4"with"NVFP4"🤖 Prompt for AI Agents