flowchart TD
%% Stages and pipeline
subgraph " "
end
%% Execution Environment
Env["Execution Environment\n(Jupyter + Python)"]:::env
DataSources["Data Sources"]:::env
FE["Preprocessing & Feature Engineering"]:::pre
subgraph "Feature Selection"
FS1["Checking Multicollinearity"]:::pre
FS2["Wrapper Methods"]:::pre
FS3["Embedded Methods"]:::pre
end
subgraph "Dimensionality Reduction (PCA)"
PCA1["Kernel PCA"]:::pre
PCA2["MNIST PCA"]:::pre
PCA3["Wine Data PCA"]:::pre
end
subgraph "Model Training"
subgraph "Regression Models"
Reg1["Linear Regression"]:::model
Reg2["Polynomial Regression"]:::model
Reg3["Ridge & Lasso"]:::model
end
subgraph "Classification Models"
Clf1["K-Nearest Neighbors"]:::model
Clf2["Support Vector Machines"]:::model
Clf3["Naive Bayes"]:::model
Clf4["Decision Trees"]:::model
Clf5["Ensemble Methods"]:::model
end
end
MS["Model Selection &\nHyperparameter Tuning"]:::model
Eval["Evaluation & Visualization"]:::eval
%% Flow
Env -->|uses| DataSources
DataSources -->|ingests data| FE
FE -->|feature engineering| FS1
FE -->|feature engineering| FS2
FE -->|feature engineering| FS3
FE -->|dim reduction| PCA1
FE -->|dim reduction| PCA2
FE -->|dim reduction| PCA3
FS1 -->|features| Reg1
FS2 -->|features| Reg2
FS3 -->|features| Reg3
PCA1 -->|components| Clf1
PCA2 -->|components| Clf2
PCA3 -->|components| Clf3
FE -->|processed data| Clf4
FE -->|processed data| Clf5
Reg1 --> MS
Reg2 --> MS
Reg3 --> MS
Clf1 --> MS
Clf2 --> MS
Clf3 --> MS
Clf4 --> MS
Clf5 --> MS
MS -->|selects best model| Eval
%% Click Events
click Env "https://github.com/namesakenberg/machine_learning/blob/main/README.md"
click PCA2 "https://github.com/namesakenberg/machine_learning/blob/main/PCA/MNIST_PCA.ipynb"
click PCA3 "https://github.com/namesakenberg/machine_learning/blob/main/PCA/Wine_data_PCA.ipynb"
click FS1 "https://github.com/namesakenberg/machine_learning/blob/main/Feature_Selection/Checking_multicollinearity.ipynb"
click FS2 "https://github.com/namesakenberg/machine_learning/blob/main/Feature_Selection/Wrapper_methods_feature_Selection.ipynb"
click FS3 "https://github.com/namesakenberg/machine_learning/blob/main/Feature_Selection/embedded_methods_feature_selection.ipynb"
click PCA1 "https://github.com/namesakenberg/machine_learning/blob/main/PCA/Kernel_PCA.ipynb"
click MS "https://github.com/namesakenberg/machine_learning/tree/main/Model%20selection%20techniques/"
click Reg1 "https://github.com/namesakenberg/machine_learning/blob/main/Linear_Regression/myGdAlgorithms.ipynb"
click Reg2 "https://github.com/namesakenberg/machine_learning/blob/main/Linear_Regression/polynomial_reg.ipynb"
click Clf1 "https://github.com/namesakenberg/machine_learning/blob/main/KNN/KNN_example.ipynb"
click Clf2 "https://github.com/namesakenberg/machine_learning/blob/main/SVM/Hard_and_soft_margin_SVM.ipynb"
click Clf3 "https://github.com/namesakenberg/machine_learning/blob/main/naive%20bayes/sentiment-analysis-imdb-naive-bayes.ipynb"
click Clf4 "https://github.com/namesakenberg/machine_learning/blob/main/Decision%20Trees/Decision_trees_example.ipynb"
click Clf5 "https://github.com/namesakenberg/machine_learning/blob/main/Ensemble%20learning/bagging/Bagging.ipynb"
%% Styles
classDef env fill:#DDDDDD,stroke:#888,stroke-width:1px,stroke-dasharray: 5 5,rx:8,ry:8;
classDef pre fill:#C8E6C9,stroke:#2E7D32,stroke-width:2px;
classDef model fill:#BBDEFB,stroke:#1565C0,stroke-width:2px;
classDef eval fill:#FFF9C4,stroke:#F9A825,stroke-width:2px;
-
Notifications
You must be signed in to change notification settings - Fork 0
Namesakenberg/machine_learning
Folders and files
| Name | Name | Last commit message | Last commit date | |
|---|---|---|---|---|
Repository files navigation
About
Comprehensive implementation of Supervised Machine Learning algorithms , using Python and the Scikit-learn ecosystem.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published