Statistical Testing Framework for AI Research
A comprehensive statistical testing framework designed specifically for AI/ML research in Elixir. CrucibleBench provides rigorous statistical tests, effect size measures, power analysis, and publication-ready reporting.
- Parametric Tests: t-tests (independent, paired), ANOVA
- Non-Parametric Tests: Mann-Whitney U, Wilcoxon signed-rank, Kruskal-Wallis
- Effect Sizes: Cohen's d, Hedges' g, Glass's delta, eta-squared, omega-squared
- Power Analysis: A priori and post-hoc power calculations
- Confidence Intervals: Bootstrap and analytical methods
- Experiment DSL: High-level API for A/B tests, ablation studies, hyperparameter sweeps
- Export Formats: Markdown, LaTeX, HTML for publication
- Statistical Rigor: All implementations follow established statistical methods
- Interpretability: Every result includes effect sizes and practical significance
- Reproducibility: Complete audit trails for research reproducibility
- Peer-Review Ready: Publication-quality output suitable for academic papers
Add crucible_bench to your list of dependencies in mix.exs:
def deps do
[
{:crucible_bench, "~> 0.4.0"}
]
endOr install from GitHub:
def deps do
[
{:crucible_bench, github: "North-Shore-AI/crucible_bench"}
]
endCrucibleBench.Stage implements the Crucible.Stage behaviour from crucible_framework.
:tests- Statistical tests to run (default:[:ttest]):alpha- Significance level (default: 0.05):confidence_level- Confidence level (default: 0.95):bootstrap_iterations- Bootstrap iterations (default: 1000):data_source- Data source (:outputs,:metrics, or{:custom, fn})
# Get stage schema
schema = CrucibleBench.Stage.describe(%{})
# => %{
# __schema_version__: "1.0.0",
# name: :bench,
# description: "Statistical benchmarking and hypothesis testing",
# required: [],
# optional: [:tests, :alpha, :confidence_level, :bootstrap_iterations, :data_source],
# types: %{...},
# defaults: %{tests: [:ttest], alpha: 0.05, ...},
# __extensions__: %{bench: %{...}}
# }CrucibleBench v0.4.0+ provides CrucibleBench.Stage for seamless integration with crucible_framework pipelines:
# In your pipeline configuration
context = %{
experiment: %{
reliability: %{
stats: %CrucibleIR.Reliability.Stats{
tests: [:ttest, :bootstrap],
alpha: 0.05,
confidence_level: 0.95,
bootstrap_iterations: 2000
}
}
},
outputs: [0.85, 0.87, 0.84, 0.86, 0.88]
}
# Run statistical analysis
{:ok, updated_context} = CrucibleBench.Stage.run(context)
# Access results
updated_context.bench.tests
# => %{
# ttest: %{test_type: :ttest, ...},
# bootstrap: %{test_type: :bootstrap, confidence_interval: {0.84, 0.88}, ...}
# }
updated_context.bench.summary
# => %{n: 5, mean: 0.86, sd: 0.0141, median: 0.86}The Stage supports multiple data layouts for different test types:
# Two-group comparison (t-test, Mann-Whitney)
context = %{
experiment: %{reliability: %{stats: stats_config}},
control: [0.72, 0.68, 0.75, 0.71, 0.69],
treatment: [0.78, 0.73, 0.81, 0.76, 0.74]
}
{:ok, ctx} = CrucibleBench.Stage.run(context)
ctx.bench.tests.ttest
# => %{
# test_type: :ttest,
# statistic: -3.42,
# p_value: 0.0089,
# significant: true,
# effect_size: %{cohens_d: -2.16, interpretation: "large"},
# confidence_interval: {-0.095, -0.019}
# }
# Multi-group comparison (ANOVA, Kruskal-Wallis)
context = %{
experiment: %{
reliability: %{
stats: %CrucibleIR.Reliability.Stats{
tests: [:anova],
alpha: 0.05
}
}
},
groups: [
[0.89, 0.91, 0.88, 0.90, 0.92], # Model A
[0.87, 0.89, 0.86, 0.88, 0.90], # Model B
[0.84, 0.86, 0.83, 0.85, 0.87] # Model C
]
}
{:ok, ctx} = CrucibleBench.Stage.run(context)
ctx.bench.tests.anova.effect_size.eta_squared
# => 0.72 (large effect)
# Paired comparison (paired t-test, Wilcoxon)
context = %{
experiment: %{reliability: %{stats: stats_config}},
before: [0.72, 0.68, 0.75, 0.71, 0.69],
after: [0.78, 0.73, 0.81, 0.76, 0.74]
}
{:ok, ctx} = CrucibleBench.Stage.run(context)
# Automatically uses paired t-testThe Stage automatically merges statistical results into context.metrics:
{:ok, ctx} = CrucibleBench.Stage.run(context)
ctx.metrics.bench_n # Sample size
ctx.metrics.bench_mean # Mean value
ctx.metrics.bench_sd # Standard deviation
ctx.metrics.bench_median # Median value
ctx.metrics.bench_ttest_p_value # P-value from t-test (if run)This enables downstream pipeline stages to access statistical summaries directly.
CrucibleBench can adapt EvalEx results into inspect-ai-style eval logs for downstream analysis:
metrics = [
%{accuracy: 1.0},
%{accuracy: 0.0},
%{accuracy: 1.0}
]
result = EvalEx.Result.new("inspect_evals/gsm8k", :testset, metrics, 3, 120)
log = CrucibleBench.EvalLog.from_eval_result(result, scorer_name: "llm_judge")
scores = CrucibleBench.EvalLog.Extract.eval_log_scores_dict(log)
stderr = CrucibleBench.EvalLog.Extract.eval_log_headline_stderr(log)You can also pass CrucibleIR.Reliability.Stats directly to comparison functions:
config = %CrucibleIR.Reliability.Stats{
alpha: 0.01,
confidence_level: 0.99,
tests: [:ttest]
}
control = [0.72, 0.68, 0.75, 0.71, 0.69]
treatment = [0.78, 0.73, 0.81, 0.76, 0.74]
result = CrucibleBench.compare(control, treatment, config)
# Uses alpha=0.01 and 99% confidence interval# Compare control vs treatment groups
control = [0.72, 0.68, 0.75, 0.71, 0.69]
treatment = [0.78, 0.73, 0.81, 0.76, 0.74]
result = CrucibleBench.compare(control, treatment)
# => %CrucibleBench.Result{
# test: :welch_t_test,
# p_value: 0.0024,
# effect_size: %{cohens_d: 1.25, interpretation: "large"},
# confidence_interval: {0.02, 0.14}
# }# Before/after measurements
before = [0.72, 0.68, 0.75, 0.71, 0.69]
after = [0.78, 0.73, 0.81, 0.76, 0.74]
result = CrucibleBench.compare_paired(before, after)# Compare 3+ groups with ANOVA
gpt4 = [0.89, 0.91, 0.88, 0.90, 0.92]
claude = [0.87, 0.89, 0.86, 0.88, 0.90]
gemini = [0.84, 0.86, 0.83, 0.85, 0.87]
result = CrucibleBench.compare_multiple([gpt4, claude, gemini])# Calculate Cohen's d
effect = CrucibleBench.effect_size(control, treatment)
# => %{
# cohens_d: 1.25,
# interpretation: "large",
# mean1: 0.71,
# mean2: 0.764
# }# Calculate 95% CI for mean
data = [0.85, 0.87, 0.84, 0.86, 0.88]
ci = CrucibleBench.confidence_interval(data, :mean)
# => %{interval: {0.8432, 0.8768}, method: :analytical}
# Bootstrap CI for median
ci = CrucibleBench.confidence_interval(data, :median, method: :bootstrap)# A priori: Calculate required sample size
result = CrucibleBench.power_analysis(:t_test,
analysis_type: :a_priori,
effect_size: 0.5, # Medium effect
alpha: 0.05,
power: 0.80 # 80% power
)
# => %{n_per_group: 64, recommendation: "Collect at least 64 samples per group..."}
# Post-hoc: Calculate achieved power
result = CrucibleBench.power_analysis(:t_test,
analysis_type: :post_hoc,
effect_size: 0.5,
n_per_group: 30,
alpha: 0.05
)
# => %{power: 0.548, recommendation: "Marginal power..."}result = CrucibleBench.experiment(:ab_test,
control: control_scores,
treatment: treatment_scores,
name: "Prompt Engineering Test"
)
# Comprehensive output includes:
# - Statistical significance
# - Effect size with interpretation
# - Power analysis
# - Recommendationsresult = CrucibleBench.experiment(:ablation,
baseline: [0.85, 0.87, 0.84, 0.86, 0.88],
without_component: [0.78, 0.76, 0.79, 0.77, 0.75],
component_name: "Ensemble Voting"
)
# Shows performance drop and component importanceresult = CrucibleBench.experiment(:hyperparameter_sweep,
configurations: [config_a, config_b, config_c],
labels: ["Config A", "Config B", "Config C"],
correction_method: :holm # or :bonferroni, :benjamini_hochberg
)
# Identifies best configuration with pairwise comparisons
# Pairwise p-values are adjusted using the chosen correction method# Normality
NormalityTests.quick_check(data) # fast skew/kurtosis screen
NormalityTests.assess_normality(data) # Shapiro-Wilk + skew/kurtosis with recommendation
# Variance equality
VarianceTests.levene_test([g1, g2, g3]) # robust Brown-Forsythe (median-centered)
VarianceTests.f_test(g1, g2) # classic F-test (assumes normality)
VarianceTests.quick_check(g1, g2) # fast variance ratio heuristic- Use normality/variance checks to choose between parametric and non-parametric tests.
- Constant or near-constant data is handled safely (no crashes).
p_values = [0.01, 0.03, 0.04, 0.20]
# Adjust p-values
MultipleComparisons.correct(p_values, method: :holm)
MultipleComparisons.correct(p_values, method: :benjamini_hochberg, fdr_level: 0.10)
# Boolean rejections (uses the same alpha/FDR level)
MultipleComparisons.reject(p_values, method: :bonferroni)- Hyperparameter sweeps automatically apply corrections (
:holmdefault); setcorrection_method:and optionalfdr_level:to change behavior. - Exports include original and adjusted p-values plus significance under the chosen correction.
markdown = CrucibleBench.Export.to_markdown(result)
IO.puts(markdown)latex = CrucibleBench.Export.to_latex(result)
# Generates LaTeX table for academic papershtml = CrucibleBench.Export.to_html(result)
# Generates styled HTML reportreport = CrucibleBench.Export.experiment_to_markdown(ab_result)
# Comprehensive markdown report with interpretations| Test | Function | Use Case |
|---|---|---|
| Independent t-test | CrucibleBench.Stats.TTest.test/3 |
Compare 2 independent groups |
| Welch's t-test | CrucibleBench.Stats.TTest.test/3 |
Compare 2 groups (unequal variance) |
| Paired t-test | CrucibleBench.Stats.PairedTTest.test/3 |
Compare 2 related groups |
| One-way ANOVA | CrucibleBench.Stats.ANOVA.one_way/2 |
Compare 3+ independent groups |
| Test | Function | Use Case |
|---|---|---|
| Mann-Whitney U | CrucibleBench.Stats.MannWhitney.test/3 |
Non-parametric alternative to t-test |
| Wilcoxon signed-rank | CrucibleBench.Stats.Wilcoxon.test/3 |
Non-parametric alternative to paired t-test |
| Kruskal-Wallis | CrucibleBench.Stats.KruskalWallis.test/2 |
Non-parametric alternative to ANOVA |
| Measure | Function | Interpretation |
|---|---|---|
| Cohen's d | CrucibleBench.Stats.EffectSize.cohens_d/2 |
Standardized mean difference |
| Hedges' g | CrucibleBench.Stats.EffectSize.hedges_g/2 |
Bias-corrected Cohen's d |
| Glass's delta | CrucibleBench.Stats.EffectSize.glass_delta/2 |
Using control SD only |
| Eta-squared | Included in ANOVA results | Proportion of variance explained |
Based on Cohen (1988):
| Cohen's d | Interpretation |
|---|---|
| < 0.2 | Negligible |
| 0.2 - 0.5 | Small |
| 0.5 - 0.8 | Medium |
| > 0.8 | Large |
| Eta-squared (η²) | Interpretation |
|---|---|
| < 0.01 | Negligible |
| 0.01 - 0.06 | Small |
| 0.06 - 0.14 | Medium |
| > 0.14 | Large |
lib/crucible_bench/
├── bench.ex # Main API
├── result.ex # Result struct
├── stats.ex # Core statistics
├── analysis.ex # High-level analysis
├── experiment.ex # Experiment DSL
├── export.ex # Export/reporting
└── stats/
├── t_test.ex # Independent t-test
├── paired_t_test.ex # Paired t-test
├── anova.ex # ANOVA
├── mann_whitney.ex # Mann-Whitney U
├── wilcoxon.ex # Wilcoxon signed-rank
├── kruskal_wallis.ex # Kruskal-Wallis
├── effect_size.ex # Effect size measures
├── confidence_interval.ex # CI calculations
├── power.ex # Power analysis
├── multiple_comparisons.ex # p-value corrections (FWER/FDR)
├── normality_tests.ex # Shapiro-Wilk + diagnostics
├── variance_tests.ex # Levene, F-test, variance heuristics
└── distributions.ex # Probability distributions
See examples/basic_usage.exs for comprehensive examples covering:
- Independent samples t-test
- Paired t-test
- One-way ANOVA
- Effect size analysis
- Confidence intervals
- Power analysis
- A/B test experiment
- Ablation study
- Hyperparameter sweep
- Result export
Run examples:
mix run examples/basic_usage.exsRun the test suite:
mix testRun specific tests:
mix test test/bench_test.exs
mix test test/stats_test.exs
mix test test/effect_size_test.exsP-values alone don't tell the full story. Always include effect sizes:
result = CrucibleBench.compare(control, treatment)
IO.puts("P-value: #{result.p_value}")
IO.puts("Effect size: #{result.effect_size.cohens_d} (#{result.effect_size.interpretation})")Ensure your study has adequate power:
power = CrucibleBench.power_analysis(:t_test,
analysis_type: :post_hoc,
effect_size: observed_effect,
n_per_group: n,
alpha: 0.05
)
if power.power < 0.8 do
IO.puts("Warning: Underpowered study! #{power.recommendation}")
endCIs provide more information than p-values:
result = CrucibleBench.compare(group1, group2)
{lower, upper} = result.confidence_interval
IO.puts("95% CI: [#{lower}, #{upper}]")Statistical significance ≠practical significance:
if result.p_value < 0.05 and abs(effect.cohens_d) < 0.2 do
IO.puts("Statistically significant but negligible effect size")
endThe experiment DSL automates best practices:
result = CrucibleBench.experiment(:ab_test,
control: control,
treatment: treatment,
name: "My Experiment"
)
# Automatically includes:
# - Appropriate test selection
# - Effect size calculation
# - Power analysis
# - Recommendationsmodel_a_scores = [0.85, 0.87, 0.84, 0.86, 0.88]
model_b_scores = [0.88, 0.90, 0.89, 0.91, 0.87]
result = CrucibleBench.compare(model_a_scores, model_b_scores)
effect = CrucibleBench.effect_size(model_a_scores, model_b_scores)baseline_prompt = [0.72, 0.68, 0.75, 0.71, 0.69]
optimized_prompt = [0.78, 0.73, 0.81, 0.76, 0.74]
result = CrucibleBench.experiment(:ab_test,
control: baseline_prompt,
treatment: optimized_prompt,
name: "Prompt Optimization"
)baseline = [0.85, 0.87, 0.84, 0.86, 0.88]
new_arch = [0.88, 0.90, 0.89, 0.91, 0.87]
result = CrucibleBench.compare(baseline, new_arch)
markdown = CrucibleBench.Export.to_markdown(result)
File.write!("results.md", markdown)full_system = [0.85, 0.87, 0.84, 0.86, 0.88]
without_cache = [0.78, 0.76, 0.79, 0.77, 0.75]
result = CrucibleBench.experiment(:ablation,
baseline: full_system,
without_component: without_cache,
component_name: "Response Cache"
)- Sample Size: Most tests assume n ≥ 30 for asymptotic properties. Use bootstrap methods for smaller samples.
- Normality: Parametric tests assume normality. Bench automatically suggests non-parametric alternatives when assumptions are violated.
- Independence: All tests assume independent observations. Use appropriate designs for repeated measures.
- Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Routledge.
- Welch, B. L. (1947). The generalization of "Student's" problem when several different population variances are involved. Biometrika, 34(1-2), 28-35.
- Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583-621.
- Dror, R., et al. (2018). The hitchhiker's guide to testing statistical significance in natural language processing. Proceedings of ACL.
- Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1-30.
For small samples or non-normal data, use bootstrap methods:
# Bootstrap CI for median (robust to outliers)
data = [0.85, 0.87, 0.84, 0.86, 0.88, 0.83, 0.89, 0.85]
ci = CrucibleBench.confidence_interval(data, :median,
method: :bootstrap,
iterations: 10000
)
# => %{interval: {0.835, 0.875}, method: :bootstrap, bootstrap_distribution: %{...}}# Compare different effect size calculations
cohens_d = Stats.EffectSize.cohens_d(group1, group2)
hedges_g = Stats.EffectSize.hedges_g(group1, group2) # Bias-corrected
glass_delta = Stats.EffectSize.glass_delta(group1, group2) # Control SD only
IO.puts("Cohen's d: #{cohens_d.cohens_d}")
IO.puts("Hedges' g: #{hedges_g.hedges_g}")
IO.puts("Glass's Δ: #{glass_delta.glass_delta}")Calculate power for different sample sizes:
effect_size = 0.5
for n <- [20, 30, 50, 100] do
power = CrucibleBench.power_analysis(:t_test,
analysis_type: :post_hoc,
effect_size: effect_size,
n_per_group: n,
alpha: 0.05
)
IO.puts("n=#{n}: power=#{Float.round(power.power * 100, 1)}%")
endCompares two independent groups with automatic test selection.
Options:
:test- Force specific test (:t_test,:welch_t_test,:mann_whitney):confidence_level- CI level (default: 0.95):check_assumptions- Test normality (default: true):alternative-:two_sided,:less,:greater
Returns: CrucibleBench.Result struct
Compares paired/related groups.
Options: Same as compare/3
Compares 3+ groups with ANOVA or Kruskal-Wallis.
Options:
:test- Force:anovaor:kruskal_wallis:check_assumptions- Test normality (default: true)
Calculates Cohen's d effect size.
Calculates confidence intervals.
Statistics: :mean, :median, :variance, etc.
Methods: :analytical, :bootstrap
Power analysis calculations.
Types: :a_priori, :post_hoc
Required: :effect_size, :alpha, :power or :n_per_group
Options:
:control- Control group data:treatment- Treatment group data:name- Experiment name
Options:
:baseline- Full system performance:without_component- Performance without component:component_name- Name of removed component
Options:
:configurations- List of performance arrays:labels- Configuration names
defmodule StatsLive do
use Phoenix.LiveView
def handle_event("run_test", %{"control" => control, "treatment" => treatment}, socket) do
result = CrucibleBench.compare(control, treatment)
markdown = CrucibleBench.Export.to_markdown(result)
{:noreply, assign(socket, result: result, markdown: markdown)}
end
enddefmodule ResearchPipeline do
def run_experiment(control_data, treatment_data, metadata) do
# 1. Run statistical test
result = CrucibleBench.compare(control_data, treatment_data)
# 2. Check power
power_analysis = CrucibleBench.power_analysis(:t_test,
analysis_type: :post_hoc,
effect_size: abs(result.effect_size.cohens_d),
n_per_group: length(control_data),
alpha: 0.05
)
# 3. Generate report
report = CrucibleBench.Export.experiment_to_markdown(%{
experiment_type: :ab_test,
name: metadata.name,
significant?: result.p_value < 0.05,
p_value: result.p_value,
effect_size: result.effect_size,
power: power_analysis.power,
# ... other fields
})
# 4. Save results
File.write!("results/#{metadata.name}.md", report)
{:ok, result, power_analysis}
end
enddefmodule BenchmarkRunner do
def run_benchmarks(models, dataset) do
results = for {name, model} <- models do
scores = Enum.map(dataset, &model.predict/1)
{name, scores}
end
# Statistical comparison of all models
score_lists = Enum.map(results, fn {_name, scores} -> scores end)
comparison = CrucibleBench.compare_multiple(score_lists)
# Pairwise comparisons
pairwise = for i <- 0..(length(results)-2),
j <- (i+1)..(length(results)-1) do
{name_i, scores_i} = Enum.at(results, i)
{name_j, scores_j} = Enum.at(results, j)
result = CrucibleBench.compare(scores_i, scores_j)
%{comparison: "#{name_i} vs #{name_j}",
p_value: result.p_value,
effect_size: result.effect_size.cohens_d}
end
%{omnibus: comparison, pairwise: pairwise}
end
end- Bootstrap methods with high iteration counts (>10,000) may consume significant memory
- For large datasets, consider using analytical methods when assumptions are met
- Effect size calculations are O(n) in sample size
| Operation | Complexity | Notes |
|---|---|---|
| t-test | O(n) | Fast for any n |
| ANOVA | O(kĂ—n) | k = number of groups |
| Bootstrap CI | O(iterations Ă— n) | Expensive for high precision |
| Mann-Whitney | O(n²) | Slow for large n (>1000) |
| Kruskal-Wallis | O(n log n) | Better scaling |
# Use analytical methods when possible
ci = CrucibleBench.confidence_interval(data, :mean, method: :analytical)
# Reduce bootstrap iterations for faster results
ci = CrucibleBench.confidence_interval(data, :median,
method: :bootstrap,
iterations: 1000 # Instead of default 10000
)
# Cache results for repeated analyses
@cached_power_analysis Memoize.memoize fn params ->
CrucibleBench.power_analysis(params)
end# Check if you have enough power
result = CrucibleBench.compare(group1, group2)
power = CrucibleBench.power_analysis(:t_test,
analysis_type: :post_hoc,
effect_size: abs(result.effect_size.cohens_d),
n_per_group: length(group1),
alpha: 0.05
)
if power.power < 0.8 do
IO.puts("Underpowered study! Need larger sample size.")
end# Check normality
result = CrucibleBench.compare(group1, group2, check_assumptions: true)
# If normality test fails, consider non-parametric tests
# Or manually check
skew1 = CrucibleBench.Stats.skewness(group1)
kurt1 = CrucibleBench.Stats.kurtosis(group1)# Use robust statistics
median_ci = CrucibleBench.confidence_interval(data, :median, method: :bootstrap)
# Compare with mean-based results- "Need at least 2 groups":
compare_multiple/2requires 2+ groups - "Unknown test: xyz": Invalid test type specified
- "Sample size too small": Some tests require minimum n (e.g., normality tests)
- Power Analysis: Calculate required sample size before data collection
- Effect Sizes: Always report alongside p-values
- Assumptions: Test normality, homogeneity of variance
- Multiple Testing: Apply corrections for multiple comparisons
- Confidence Intervals: Report CIs, not just p-values
- Replication: Design studies for reproducibility
# Define analysis plan before data collection
analysis_plan = %{
primary_test: :welch_t_test,
alpha: 0.05,
power_target: 0.80,
effect_size_estimate: 0.5,
required_n: 64 # From a priori power analysis
}
# Execute plan
result = CrucibleBench.compare(group1, group2, test: analysis_plan.primary_test)# Multiple effect sizes for robustness
effect_sizes = [
CrucibleBench.effect_size(group1, group2),
Stats.EffectSize.hedges_g(group1, group2),
Stats.EffectSize.glass_delta(group1, group2)
]
# Sensitivity analysis with different tests
results = [
CrucibleBench.compare(group1, group2, test: :welch_t_test),
CrucibleBench.compare(group1, group2, test: :mann_whitney)
]# Calculate effect sizes for meta-analysis
studies = [
{study1_control, study1_treatment, "Study 1"},
{study2_control, study2_treatment, "Study 2"}
]
meta_data = for {control, treatment, name} <- studies do
effect = CrucibleBench.effect_size(control, treatment)
result = CrucibleBench.compare(control, treatment)
%{
study: name,
cohens_d: effect.cohens_d,
variance: Stats.effect_size_variance(effect.cohens_d, length(control) + length(treatment)),
n: length(control) + length(treatment)
}
end# Clone and setup
git clone https://github.com/North-Shore-AI/crucible_bench.git
cd crucible_bench
mix deps.get
# Run tests
mix test
# Run examples
mix run examples/basic_usage.exs
mix run examples/advanced_usage.exs
# Generate docs
mix docs- Modules: Follow Elixir naming conventions
- Functions: Clear, descriptive names with comprehensive documentation
- Tests: Unit tests for all public functions, property-based tests where applicable
- Documentation: Complete
@docand@moduledocwith examples
# 1. Implement test in appropriate stats module
defmodule CrucibleBench.Stats.NewTest do
def test(group1, group2, opts \\ []) do
# Implementation
# Return CrucibleBench.Result struct
end
end
# 2. Add to Analysis module
def compare_groups(group1, group2, opts) do
# ... existing logic
test_to_use = if new_condition, do: :new_test, else: existing_logic
case test_to_use do
:new_test -> NewTest.test(group1, group2, opts)
# ... other cases
end
end
# 3. Add comprehensive tests
test "new test handles various inputs" do
# Test cases
endPlease include:
- Elixir/Erlang versions
- Sample data that reproduces the issue
- Expected vs actual behavior
- Full error messages and stack traces
MIT License - see LICENSE file for details
- Complete statistical testing framework with parametric and non-parametric coverage using accurate distribution functions
- Expanded effect size suite with paired measures, eta/omega squared, and rank-biserial correlation plus interpretation guidance
- Analytical and bootstrap confidence intervals and power analysis with actionable recommendations
- High-level helpers for automatic test selection and experiment DSL for A/B tests, ablations, and hyperparameter sweeps
- Publication-ready exports to Markdown, LaTeX, and HTML with standardized result metadata
- Initial release with comprehensive statistical testing framework
- Support for parametric and non-parametric tests
- Effect size calculations and power analysis
- Bootstrap confidence intervals
- Experiment DSL for common research patterns
- Export to Markdown, LaTeX, and HTML formats
- Complete documentation and examples