Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

i.smap: add test file #5413

Open
wants to merge 6 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
160 changes: 160 additions & 0 deletions imagery/i.smap/testsuite/test_i_smap.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
import grass.script as gs
from grass.gunittest.case import TestCase
from grass.gunittest.main import test


class TestISmap(TestCase):
"""Regression tests for i.smap GRASS GIS module."""

group_name = "test_smap_group"
subgroup_name = "test_smap_subgroup"
input_maps = ["synth_map1", "synth_map2", "synth_map3"]
training_map = "training_areas"
signature_file = "smap_sig"
output_map = "smap_output"
goodness_map = "smap_goodness"
temp_rasters = []

@classmethod
def setUpClass(cls):
"""Set up the input data and configure test environment."""
cls.use_temp_region()
cls.runModule("g.region", n=50, s=0, e=50, w=0, rows=100, cols=100)
cls.runModule(
"r.mapcalc",
expression=f"{cls.input_maps[0]} = 10 * sin(row() / 10.0) + 10 * sin(col() / 10.0) + 10",
overwrite=True,
)
cls.runModule(
"r.mapcalc",
expression=f"{cls.input_maps[1]} = 10 * cos(row() / 10.0) + 10 * cos(col() / 10.0) + 10",
overwrite=True,
)
cls.runModule(
"r.mapcalc",
expression=f"{cls.input_maps[2]} = 20 * exp(-((row() - 50)^2 + (col() - 50)^2) / 500)",
overwrite=True,
)
cls.temp_rasters.extend(cls.input_maps)
cls.runModule(
"r.mapcalc",
expression=f"{cls.training_map} = if(row() < 40 && col() < 40, 1, if(row() > 60 && col() > 60, 3, 2))",
overwrite=True,
)
cls.temp_rasters.append(cls.training_map)
cls.runModule(
"r.colors", map=cls.training_map, rules="-", stdin="1 red\n2 green\n3 blue"
)
cls.runModule(
"i.group",
group=cls.group_name,
subgroup=cls.subgroup_name,
input=",".join(cls.input_maps),
)
cls.runModule(
"i.gensigset",
trainingmap=cls.training_map,
group=cls.group_name,
subgroup=cls.subgroup_name,
signaturefile=cls.signature_file,
overwrite=True,
)

@classmethod
def tearDownClass(cls):
"""Clean up generated data and reset the region."""
cls.runModule("g.remove", flags="f", type="group", name=cls.group_name)
cls.temp_rasters.append(cls.output_map)
cls.runModule("g.remove", flags="f", type="raster", name=cls.temp_rasters)
cls.runModule("i.signatures", remove=cls.signature_file, type="sigset")
cls.del_temp_region()

def _run_smap(self, output_name, **kwargs):
"""Helper function to execute i.smap with common parameters."""
self.assertModule(
"i.smap",
group=self.group_name,
subgroup=self.subgroup_name,
signaturefile=self.signature_file,
output=output_name,
overwrite=True,
**kwargs,
)
self.assertRasterExists(output_name)
return output_name

def test_basic_classification(self):
"""Verify basic SMAP classification produces valid results."""
self._run_smap(f"{self.output_map}_basic")
self.assertRasterExists(f"{self.output_map}_basic")
self.temp_rasters.append(f"{self.output_map}_basic")

stats = gs.read_command("r.stats", flags="cn", input=f"{self.output_map}_basic")
unique_classes = len(
[line for line in stats.split("\n") if line.strip() and " " in line]
)
self.assertEqual(
unique_classes, 3, f"Expected 3 classes in output, found {unique_classes}"
)

def test_with_goodness_map(self):
"""
Validate goodness of fit map generation and
verify if map values fall within expected statistical range
"""
self._run_smap(f"{self.output_map}_goodness", goodness=self.goodness_map)
self.assertRasterExists(self.goodness_map)
self.temp_rasters.extend([self.goodness_map, f"{self.output_map}_goodness"])

reference_stats = {
"min": -7.328390,
"max": 4.495414,
}
self.assertRasterFitsUnivar(self.goodness_map, reference_stats, precision=1e-6)

def test_maximum_likelihood_flag(self):
"""Compare SMAP and Maximum Likelihood Estimation (-m flag) approaches"""
self._run_smap(f"{self.output_map}_smap")
self.assertRasterExists(f"{self.output_map}_smap")
self.temp_rasters.append(f"{self.output_map}_smap")

self._run_smap(f"{self.output_map}_mle", flags="m")
self.assertRasterExists(f"{self.output_map}_mle")
self.temp_rasters.append(f"{self.output_map}_mle")

kappa_result = gs.parse_command(
"r.kappa",
classification=f"{self.output_map}_smap",
reference=f"{self.output_map}_mle",
format="json",
)

overall_accuracy = float(kappa_result["overall_accuracy"])

self.assertGreater(
overall_accuracy, 95.0, "Overall accuracy should be reasonably high"
)
self.assertLess(
overall_accuracy, 100.0, "SMAP and ML should not have 100% agreement"
)

def test_block_size(self):
"""Ensure block size parameter doesn't affect results"""
baseline = self._run_smap(f"{self.output_map}_baseline")
bs1 = self._run_smap(f"{self.output_map}_bs1", blocksize=256)
bs2 = self._run_smap(f"{self.output_map}_bs2", blocksize=1024)

self.temp_rasters.extend(
[
f"{self.output_map}_baseline",
f"{self.output_map}_bs1",
f"{self.output_map}_bs2",
]
)

self.assertRastersEqual(baseline, bs1)
self.assertRastersEqual(baseline, bs2)


if __name__ == "__main__":
test()
Loading