Skip to content

AgentCPM-GUI: An on-device GUI agent for operating Android apps, enhancing reasoning ability with reinforcement fine-tuning for efficient task execution.

License

Notifications You must be signed in to change notification settings

OpenBMB/AgentCPM-GUI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AgentCPM-GUI Logo

【English | 中文

OverviewQuick StartModelEvaluation Data • Technical Report

News

  • [2025-05-13] 🚀🚀🚀 We have open-sourced AgentCPM-GUI, an on-device GUI agent capable of operating Chinese & English apps and equipped with RFT-enhanced reasoning abilities.

Overview

AgentCPM-GUI is an open-source on-device LLM agent model jointly developed by THUNLP, Renmin University of China and ModelBest. Built on MiniCPM-V with 8 billion parameters, it accepts smartphone screenshots as input and autonomously executes user-specified tasks.

Key features include:

  • High-quality GUI grounding — Pre-training on a large-scale bilingual Android dataset significantly boosts localization and comprehension of common GUI widgets (buttons, input boxes, labels, icons, etc.).
  • Chinese-app operation — The first open-source GUI agent finely tuned for Chinese apps, covering 30 + popular titles such as Amap, Dianping, bilibili and Xiaohongshu.
  • Enhanced planning & reasoning — Reinforcement fine-tuning (RFT) lets the model “think” before outputting an action, greatly improving success on complex tasks.
  • Compact action-space design — An optimized action space and concise JSON format reduce the average action length to 9.7 tokens, boosting on-device inference efficiency.

Demo Case (1x speed):

demo.mp4

Quick Start

Install dependencies

git clone https://github.com/OpenBMB/AgentCPM-GUI
cd AgentCPM-GUI
conda create -n gui_agent python=3.11
conda activate gui_agent
pip install -r requirements.txt

Download the model

Download AgentCPM-GUI from Hugging Face and place it in model/AgentCPM-GUI.

Huggingface Inference

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from PIL import Image
import json

# 1. Load the model and tokenizer
model_path = "model/AgentCPM-GUI"  # model path
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
model = model.to("cuda:0") 

# 2. Build the input
instruction = "请点击屏幕上的‘会员’按钮"
image_path = "assets/test.jpeg"
image = Image.open(image_path).convert("RGB")

# 3. Resize the longer side to 1120 px to save compute & memory
def __resize__(origin_img):
    resolution = origin_img.size
    w,h = resolution
    max_line_res = 1120
    if max_line_res is not None:
        max_line = max_line_res
        if h > max_line:
            w = int(w * max_line / h)
            h = max_line
        if w > max_line:
            h = int(h * max_line / w)
            w = max_line
    img = origin_img.resize((w,h),resample=Image.Resampling.LANCZOS)
    return img
image = __resize__(image)

# 4. Build the message format
messages = [{
    "role": "user",
    "content": [
        f"<Question>{instruction}</Question>\n当前屏幕截图:",
        image
    ]
}]

# 5. Inference
ACTION_SCHEMA = json.load(open('eval/utils/schema/schema.json', encoding="utf-8"))
items = list(ACTION_SCHEMA.items())
insert_index = 3
items.insert(insert_index, ("required", ["thought"])) # enable/disable thought by setting it to "required"/"optional"
ACTION_SCHEMA = dict(items)
SYSTEM_PROMPT = f'''# Role
你是一名熟悉安卓系统触屏GUI操作的智能体,将根据用户的问题,分析当前界面的GUI元素和布局,生成相应的操作。

# Task
针对用户问题,根据输入的当前屏幕截图,输出下一步的操作。

# Rule
- 以紧凑JSON格式输出
- 输出操作必须遵循Schema约束

# Schema
{json.dumps(ACTION_SCHEMA, indent=None, ensure_ascii=False, separators=(',', ':'))}'''

outputs = model.chat(
    image=None,
    msgs=messages,
    system_prompt=SYSTEM_PROMPT,
    tokenizer=tokenizer,
    temperature=0.1,
    top_p=0.3,
    n=1,
)

# 6. Output
print(outputs)

Expected output:

{"thought":"任务目标是点击屏幕上的‘会员’按钮。当前界面显示了应用的推荐页面,顶部有一个导航栏。点击‘会员’按钮可以访问应用的会员相关内容。","POINT":[729,69]}

vLLM Inference

# Launch the vLLM server
vllm serve model/AgentCPM-GUI --served-model-name AgentCPM-GUI --tensor_parallel_size 1 --trust-remote-code
import base64
import io
import json
import requests
from PIL import Image

END_POINT = "http://localhost:8000/v1/chat/completions"  # Replace with actual endpoint

# system prompt
ACTION_SCHEMA = json.load(open('eval/utils/schema/schema.json', encoding="utf-8"))
items = list(ACTION_SCHEMA.items())
insert_index = 3
items.insert(insert_index, ("required", ["thought"])) # enable/disable thought by setting it to "required"/"optional"
ACTION_SCHEMA = dict(items)
SYSTEM_PROMPT = f'''# Role
你是一名熟悉安卓系统触屏GUI操作的智能体,将根据用户的问题,分析当前界面的GUI元素和布局,生成相应的操作。

# Task
针对用户问题,根据输入的当前屏幕截图,输出下一步的操作。

# Rule
- 以紧凑JSON格式输出
- 输出操作必须遵循Schema约束

# Schema
{json.dumps(ACTION_SCHEMA, indent=None, ensure_ascii=False, separators=(',', ':'))}'''

def encode_image(image: Image.Image) -> str:
    """Convert PIL Image to base64-encoded string."""
    with io.BytesIO() as in_mem_file:
        image.save(in_mem_file, format="JPEG")
        in_mem_file.seek(0)
        return base64.b64encode(in_mem_file.read()).decode("utf-8")

def __resize__(origin_img):
    resolution = origin_img.size
    w,h = resolution
    max_line_res = 1120
    if max_line_res is not None:
        max_line = max_line_res
        if h > max_line:
            w = int(w * max_line / h)
            h = max_line
        if w > max_line:
            h = int(h * max_line / w)
            w = max_line
    img = origin_img.resize((w,h),resample=Image.Resampling.LANCZOS)
    return img

def predict(text_prompt: str, image: Image.Image):
    messages = [
        {"role": "system", "content": SYSTEM_PROMPT},
        {"role": "user", "content": [
            {"type": "text", "text": f"<Question>{text_prompt}</Question>\n当前屏幕截图:"},
            {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encode_image(image)}"}}
        ]}
    ]

    payload = {
        "model": "AgentCPM-GUI",  # Your model name
        "temperature": 0.1,
        "messages": messages,
        "max_tokens": 2048,
    }

    headers = {
        "Content-Type": "application/json",
    }

    response = requests.post(END_POINT, headers=headers, json=payload)
    assistant_msg = response.json()["choices"][0]["message"]["content"]
    return assistant_msg

image = __resize__(Image.open("assets/test.jpeg"))
instruction = "请点击屏幕上的‘会员’按钮"
response = predict(instruction, image)
print(response)

Action Space

At each step, the agent outputs is a single JSON object that contains:

  • One (and only one) primitive action, chosen from the list below;
  • Optional modifiers (duration, thought) and/or a task-level flag (STATUS).

Note that all keywords are case-sensitive, and we use compact JSON (i.e., no extra whitespace), which affects the tokenizer’s behavior.

Action Required field(s) Optional field(s) Purpose Example
Click POINT:[x,y] duration,thought,STATUS Single tap at the normalized screen coordinate (0–1000, origin = top-left). {"POINT":[480,320]}
Long Press POINT:[x,y]
duration:1000
duration,thought,STATUS Touch-and-hold at coordinate (set a longer duration, e.g. >200 ms). {"POINT":[480,320],"duration":1000}
Swipe POINT:[x,y]
to:"up" | "down" | "left" | "right" or to:[x,y]
duration,thought,STATUS Swipe from the start point toward a direction or another coordinate. {"POINT":[500,200],"to":"down"}
Press key PRESS:"HOME" | "BACK" | "ENTER" duration,thought,STATUS Trigger a hardware / navigation button. {"PRESS":"HOME"}
Type text TYPE:"<text>" duration,thought,STATUS Insert the given text at the current input focus. {"TYPE":"Hello, world!"}
Wait duration thought,STATUS Idle for the specified time without any other action. {"duration":500}
Task-level status STATUS:"start" | "continue" | "finish" | "satisfied" | "impossible" | "interrupt" | "need_feedback" duration,thought Report task progress; may appear alone or with a primitive action. {"STATUS":"finish"}

Fine-tuning

Source code for SFT and RFT training is provided — see SFT and RFT.

Performance Evaluation

Grounding Benchmark

Model fun2point text2point bbox2text average
AgentCPM-GUI-8B 79.1 76.5 58.2 71.3
Qwen2.5-VL-7B 36.8 52.0 44.1 44.3
Intern2.5-VL-8B 17.2 24.2 45.9 29.1
Intern2.5-VL-26B 14.8 16.6 36.3 22.6
OS-Genesis-7B 8.3 5.8 4.0 6.0
UI-TARS-7B 56.8 66.7 1.4 41.6
OS-Altas-7B 53.6 60.7 0.4 38.2
Aguvis-7B 60.8 76.5 0.2 45.8
GPT-4o 22.1 19.9 14.3 18.8
GPT-4o with Grounding 44.3 44.0 14.3 44.2

Agent Benchmark

Dataset Android Control-Low TM Android Control-Low EM Android Control-High TM Android Control-High EM GUI-Odyssey TM GUI-Odyssey EM AITZ TM AITZ EM Chinese APP (CAGUI) TM Chinese APP (CAGUI) EM
AgentCPM-GUI-8B 94.39 90.20 77.70 69.17 90.85 74.96 85.71 76.38 96.86 91.28
Qwen2.5-VL-7B 92.11 82.12 69.65 57.36 55.33 40.90 73.16 57.58 68.53 48.80
UI-TARS-7B 93.52 88.89 68.53 60.81 78.79 57.33 71.74 55.31 71.01 53.92
OS-Genesis-7B 90.74 74.22 65.92 44.43 11.67 3.63 19.98 8.45 38.10 14.50
OS-Atlas-7B 73.03 67.25 70.36 56.53 91.83* 76.76* 74.13 58.45 81.53 55.89
Aguvis-7B 93.85 89.40 65.56 54.18 26.71 13.54 35.71 18.99 67.43 38.20
OdysseyAgent-7B 65.10 39.16 58.80 32.74 90.83 73.67 59.17 31.60 67.56 25.44
GPT-4o - 19.49 - 20.80 - 20.39 70.00 35.30 3.67 3.67
Gemini 2.0 - 28.50 - 60.20 - 3.27 - - - -
Claude - 19.40 - 12.50 60.90 - - - - -

*Different train/test splits

TM and EM stand for the Type Match and Exact Match, respectively. All evaluation data and code are open-sourced — see here for details.

Evaluation Data

We provide CAGUI, an evaluation benchmark for Chinese apps covering grounding and agent tasks. See the dataset on Hugging Face.

Trends

Star History Chart

License

  • Code in this repository is released under the Apache-2.0 license.

Citation

If AgentCPM-GUI is useful for your research, please cite:

@misc{2025,
  author       = {THUNLP},
  title        = {AgentCPM-GUI},
  year         = {2025},
  publisher    = {GitHub},
  journal      = {GitHub repository},
  howpublished = {\url{https://github.com/OpenBMB/AgentCPM-GUI}}
}

About

AgentCPM-GUI: An on-device GUI agent for operating Android apps, enhancing reasoning ability with reinforcement fine-tuning for efficient task execution.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published