Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add TSN dygraph model #4817

Open
wants to merge 7 commits into
base: release/1.8
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
71 changes: 71 additions & 0 deletions dygraph/tsn/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
# TSN 视频分类模型
本目录下为基于PaddlePaddle 动态图实现的 TSN视频分类模型

---
## 内容

- [模型简介](#模型简介)
- [数据准备](#数据准备)
- [模型训练](#模型训练)
- [模型评估](#模型评估)
- [参考论文](#参考论文)


## 模型简介

Temporal Segment Network (TSN) 是视频分类领域经典的基于2D-CNN的解决方案。该方法主要解决视频的长时间行为判断问题,通过稀疏采样视频帧的方式代替稠密采样,既能捕获视频全局信息,也能去除冗余,降低计算量。最终将每帧特征平均融合后得到视频的整体特征,并用于分类。本代码实现的模型为基于单路RGB图像的TSN网络结构,Backbone采用ResNet-50结构。
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ResNet50


详细内容请参考ECCV 2016年论文[Temporal Segment Networks: Towards Good Practices for Deep Action Recognition](https://arxiv.org/abs/1608.00859)

## 数据准备

TSN的训练数据采用UCF101动作识别数据集。数据下载及准备请参考[数据说明](./data/dataset/ucf101/README.md)

## 模型训练

数据准备完毕后,可以通过如下两种方式启动训练

1. 多卡训练
```bash
bash multi-gpus-run.sh ./configs/tsn.yaml
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

use underline instead of dash.

```
多卡训练所使用的gpu可以通过如下方式设置:
- 首先,修改`./configs/tsn.yaml` 中的 num_gpus (默认为4,表示使用4个gpu进行训练)
- 其次,修改`multi-gpus-run.sh` 中 `export CUDA_VISIBLE_DEVICES=0,1,2,3`(默认为0,1,2,3表示使用0,1,2,3卡号的gpu进行训练)
- 注意:若修改了batchsize则学习率也要做相应的修改。例如,默认batchsize=128,lr=0.001,若batchsize=64,lr=0.0005
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It is unnecessary to keep num_gpus in configuration, GPU_ID can be obtained by gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

规则是 大bs用大lr,同倍数增长缩小



2. 单卡训练
```bash
bash run.sh ./configs/tsn.yaml
```
单卡训练所使用的gpu可以通过如下方式设置:
- 首先,修改`./configs/tsn.yaml` 中的 `num_gpus=1` (表示使用单卡进行训练)
- 其次,修改 `run.sh` 中的 `export CUDA_VISIBLE_DEVICES=0` (表示使用gpu 0 进行模型训练)
- 注意,若修改了batchsize则学习率也要做相应的修改。例如,默认batchsize=128,lr=0.001,若batchsize=64,lr=0.0005
## 模型评估

可通过如下方式进行模型评估:
```bash
bash run-eval.sh ./configs/tsn-test.yaml ./weights/final.pdparams
```

- 使用`run.sh`进行评估时,需要修改脚本中的`weights`参数指定需要评估的权重

- `./tsn-test.yaml` 是评估模型时所用的参数文件;`./weights/final.pdparams` 为模型训练完成后,保存的模型文件

- 评估结果以log的形式直接打印输出TOP1\_ACC、TOP5\_ACC等精度指标



实验结果,采用四卡训练,默认配置参数时,在UCF101数据的validation数据集下评估精度如下:

| | seg\_num | Top-1 | Top-5 |
| :------: | :----------: | :----: | :----: |
| Pytorch TSN | 3 | 83.88% | 96.78% |
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

compare static and dygraph is enough

| Paddle TSN (静态图) | 3 | 84.00% | 97.38% |
| Paddle TSN (动态图) | 3 | 84.27% | 97.27% |

## 参考论文

- [Temporal Segment Networks: Towards Good Practices for Deep Action Recognition](https://arxiv.org/abs/1608.00859), Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, Luc Van Gool
87 changes: 87 additions & 0 deletions dygraph/tsn/data/dataset/ucf101/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
# UCF101数据准备
UCF101数据的相关准备。主要包括数据下载,视频文件的提取frames,以及生成文件的路径list

---
## 1. 数据下载
UCF101数据的详细信息可以参考网站[UCF101](https://www.crcv.ucf.edu/data/UCF101.php)。 为了方便用户使用,我们提供了UCF101数据的annotations文件和videos文件的下载脚本。

### 下载annotations文件
首先,请确保在`./data/dataset/ucf101/`目录下,输入如下UCF101数据集的标注文件的命令。
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

输入如下命令下载UCF101数据集的标注文件。

```shell
bash download_annotations.sh
```

### 下载UCF101的视频文件
同样需要确保在`./data/dataset/ucf101/`目录下,输入下述命令下载视频文件
```shell
bash download_annotations.sh
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

wrong script

```
下载完成后视频文件会存储在`./data/dataset/ucf101/videos/`文件夹下

---
## 2. 提取视频文件的frames
为了加速网络的训练过程,我们首先对视频文件(ucf101视频文件为avi格式)提取帧 (frames)。通过读取frames的方式替换原始的直接读取视频文件,能够极大的减小巡训练的时间开销。
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

相对于直接用视频文件格式进行训练....


直接输入如下命令,即可提取ucf101视频文件的frames
``` python
python extract_rawframes.py ./videos/ ./rawframes/ --level 2 --ext avi
```

---
## 3. 生成frames文件和视频文件的路径list
生成视频文件的路径list,输入如下命令

```python
python build_ucf101_file_list.py videos/ --level 2 --format videos --out_list_path ./ --shuffle
```
生成frames文件的路径list,输入如下命令:
```python
python build_ucf101_file_list.py rawframes/ --level 2 --format rawframes --out_list_path ./ --shuffle
```

**参数说明**

`videos/` 或者 `rawframes/` : 表示视频或者frames文件的存储路径

`--level 2` : 表示文件的存储结构

`--format`: 表示是针对视频还是frames生成路径list

`--out_list_path `: 表示生的路径list文件存储位置

`--shuffle`: 表示对路径list中的文件顺序进行shuffle
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

redundancy shuffle



# 以上步骤完成后,文件组织形式如下所示

```
├── data
| ├── dataset
| │ ├── ucf101
| │ │ ├── ucf101_{train,val}_split_{1,2,3}_rawframes.txt
| │ │ ├── ucf101_{train,val}_split_{1,2,3}_videos.txt
| │ │ ├── annotations
| │ │ ├── videos
| │ │ │ ├── ApplyEyeMakeup
| │ │ │ │ ├── v_ApplyEyeMakeup_g01_c01.avi
|
| │ │ │ ├── YoYo
| │ │ │ │ ├── v_YoYo_g25_c05.avi
| │ │ ├── rawframes
| │ │ │ ├── ApplyEyeMakeup
| │ │ │ │ ├── v_ApplyEyeMakeup_g01_c01
| │ │ │ │ │ ├── img_00001.jpg
| │ │ │ │ │ ├── img_00002.jpg
| │ │ │ │ │ ├── ...
| │ │ │ │ │ ├── flow_x_00001.jpg
| │ │ │ │ │ ├── flow_x_00002.jpg
| │ │ │ │ │ ├── ...
| │ │ │ │ │ ├── flow_y_00001.jpg
| │ │ │ │ │ ├── flow_y_00002.jpg
| │ │ │ ├── ...
| │ │ │ ├── YoYo
| │ │ │ │ ├── v_YoYo_g01_c01
| │ │ │ │ ├── ...
| │ │ │ │ ├── v_YoYo_g25_c05

```
174 changes: 174 additions & 0 deletions dygraph/tsn/data/dataset/ucf101/build_ucf101_file_list.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
import argparse
import os
import glob
import fnmatch
import random


def parse_directory(path,
key_func=lambda x: x[-11:],
rgb_prefix='img_',
level=1):
"""
Parse directories holding extracted frames from standard benchmarks
"""
print('parse frames under folder {}'.format(path))
if level == 1:
frame_folders = glob.glob(os.path.join(path, '*'))
elif level == 2:
frame_folders = glob.glob(os.path.join(path, '*', '*'))
else:
raise ValueError('level can be only 1 or 2')

def count_files(directory, prefix_list):
lst = os.listdir(directory)
cnt_list = [len(fnmatch.filter(lst, x + '*')) for x in prefix_list]
return cnt_list

# check RGB
frame_dict = {}
for i, f in enumerate(frame_folders):
all_cnt = count_files(f, (rgb_prefix))
k = key_func(f)

x_cnt = all_cnt[1]
y_cnt = all_cnt[2]
if x_cnt != y_cnt:
raise ValueError('x and y direction have different number '
'of flow images. video: ' + f)
if i % 200 == 0:
print('{} videos parsed'.format(i))

frame_dict[k] = (f, all_cnt[0], x_cnt)

print('frame folder analysis done')
return frame_dict


def build_split_list(split, frame_info, shuffle=False):
def build_set_list(set_list):
rgb_list = list()
for item in set_list:
if item[0] not in frame_info:
# print("item:", item)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

remove debug code.

continue
elif frame_info[item[0]][1] > 0:
rgb_cnt = frame_info[item[0]][1]
rgb_list.append('{} {} {}\n'.format(item[0], rgb_cnt, item[1]))
else:
rgb_list.append('{} {}\n'.format(item[0], item[1]))
if shuffle:
random.shuffle(rgb_list)
return rgb_list

train_rgb_list = build_set_list(split[0])
test_rgb_list = build_set_list(split[1])
return (train_rgb_list, test_rgb_list)


def parse_ucf101_splits(level):
class_ind = [x.strip().split() for x in open('./annotations/classInd.txt')]
class_mapping = {x[1]: int(x[0]) - 1 for x in class_ind}

def line2rec(line):
items = line.strip().split(' ')
vid = items[0].split('.')[0]
vid = '/'.join(vid.split('/')[-level:])
label = class_mapping[items[0].split('/')[0]]
return vid, label

splits = []
for i in range(1, 4):
train_list = [
line2rec(x)
for x in open('./annotations/trainlist{:02d}.txt'.format(i))
]
test_list = [
line2rec(x)
for x in open('./annotations/testlist{:02d}.txt'.format(i))
]
splits.append((train_list, test_list))
return splits


def parse_args():
parser = argparse.ArgumentParser(description='Build file list')
parser.add_argument(
'frame_path', type=str, help='root directory for the frames')
parser.add_argument('--rgb_prefix', type=str, default='img_')
parser.add_argument('--num_split', type=int, default=3)
parser.add_argument(
'--subset', type=str, default='train',
choices=['train', 'val', 'test'])
parser.add_argument('--level', type=int, default=2, choices=[1, 2])
parser.add_argument(
'--format',
type=str,
default='rawframes',
choices=['rawframes', 'videos'])
parser.add_argument('--out_list_path', type=str, default='./')
parser.add_argument('--shuffle', action='store_true', default=True)
args = parser.parse_args()

return args


def main():
args = parse_args()

if args.level == 2:

def key_func(x):
return '/'.join(x.split('/')[-2:])
else:

def key_func(x):
return x.split('/')[-1]

if args.format == 'rawframes':
frame_info = parse_directory(
args.frame_path,
key_func=key_func,
rgb_prefix=args.rgb_prefix,
level=args.level)
elif args.format == 'videos':
if args.level == 1:
video_list = glob.glob(os.path.join(args.frame_path, '*'))
elif args.level == 2:
video_list = glob.glob(os.path.join(args.frame_path, '*', '*'))
frame_info = {
os.path.relpath(x.split('.')[0], args.frame_path): (x, -1, -1)
for x in video_list
}

split_tp = parse_ucf101_splits(args.level)
assert len(split_tp) == args.num_split

out_path = args.out_list_path
if len(split_tp) > 1:
for i, split in enumerate(split_tp):
lists = build_split_list(
split_tp[i], frame_info, shuffle=args.shuffle)
filename = 'ucf101_train_split_{}_{}.txt'.format(i + 1, args.format)

with open(os.path.join(out_path, filename), 'w') as f:
f.writelines(lists[0])
filename = 'ucf101_val_split_{}_{}.txt'.format(i + 1, args.format)
with open(os.path.join(out_path, filename), 'w') as f:
f.writelines(lists[1])
else:
lists = build_split_list(split_tp[0], frame_info, shuffle=args.shuffle)
filename = '{}_{}_list_{}.txt'.format(args.dataset, args.subset,
args.format)
if args.subset == 'train':
ind = 0
elif args.subset == 'val':
ind = 1
elif args.subset == 'test':
ind = 2
with open(os.path.join(out_path, filename), 'w') as f:
f.writelines(lists[0][ind])


if __name__ == "__main__":
main()
13 changes: 13 additions & 0 deletions dygraph/tsn/data/dataset/ucf101/download_annotations.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
#! /usr/bin/bash env

DATA_DIR="./annotations"

if [[ ! -d "${DATA_DIR}" ]]; then
echo "${DATA_DIR} does not exist. Creating";
mkdir -p ${DATA_DIR}
fi

wget --no-check-certificate "https://www.crcv.ucf.edu/data/UCF101/UCF101TrainTestSplits-RecognitionTask.zip"

unzip -j UCF101TrainTestSplits-RecognitionTask.zip -d ${DATA_DIR}/
rm UCF101TrainTestSplits-RecognitionTask.zip
7 changes: 7 additions & 0 deletions dygraph/tsn/data/dataset/ucf101/download_videos.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
#! /usr/bin/bash env

wget --no-check-certificate "https://www.crcv.ucf.edu/data/UCF101/UCF101.rar"
unrar x UCF101.rar
mv ./UCF-101 ./videos
rm -rf ./UCF101.rar

Loading