- GBM MRI image segmentation
- Feature Extracion from ROI
- Data anaylsis, including:
- GBM subtypes prediction,which is based on Wang research on 2017, prediction (Accuracy:92%, using Multilayer Perceptron)
- Mutual Information Analysis to Radiomics feature and gene expression energy.
├─data # Store data, both data for training and generated results
│ ├─classification results # Classification results
│ │ ├─model
│ │ ├─Simplified
│ │ │ ├─Test
│ │ │ │ ├─Normalize
│ │ │ │ │ └─PCA
│ │ │ │ └─PCA
│ │ │ │ └─Normalize
│ │ │ └─Train
│ │ │ ├─Normalize
│ │ │ │ └─PCA
│ │ │ └─PCA
│ │ │ └─Normalize
│ │ ├─Test
│ │ │ ├─Normalize
│ │ │ │ └─PCA
│ │ │ └─PCA
│ │ │ └─Normalize
│ │ └─Train
│ │ ├─Normalize
│ │ │ └─PCA
│ │ └─PCA
│ │ └─Normalize
│ ├─gene # Gene analysis (Not important, pls ignore)
│ │ └─...
│ ├─Images # Training Images, store based on patient and MRI series
│ │ ├─W10_FLAIR_AX
│ │ └─...
│ ├─Masks # Training Masks, store based on patient and MRI series
│ │ ├─W10_AX
│ │ └─...
│ ├─Mutual_Information # Mutual Information between feature
│ ├─result # Store
│ └─FLAIR
│ ├─monitor
│ │ ├─test
│ │ ├─train
│ │ └─validation
│ ├─ROC_curve
│ ├─test
│ └─train
│ ├─feature_extraction.csv # radiomics feature, extracted by radiomics, plz check their doc
│ ├─GBM_MRI_Dataset.csv # contianing every slice location, using for training
│ ├─gene_expression_details.csv # gene expression energy
│ ├─tumor_details.csv # Basic Database info, containing every patients' subtype
│ └─Params.yaml # using for feature extraction, configure file for pyradiomics, plz check their doc
├─exception_in_trainning # Store error message, will send to your email.
├─model # Store model
│ ├─FLAIR
│ ├─Stack
│ ├─T1
│ └─T2
├─Pictures # Pictures for README
├─requirement # Store Python environment
├─train.py # Training Main
├─data.py # Training dataset
├─utils.py # Training utils
├─unet.py # Training net
├─trainHelper.py # Help training module
├─classification.py # Classification main
├─mutual_information.py # mutual information analysis
├─feature_extraction.py # Get radiomics features from mask
├─get_graph_csv.py # Old version file, ignore it, used to get data in csv to replot fancy graph
├─generate_gif_results.py # Get gif, old version file, only use as reference, can not run directly
└─gene_expression_monitor.py # Get some statistic information about gene expression, old version code, you can ignore it
Install python environment by requirements (pip)
pip install -r requirements.txt
GBM MRI image segmentation using train.py, data.py, utils.py, unet.py, trainHelper.py
. The main python script is train.py
, using command to run it:
python train.py [argv1] [argv2]
argv1
is the MRI series you can choose, containing T1, T2, FLAIR, Stack
. argv2
is the epoches you want.
Also, see the trainHelper.py
, you can use your own mail to remind you the train's situation.
Just run classification.py
Just run mutual_information.py
- [] Change old version generate_gif_results.py to new version