Skip to content

Standardize LaTeX math notation: replace pmatrix with bmatrix across all lecture files #526

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Aug 14, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 13 additions & 13 deletions lectures/lagrangian_lqdp.md
Original file line number Diff line number Diff line change
Expand Up @@ -206,29 +206,29 @@ It is useful to proceed with the following steps:
* arrange the resulting equation and the second equation of {eq}`lag-lqdp-eq2` into the form

$$
L\ \begin{pmatrix}x_{t+1}\cr \mu_{t+1}\cr\end{pmatrix}\ = \ N\ \begin{pmatrix}x_t\cr \mu_t\cr\end{pmatrix}\
L\ \begin{bmatrix}x_{t+1}\cr \mu_{t+1}\cr\end{bmatrix}\ = \ N\ \begin{bmatrix}x_t\cr \mu_t\cr\end{bmatrix}\
,\ t \geq 0,
$$ (eq:systosolve)

where

$$
L = \ \begin{pmatrix}I & BQ^{-1} B^\prime \cr 0 & A^\prime\cr\end{pmatrix}, \quad N = \
\begin{pmatrix}A & 0\cr -R & I\cr\end{pmatrix}.
L = \ \begin{bmatrix}I & BQ^{-1} B^\prime \cr 0 & A^\prime\cr\end{bmatrix}, \quad N = \
\begin{bmatrix}A & 0\cr -R & I\cr\end{bmatrix}.
$$

When $L$ is of full rank (i.e., when $A$ is of full rank), we can write
system {eq}`eq:systosolve` as

$$
\begin{pmatrix}x_{t+1}\cr \mu_{t+1}\cr\end{pmatrix}\ = M\ \begin{pmatrix}x_t\cr\mu_t\cr\end{pmatrix}
\begin{bmatrix}x_{t+1}\cr \mu_{t+1}\cr\end{bmatrix}\ = M\ \begin{bmatrix}x_t\cr\mu_t\cr\end{bmatrix}
$$ (eq4orig)

where

$$
M\equiv L^{-1} N = \begin{pmatrix}A+B Q^{-1} B^\prime A^{\prime-1}R &
-B Q^{-1} B^\prime A^{\prime-1}\cr -A^{\prime -1} R & A^{\prime -1}\cr\end{pmatrix}.
M\equiv L^{-1} N = \begin{bmatrix}A+B Q^{-1} B^\prime A^{\prime-1}R &
-B Q^{-1} B^\prime A^{\prime-1}\cr -A^{\prime -1} R & A^{\prime -1}\cr\end{bmatrix}.
$$ (Mdefn)

+++
Expand Down Expand Up @@ -262,7 +262,7 @@ To proceed, we study properties of the $(2n \times 2n)$ matrix $M$ defined in {e
It helps to introduce a $(2n \times 2n)$ matrix

$$
J = \begin{pmatrix}0 & -I_n\cr I_n & 0\cr\end{pmatrix}.
J = \begin{bmatrix}0 & -I_n\cr I_n & 0\cr\end{bmatrix}.
$$

The rank of $J$ is $2n$.
Expand Down Expand Up @@ -308,12 +308,12 @@ $$
y_{t+1} = M y_t
$$ (eq658)

where $y_t = \begin{pmatrix}x_t\cr \mu_t\cr\end{pmatrix}$.
where $y_t = \begin{bmatrix}x_t\cr \mu_t\cr\end{bmatrix}$.

Consider a **triangularization** of $M$

$$
V^{-1} M V= \begin{pmatrix}W_{11} & W_{12} \cr 0 & W_{22}\cr\end{pmatrix}
V^{-1} M V= \begin{bmatrix}W_{11} & W_{12} \cr 0 & W_{22}\cr\end{bmatrix}
$$ (eqn:triangledecomp)

where
Expand Down Expand Up @@ -353,9 +353,9 @@ and where $W^t_{ii}$ is $W_{ii}$ raised to the $t$th power.
Write equation {eq}`eq6510` as

$$
\begin{pmatrix}y^\ast_{1t}\cr y^\ast_{2t}\cr\end{pmatrix}\ =\ \left[\begin{matrix} W^t_{11} &
W_{12, t}\cr 0 & W^t_{22}\cr\end{matrix}\right]\quad \begin{pmatrix}y^\ast_{10}\cr
y^\ast_{20}\cr\end{pmatrix}
\begin{bmatrix}y^\ast_{1t}\cr y^\ast_{2t}\cr\end{bmatrix}\ =\ \left[\begin{matrix} W^t_{11} &
W_{12, t}\cr 0 & W^t_{22}\cr\end{matrix}\right]\quad \begin{bmatrix}y^\ast_{10}\cr
y^\ast_{20}\cr\end{bmatrix}
$$

where $y^\ast_t = V^{-1} y_t$, and in particular where
Expand Down Expand Up @@ -394,7 +394,7 @@ But notice that because $(V^{21}\ V^{22})$ is the second row block of
the inverse of $V,$ it follows that

$$
(V^{21} \ V^{22})\quad \begin{pmatrix}V_{11}\cr V_{21}\cr\end{pmatrix} = 0
(V^{21} \ V^{22})\quad \begin{bmatrix}V_{11}\cr V_{21}\cr\end{bmatrix} = 0
$$

which implies
Expand Down
12 changes: 6 additions & 6 deletions lectures/lake_model.md
Original file line number Diff line number Diff line change
Expand Up @@ -155,10 +155,10 @@ $$
X_{t+1} = A X_t
\quad \text{where} \quad
A :=
\begin{pmatrix}
\begin{bmatrix}
(1-d)(1-\lambda) + b & (1-d)\alpha + b \\
(1-d)\lambda & (1-d)(1-\alpha)
\end{pmatrix}
\end{bmatrix}
$$

This law tells us how total employment and unemployment evolve over time.
Expand All @@ -170,16 +170,16 @@ Now let's derive the law of motion for rates.
To get these we can divide both sides of $X_{t+1} = A X_t$ by $N_{t+1}$ to get

$$
\begin{pmatrix}
\begin{bmatrix}
U_{t+1}/N_{t+1} \\
E_{t+1}/N_{t+1}
\end{pmatrix} =
\end{bmatrix} =
\frac1{1+g} A
\begin{pmatrix}
\begin{bmatrix}
U_{t}/N_{t}
\\
E_{t}/N_{t}
\end{pmatrix}
\end{bmatrix}
$$

Letting
Expand Down
6 changes: 3 additions & 3 deletions lectures/multi_hyper.md
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ Things have to add up so $\sum_{i=1}^c k_i = n$.
Under the hypothesis that the selection process judges proposals on their quality and that quality is independent of continent of the author's continent of residence, the administrator views the outcome of the selection procedure as a random vector

$$
X = \begin{pmatrix} k_1 \cr k_2 \cr \vdots \cr k_c \end{pmatrix}.
X = \begin{bmatrix} k_1 \cr k_2 \cr \vdots \cr k_c \end{bmatrix}.
$$

To evaluate whether the selection procedure is **color blind** the administrator wants to study whether the particular realization of $X$ drawn can plausibly
Expand All @@ -94,7 +94,7 @@ So $n = 15$.
The administrator wants to know the probability distribution of outcomes

$$
X = \begin{pmatrix} k_1 \cr k_2 \cr \vdots \cr k_4 \end{pmatrix}.
X = \begin{bmatrix} k_1 \cr k_2 \cr \vdots \cr k_4 \end{bmatrix}.
$$

In particular, he wants to know whether a particular
Expand Down Expand Up @@ -272,7 +272,7 @@ K_arr = [5, 10, 15]
urn = Urn(K_arr)
```

Now use the Urn Class method `pmf` to compute the probability of the outcome $X = \begin{pmatrix} 2 & 2 & 2 \end{pmatrix}$
Now use the Urn Class method `pmf` to compute the probability of the outcome $X = \begin{bmatrix} 2 & 2 & 2 \end{bmatrix}$

```{code-cell} python3
k_arr = [2, 2, 2] # array of number of observed successes
Expand Down
52 changes: 26 additions & 26 deletions lectures/newton_method.md
Original file line number Diff line number Diff line change
Expand Up @@ -513,20 +513,20 @@ An equilibrium price vector $p^*$ satisfies $e_i(p^*) = 0$.
We set

$$
A = \begin{pmatrix}
A = \begin{bmatrix}
a_{00} & a_{01} \\
a_{10} & a_{11}
\end{pmatrix},
\end{bmatrix},
\qquad
b = \begin{pmatrix}
b = \begin{bmatrix}
b_0 \\
b_1
\end{pmatrix}
\end{bmatrix}
\qquad \text{and} \qquad
c = \begin{pmatrix}
c = \begin{bmatrix}
c_0 \\
c_1
\end{pmatrix}
\end{bmatrix}
$$

for this particular question.
Expand All @@ -539,10 +539,10 @@ Our first step is to define the excess demand function

$$
e(p) =
\begin{pmatrix}
\begin{bmatrix}
e_0(p) \\
e_1(p)
\end{pmatrix}
\end{bmatrix}
$$

The function below calculates the excess demand for given parameters
Expand All @@ -556,20 +556,20 @@ Our default parameter values will be


$$
A = \begin{pmatrix}
A = \begin{bmatrix}
0.5 & 0.4 \\
0.8 & 0.2
\end{pmatrix},
\end{bmatrix},
\qquad
b = \begin{pmatrix}
b = \begin{bmatrix}
1 \\
1
\end{pmatrix}
\end{bmatrix}
\qquad \text{and} \qquad
c = \begin{pmatrix}
c = \begin{bmatrix}
1 \\
1
\end{pmatrix}
\end{bmatrix}
$$

```{code-cell} ipython3
Expand Down Expand Up @@ -689,10 +689,10 @@ Here we manually calculate the elements of the Jacobian

$$
J(p) =
\begin{pmatrix}
\begin{bmatrix}
\frac{\partial e_0}{\partial p_0}(p) & \frac{\partial e_0}{\partial p_1}(p) \\
\frac{\partial e_1}{\partial p_0}(p) & \frac{\partial e_1}{\partial p_1}(p)
\end{pmatrix}
\end{bmatrix}
$$

```{code-cell} ipython3
Expand Down Expand Up @@ -850,11 +850,11 @@ np.max(np.abs(e(p, A, b, c)))
Consider a three-dimensional extension of the Solow fixed point problem with

$$
A = \begin{pmatrix}
A = \begin{bmatrix}
2 & 3 & 3 \\
2 & 4 & 2 \\
1 & 5 & 1 \\
\end{pmatrix},
\end{bmatrix},
\quad
s = 0.2, \quad α = 0.5, \quad δ = 0.8
$$
Expand Down Expand Up @@ -886,11 +886,11 @@ $$
- If you are unsure about your solution, you can start with the solved example:

```{math}
A = \begin{pmatrix}
A = \begin{bmatrix}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2 \\
\end{pmatrix}
\end{bmatrix}
```

with $s = 0.3$, $α = 0.3$, and $δ = 0.4$ and starting value:
Expand Down Expand Up @@ -999,23 +999,23 @@ In this exercise, let's try different initial values and check how Newton's meth
Let's define a three-good problem with the following default values:

$$
A = \begin{pmatrix}
A = \begin{bmatrix}
0.2 & 0.1 & 0.7 \\
0.3 & 0.2 & 0.5 \\
0.1 & 0.8 & 0.1 \\
\end{pmatrix},
\end{bmatrix},
\qquad
b = \begin{pmatrix}
b = \begin{bmatrix}
1 \\
1 \\
1
\end{pmatrix}
\end{bmatrix}
\qquad \text{and} \qquad
c = \begin{pmatrix}
c = \begin{bmatrix}
1 \\
1 \\
1
\end{pmatrix}
\end{bmatrix}
$$

For this exercise, use the following extreme price vectors as initial values:
Expand Down
26 changes: 13 additions & 13 deletions lectures/opt_transport.md
Original file line number Diff line number Diff line change
Expand Up @@ -185,12 +185,12 @@ The **Kronecker product** of $A$ and $B$ is defined, in block matrix form, by

$$
A \otimes B =
\begin{pmatrix}
\begin{bmatrix}
a_{11}B & a_{12}B & \dots & a_{1s}B \\
a_{21}B & a_{22}B & \dots & a_{2s}B \\
& & \vdots & \\
a_{m1}B & a_{m2}B & \dots & a_{ms}B \\
\end{pmatrix}.
\end{bmatrix}.
$$

$A \otimes B$ is an $mn \times st$ matrix.
Expand Down Expand Up @@ -243,15 +243,15 @@ where

$$
A =
\begin{pmatrix}
\begin{bmatrix}
\mathbf{1}_n' \otimes \mathbf{I}_m \\
\mathbf{I}_n \otimes \mathbf{1}_m' \\
\end{pmatrix}
\end{bmatrix}
\quad \text{and} \quad
b = \begin{pmatrix}
b = \begin{bmatrix}
p \\
q \\
\end{pmatrix}
\end{bmatrix}
$$


Expand Down Expand Up @@ -300,27 +300,27 @@ The numbers in the above table tell us to set $m = 3$, $n = 5$, and construct
the following objects:

$$
p = \begin{pmatrix}
p = \begin{bmatrix}
50 \\
100 \\
150
\end{pmatrix},
\end{bmatrix},
\quad
q =
\begin{pmatrix}
\begin{bmatrix}
25 \\
115 \\
60 \\
30 \\
70
\end{pmatrix}
\end{bmatrix}
\quad \text{and} \quad
C =
\begin{pmatrix}
\begin{bmatrix}
10 &15 &20 &20 &40 \\
20 &40 &15 &30 &30 \\
30 &35 &40 &55 &25
\end{pmatrix}.
\end{bmatrix}.
$$

Let's write Python code that sets up the problem and solves it.
Expand Down Expand Up @@ -576,7 +576,7 @@ We can write the dual problem as
$$
\begin{aligned}
\max_{u_i, v_j} \ & p u + q v \\
\mbox{subject to } \ & A' \begin{pmatrix} u \\ v \\ \end{pmatrix} = \operatorname{vec}(C) \\
\mbox{subject to } \ & A' \begin{bmatrix} u \\ v \\ \end{bmatrix} = \operatorname{vec}(C) \\
\end{aligned}
$$ (dualproblem2)

Expand Down
2 changes: 1 addition & 1 deletion lectures/stats_examples.md
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ Its distribution is
$$
\begin{aligned}
X & \sim NB(r,p) \\
\textrm{Prob}(X=k;r,p) & = \begin{pmatrix}k+r-1 \\ r-1 \end{pmatrix}p^r(1-p)^{k}
\textrm{Prob}(X=k;r,p) & = \begin{bmatrix}k+r-1 \\ r-1 \end{bmatrix}p^r(1-p)^{k}
\end{aligned}
$$

Expand Down
2 changes: 1 addition & 1 deletion lectures/svd_intro.md
Original file line number Diff line number Diff line change
Expand Up @@ -654,7 +654,7 @@ of rank $1$.
Thus, we have

$$
X = \sigma_1 \begin{pmatrix}U_{11}V_{1}^\top \\U_{21}V_{1}^\top \\\cdots\\U_{m1}V_{1}^\top \\\end{pmatrix} + \sigma_2\begin{pmatrix}U_{12}V_{2}^\top \\U_{22}V_{2}^\top \\\cdots\\U_{m2}V_{2}^\top \\\end{pmatrix}+\ldots + \sigma_p\begin{pmatrix}U_{1p}V_{p}^\top \\U_{2p}V_{p}^\top \\\cdots\\U_{mp}V_{p}^\top \\\end{pmatrix}
X = \sigma_1 \begin{bmatrix}U_{11}V_{1}^\top \\U_{21}V_{1}^\top \\\cdots\\U_{m1}V_{1}^\top \\\end{bmatrix} + \sigma_2\begin{bmatrix}U_{12}V_{2}^\top \\U_{22}V_{2}^\top \\\cdots\\U_{m2}V_{2}^\top \\\end{bmatrix}+\ldots + \sigma_p\begin{bmatrix}U_{1p}V_{p}^\top \\U_{2p}V_{p}^\top \\\cdots\\U_{mp}V_{p}^\top \\\end{bmatrix}
$$ (eq:PCA2)

Here is how we would interpret the objects in the matrix equation {eq}`eq:PCA2` in
Expand Down
Loading