Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 18 additions & 12 deletions src/Regressors/Ridge.php
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
use Rubix\ML\Specifications\SamplesAreCompatibleWithEstimator;
use Rubix\ML\Exceptions\InvalidArgumentException;
use Rubix\ML\Exceptions\RuntimeException;
use NDArray as nd;

use function is_null;

Expand Down Expand Up @@ -60,6 +61,8 @@ class Ridge implements Estimator, Learner, RanksFeatures, Persistable
*/
protected ?\Tensor\Vector $coefficients = null;

protected ?nd $coefficientsNd = null;

/**
* @param float $l2Penalty
* @throws InvalidArgumentException
Expand Down Expand Up @@ -161,7 +164,7 @@ public function train(Dataset $dataset) : void
$biases = Matrix::ones($dataset->numSamples(), 1);

$x = Matrix::build($dataset->samples())->augmentLeft($biases);
$y = Vector::build($dataset->labels());
$y = nd::array($dataset->labels());

/** @var int<0,max> $nHat */
$nHat = $x->n() - 1;
Expand All @@ -170,15 +173,18 @@ public function train(Dataset $dataset) : void

array_unshift($penalties, 0.0);

$penalties = Matrix::diagonal($penalties);
$penalties = nd::array(Matrix::diagonal($penalties)->asArray());

$xNp = nd::array($x->asArray());
$xT = nd::transpose($xNp);

$xT = $x->transpose();
$xMul = nd::matmul($xT, $xNp);
$xMulAdd = nd::add($xMul, $penalties);
$xMulAddInv = nd::inv($xMulAdd);
$xtDotY = nd::dot($xT, $y);

$coefficients = $xT->matmul($x)
->add($penalties)
->inverse()
->dot($xT->dot($y))
->asArray();
$this->coefficientsNd = nd::dot($xMulAddInv, $xtDotY);
$coefficients = $this->coefficientsNd->toArray();

$this->bias = (float) array_shift($coefficients);
$this->coefficients = Vector::quick($coefficients);
Expand All @@ -199,10 +205,10 @@ public function predict(Dataset $dataset) : array

DatasetHasDimensionality::with($dataset, count($this->coefficients))->check();

return Matrix::build($dataset->samples())
->dot($this->coefficients)
->add($this->bias)
->asArray();
$datasetNd = nd::array($dataset->samples());
$datasetDotCoefficients = nd::dot($datasetNd, $this->coefficientsNd);

return nd::add($datasetDotCoefficients, $this->bias)->toArray();
}

/**
Expand Down
Loading