Skip to content

Pytorch Implementation of Low Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss

Notifications You must be signed in to change notification settings

SSinyu/WGAN-VGG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

d9af4a2 · Nov 17, 2020

History

22 Commits
Aug 17, 2018
Nov 17, 2020
Feb 15, 2019
Feb 21, 2019
Feb 15, 2019
Feb 15, 2019
Feb 15, 2019
Feb 15, 2019

Repository files navigation

WGAN_VGG [DEPRECATED]

Implementation of Low Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss https://arxiv.org/abs/1708.00961


DATASET

The 2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge by Mayo Clinic (I can't share this data, you should ask at the URL below if you want)
https://www.aapm.org/GrandChallenge/LowDoseCT/

The data_path should look like:

data_path
├── L067
│   ├── quarter_3mm
│   │       ├── L067_QD_3_1.CT.0004.0001 ~ .IMA
│   │       ├── L067_QD_3_1.CT.0004.0002 ~ .IMA
│   │       └── ...
│   └── full_3mm
│           ├── L067_FD_3_1.CT.0004.0001 ~ .IMA
│           ├── L067_FD_3_1.CT.0004.0002 ~ .IMA
│           └── ...
├── L096
│   ├── quarter_3mm
│   │       └── ...
│   └── full_3mm
│           └── ...      
...
│
└── L506
    ├── quarter_3mm
    │       └── ...
    └── full_3mm
            └── ...     

Use

Check the arguments.

  1. run python prep.py to convert 'dicom file' to 'numpy array'
  2. run python main.py --load_mode=0 to training. If the available memory(RAM) is more than 10GB, it is faster to run --load_mode=1.
  3. run python main.py --mode='test' --test_iters=*** to test.

About

Pytorch Implementation of Low Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages