-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add script to validate RDP gradient and hessian
- Loading branch information
Showing
1 changed file
with
129 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
"""validate gradient and diagonal Hessian of RDP""" | ||
|
||
# TODO: add symmetric weights | ||
|
||
import cupy as xp | ||
|
||
|
||
def get_d_s(x): | ||
"""get backward and forward differences and sums for each dimension of an array x | ||
using "edge" padding | ||
""" | ||
x_padded = xp.pad(x, 1, mode="edge") | ||
|
||
d = xp.zeros((2 * x.ndim,) + x.shape, dtype=x.dtype) | ||
s = xp.zeros((2 * x.ndim,) + x.shape, dtype=x.dtype) | ||
|
||
for i in range(x.ndim): | ||
# diff / sum with "backward" neighbor | ||
sl = x.ndim * [slice(1, -1)] | ||
sl[i] = slice(0, -2) | ||
sl = tuple(sl) | ||
|
||
d[2 * i, ...] = x - x_padded[sl] | ||
s[2 * i, ...] = x + x_padded[sl] | ||
|
||
# diff / sum with "forward" neighbor | ||
sl = x.ndim * [slice(1, -1)] | ||
sl[i] = slice(2, None) | ||
sl = tuple(sl) | ||
|
||
d[2 * i + 1, ...] = x - x_padded[sl] | ||
s[2 * i + 1, ...] = x + x_padded[sl] | ||
|
||
return d, s | ||
|
||
|
||
def rdp(x, gamma=2.0, eps=1e-1): | ||
d, s = get_d_s(x) | ||
phi = s + gamma * xp.abs(d) + eps | ||
|
||
tmp = (d**2) / phi | ||
|
||
return float(tmp.sum()) | ||
|
||
|
||
def rdp_grad(x, gamma=2.0, eps=1e-1): | ||
d, s = get_d_s(x) | ||
phi = s + gamma * xp.abs(d) + eps | ||
|
||
tmp = d * (2 * phi - (d + gamma * xp.abs(d))) / (phi**2) | ||
|
||
return 2 * tmp.sum(axis=0) | ||
|
||
|
||
# def rdp_potential(xj, xk, gamma=2.0, eps=1e-1): | ||
# d = xj - xk | ||
# s = xj + xk | ||
# phi = s + gamma * xp.abs(d) + eps | ||
# | ||
# c = (d**2) / phi | ||
# g = 2 * d * (2 * phi - (d + gamma * xp.abs(d))) / (phi**2) | ||
# | ||
# return c, g | ||
# | ||
# | ||
# def rdp2d(x, gamma=2.0, eps=1e-1): | ||
# | ||
# n0, n1 = x.shape | ||
# | ||
# val = 0.0 | ||
# grad = xp.zeros_like(x) | ||
# | ||
# for j in range(n0): | ||
# for k in range(n1): | ||
# jm = j - 1 | ||
# jp = j + 1 | ||
# km = k - 1 | ||
# kp = k + 1 | ||
# | ||
# x0 = x[j, k] | ||
# | ||
# if jm >= 0: | ||
# c, g = rdp_potential(x0, x[jm, k], gamma=gamma, eps=eps) | ||
# val += c | ||
# grad[j, k] += g | ||
# if jp < n0: | ||
# c, g = rdp_potential(x0, x[jp, k], gamma=gamma, eps=eps) | ||
# val += c | ||
# grad[j, k] += g | ||
# if km >= 0: | ||
# c, g = rdp_potential(x0, x[j, km], gamma=gamma, eps=eps) | ||
# val += c | ||
# grad[j, k] += g | ||
# if kp < n1: | ||
# c, g = rdp_potential(x0, x[j, kp], gamma=gamma, eps=eps) | ||
# val += c | ||
# grad[j, k] += g | ||
# | ||
# return val, grad | ||
|
||
|
||
if __name__ == "__main__": | ||
xx = xp.arange(2 * 3 * 4, dtype=xp.float64).reshape(2, 3, 4) + 1 | ||
|
||
gamma = 2.0 | ||
eps = 0.1 | ||
|
||
h = 1e-7 | ||
|
||
f = rdp(xx, gamma=gamma, eps=eps) | ||
g = rdp_grad(xx, gamma=gamma, eps=eps) | ||
|
||
g_num = xp.zeros_like(xx) | ||
|
||
for i in range(xx.shape[0]): | ||
for j in range(xx.shape[1]): | ||
for k in range(xx.shape[2]): | ||
xxp = xx.copy() | ||
xxp[i, j, k] += h | ||
|
||
xxm = xx.copy() | ||
xxm[i, j, k] -= h | ||
|
||
fp = rdp(xxp, gamma=gamma, eps=eps) | ||
fm = rdp(xxm, gamma=gamma, eps=eps) | ||
|
||
g_num[i, j, k] = (fp - fm) / (2 * h) | ||
|
||
assert xp.all(xp.isclose(g, g_num)) |