Proscenium establishes a modular analysis of AI "Agents". It is composed of several well-defined subsystems.
A few of the initial goals of this project include:
- Clarify how the components interact
- Identify areas where innovation is still redefining interfaces
- Highlight designs that can limit the "blast radius" of changes
- For users of frameworks, identify risk of lock-in
- Enumerate "glue code", libraries, or protocols that are missing from the ecosystem
+------------------------------------------------------------------------------+
| Scripts |
+------------------------------------------------------------------------------+
| Actors |
+------------+--+------------+--+--------------+--+-------+--+-------+--+------+
| Invoke | | Complete | | Remember | | Chunk | | Parse | | Load |
+------------+ +------------+ +--------------+ +-------+ +-------+ +------+
| APIs, | | Inference | | DB, RAM, ... | | ... | | ... | | ... |
| Libraries, | | Providers | +--------------+ +-------+ +-------+ +------+
| ... | +------------+
+------------+ | LLMs |
+------------+
The purpose of this repository is to show several examples of these sub-systems working together in a way that mimics patterns highlighted in modern agentic frameworks.
The will include
- Tool use
- Reflection
- RAG
- GraphRAG
- ...
Subsystem implementations used in these demos:
- Actors
- Inference
- Functions
- Memory
- RAM: local module
proscenium.memory
- RAM: local module
git clone [email protected]:The-AI-Alliance/proscenium.git
cd proscenium
python -m venv venv
. venv/bin/activate
python -m pip install .
python -m example.rag.build_vector_db
or
git clone [email protected]:The-AI-Alliance/proscenium.git
cd proscenium
docker compose -f .devcontainer/docker-compose.yml up
docker exec -it devcontainer-devcontainer-1 sh -c "cd workspaces/proscenium && python -m example.rag.build_vector_db"
or