Skip to content
View Titiprihartati's full-sized avatar

Block or report Titiprihartati

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
Titiprihartati/README.md

setwd("D:/PRAK ANDAT") getwd()

#read in your data library(readr) data <- read_csv2("depression_anxiety_data.csv", col_types = "ccccinnccccccncnncccccc") names(data) <-make.names(names(data)) names(data)

#check the packaging nrow(data) ncol(data) str(data)

#Look at the top and the bottom of your data head(data[, c(11,13)]) tail(data[, c(11,13)])

Check your “n”s

head(table(data$depression_diagnosis)) head(table(data$gad_score)) library(dplyr) data %>% filter(is.na(depression_diagnosis)) %>% select(depression_diagnosis, gad_score) data_clean <- data %>% filter(!is.na(depression_diagnosis)) unique(data_clean$depression_diagnosis)

#Validate with at least one external data source data_clean$depression_diagnosis <- tolower(data_clean$depression_diagnosis) == "true" summary(data_clean$depression_diagnosis) data_clean$gad_score <- as.numeric(data_clean$gad_score) summary(data_clean$gad_score) sd(data_clean$gad_score) quantile(as.numeric(data_clean$gad_score, seq(0, 1, 0.1)))

#make a plot data_clean$depression_diagnosis <- ifelse(data_clean$depression_diagnosis == TRUE, 1, 0) par(las = 2, mar = c(10, 4, 2, 2), cex.axis = 0.8) boxplot(gad_score ~ depression_diagnosis, data = data_clean, range = 0, ylab = "GAD Score", xlab = "Depression Diagnosis (0 = No, 1 = Yes)")

#Try the easy solution first data_clean%>% group_by(depression_diagnosis) %>% summarize(mean_gad = mean(gad_score, na.rm = TRUE), median_gad = median(gad_score, na.rm = TRUE))

#Model as expetation

Membuat model regresi logistik

data_clean$depression_diagnosis <- as.factor(data_clean$depression_diagnosis) data_clean$gad_score <- as.numeric(data_clean$gad_score) logistic_model <- glm(depression_diagnosis ~ gad_score, data = data_clean, family = binomial) summary(logistic_model)

#Comparing Model Expectations to Reality

Menampilkan plot

library(ggplot2) histogram <- ggplot(data_clean, aes(x = gad_score, fill = factor(depression_diagnosis))) + geom_histogram(aes(y = after_stat(density)), position = "identity", binwidth = 1, alpha = 0.5, color = "black") + stat_function(fun = dnorm, args = list(mean = mean(data_clean$gad_score, na.rm = TRUE), sd = sd(data_clean$gad_score, na.rm = TRUE)), color = "red", linewidth = 1) + scale_fill_manual(values = c("0" = "blue", "1" = "green")) + labs(title = "Distribusi GAD Score dengan Kurva Normal dan Diagnosis Depresi", x = "GAD Score", y = "Kepadatan", fill = "Diagnosis Depresi") + theme_minimal() print(histogram)

#Pendeteksian Normalitas library(nortest) lillie.test(model.resid) #Normalitas dengan plot qqnorm(model.resid,main='Normal QQ plot') qqline(model.resid)

Popular repositories Loading

  1. Titiprihartati Titiprihartati Public

    Config files for my GitHub profile.

  2. UTS-ANDAT UTS-ANDAT Public

    R

  3. Bike-sharing-dataset Bike-sharing-dataset Public

    Jupyter Notebook

  4. Data-Cuaca Data-Cuaca Public

    Jupyter Notebook

  5. Analisis-Sentimen- Analisis-Sentimen- Public