Skip to content

Tsuchihashi-ryo/proteovis

 
 

Repository files navigation

proteovis

  1. pycorn: extract data (zip) from ÄKTA/UNICORN and create chromatograms plotly.
  2. pypage: Annotate SDS-PAGE images, automatically input marker size and add lane information.
  3. combine these two together to visualize the fractions and lanes connected in AKTA.

proteovis

Github issues Github forks Github stars Github top language Github license

install

!git clone [email protected]:Tsuchihashi-ryo/proteovis.git

%cd proteovis
!pip install .

Demo

import proteovis as pv

data = pv.pycorn.load_uni_zip("/content/PyCORN/samples/sample.zip")

df = pv.pycorn.utils.get_series_from_data(data,["UV 1_280","UV 2_254","Cond","pH","Conc B","Run Log",'Fractions'],)

fig = pv.graph.unicorn_ploty_graph(df)
fig.show() 

Demo

frac_df = pv.pycorn.utils.get_fraction_rectangle(df)

frac_df = pv.pycorn.utils.pooling_fraction(frac_df,["1.B.2","1.B.3","1.B.4","1.B.5"])
frac_df = pv.pycorn.utils.pooling_fraction(frac_df,["1.B.10","1.B.11"],name="pool2")


cbb_list = [
            "marker",
            "input",
            "1.A.4",
            "pool",
            "1.B.6",
            "1.B.7",
            "pool2",
            "1.B.12",
            "1.C.1",
            "1.C.3",
            "1.C.5",
            "1.C.8",
            "1.C.10",
            "1.D.4",
            ]
cbb_frac_df = frac_df[frac_df["Fraction_Start"].isin(cbb_list)]



palette = sns.color_palette("rainbow", len(frac_df))

fig2,use_color_palette = pv.graph.annotate_fraction(fig,frac_df,palette=palette,annotations=cbb_list)
fig2.show() 

Demo

use_color_palette["input"] = (0.9,0.9,0.9)

cbb = pv.pypage.PageImage("/content/PyCORN/samples/cbb.jpg",lane_width=50)
cbb.annotate_lanes(cbb_list)
cbb.check_image()

fig = cbb.annotated_imshow(use_color_palette,rectangle=True)
fig.show()

marker = cbb.get_lane(name="marker",start=0)
marker = pv.pypage.Marker(marker)
marker.check()

marker.annotate([198,"","",98,62,"",49,38,28,"","",17,14])
pv.pypage.write_marker(fig,marker)

Demo

Contributors

About

A script to extract data from ÄKTA/UNICORN zip

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 44.4%
  • HTML 37.0%
  • Jupyter Notebook 9.3%
  • JavaScript 9.0%
  • CSS 0.3%