# SwinMFF
Official code for "SwinMFF: toward high-fidelity end-to-end multi-focus image fusion via swin transformer-based network"
Lytro:
MFFW:
MFI-WHU:
Method | EI | Q^{ab/f} | STD | SF | AVG | MI | EN | VIF |
---|---|---|---|---|---|---|---|---|
DWT | 70.7942 | 0.6850 | 57.2776 | 19.3342 | 6.8336 | 15.0872 | 7.5436 | 1.1114 |
DTCWT | 70.5666 | 0.6929 | 57.2315 | 19.3204 | 6.8134 | 15.0791 | 7.5396 | 1.1079 |
NSCT | 70.4289 | 0.6901 | 57.3601 | 19.2662 | 6.8027 | 15.0816 | 7.5408 | 1.1249 |
GFF | 70.5179 | 0.6998 | 57.4451 | 19.2947 | 6.8058 | 15.0716 | 7.5358 | 1.1277 |
SR | 70.2498 | 0.6944 | 57.3795 | 19.2819 | 6.7818 | 15.0650 | 7.5325 | 1.1208 |
ASR | 70.3342 | 0.6951 | 57.3616 | 19.2818 | 6.7897 | 15.0654 | 7.5327 | 1.1201 |
MWGF | 69.8052 | 0.7037 | 57.4136 | 19.1900 | 6.7273 | 15.0669 | 7.5334 | 1.1343 |
ICA | 68.3180 | 0.6766 | 56.9383 | 18.5968 | 6.6125 | 15.0655 | 7.5327 | 1.0708 |
NSCT-SR | 70.6705 | 0.6995 | 57.3924 | 19.3355 | 6.8213 | 15.0676 | 7.5338 | 1.1251 |
Proposed | 72.4041 | 0.7321 | 57.9737 | 19.7954 | 6.9734 | 15.0826 | 7.5413 | 1.1810 |
Method | EI | Q^{ab/f} | STD | SF | AVG | MI | EN | VIF |
---|---|---|---|---|---|---|---|---|
SSSDI | 70.7102 | 0.6966 | 57.4770 | 19.3567 | 6.8234 | 15.0668 | 7.5334 | 1.1309 |
QUADTREE | 70.8957 | 0.7027 | 57.5334 | 19.4163 | 6.8412 | 15.0684 | 7.5342 | 1.1368 |
DSIFT | 70.9808 | 0.7046 | 57.5319 | 19.4194 | 6.8493 | 15.0688 | 7.5344 | 1.1381 |
SRCF | 71.0810 | 0.7036 | 57.5394 | 19.4460 | 6.8607 | 15.0690 | 7.5345 | 1.1374 |
GFDF | 70.6258 | 0.7049 | 57.4973 | 19.3312 | 6.8145 | 15.0674 | 7.5337 | 1.1336 |
BRW | 70.6777 | 0.7040 | 57.5020 | 19.3433 | 6.8200 | 15.0675 | 7.5337 | 1.1336 |
MISF | 70.4148 | 0.6984 | 57.4437 | 19.2203 | 6.7945 | 15.0671 | 7.5335 | 1.1222 |
Proposed | 72.4041 | 0.7321 | 57.9737 | 19.7954 | 6.9734 | 15.0826 | 7.5413 | 1.1810 |
Method | Year | Journal/Conference | Network | EI | Q^{ab/f} | STD | SF | AVG | MI | EN | VIF |
---|---|---|---|---|---|---|---|---|---|---|---|
CNN | 2017 | Information Fusion | CNN | 70.3238 | 0.7019 | 57.4354 | 19.2295 | 6.7860 | 15.0663 | 7.5331 | 1.1255 |
ECNN | 2019 | Information fusion | CNN | 70.7432 | 0.7030 | 57.5089 | 19.3837 | 6.8261 | 15.0675 | 7.5338 | 1.1337 |
SESF | 2020 | Neural. Comput. Appl. | CNN | 70.9403 | 0.7031 | 57.5495 | 19.4158 | 6.8448 | 15.0696 | 7.5348 | 1.1395 |
MFIF-GAN | 2021 | SPIC | GAN | 71.0395 | 0.7029 | 57.5430 | 19.4370 | 6.8560 | 15.0690 | 7.5345 | 1.1393 |
MSFIN | 2021 | IEEE TIM | CNN | 71.0914 | 0.7045 | 57.5642 | 19.4438 | 6.8602 | 15.0695 | 7.5348 | 1.1420 |
ZMFF | 2023 | Information Fusion | DIP | 70.8298 | 0.6635 | 57.0347 | 18.9707 | 6.8045 | 15.0735 | 7.5368 | 1.1331 |
Proposed | 2024 | TVC | Transformer | 72.4041 | 0.7321 | 57.9737 | 19.7954 | 6.9734 | 15.0826 | 7.5413 | 1.1810 |
Method | Year | Journal/Conference | Network | EI | Q^{ab/f} | STD | SF | AVG | MI | EN | VIF |
---|---|---|---|---|---|---|---|---|---|---|---|
IFCNN-MAX | 2020 | Information Fusion | CNN | 70.9193 | 0.6784 | 57.4896 | 19.3793 | 6.8463 | 15.0722 | 7.5361 | 1.1322 |
U2Fusion | 2020 | IEEE TPAMI | CNN | 59.8957 | 0.6190 | 51.9356 | 14.9334 | 5.6515 | 14.6153 | 7.3077 | 0.9882 |
SDNet | 2021 | IJCV | CNN | 60.3437 | 0.6441 | 55.2655 | 16.9252 | 5.8725 | 14.9332 | 7.4666 | 0.9281 |
MFF-GAN | 2021 | Information Fusion | GAN | 66.0601 | 0.6222 | 55.1920 | 18.4022 | 6.4089 | 14.8153 | 7.4076 | 1.0084 |
SwinFusion | 2022 | IEEE/CAA JAS | CNN & Transformer | 62.8130 | 0.6597 | 56.8142 | 16.6430 | 5.9862 | 15.0476 | 7.5238 | 1.0685 |
FusionDiff | 2024 | ESWA | Diffusion Model | 67.4911 | 0.6744 | 56.1372 | 18.8483 | 6.5325 | 14.9817 | 7.4909 | 1.0448 |
Proposed | 2024 | TVC | Transformer | 72.4041 | 0.7321 | 57.9737 | 19.7954 | 6.9734 | 15.0826 | 7.5413 | 1.1810 |
- Download DUTS
- Extract it to the project path
- Run the following code to get the data set needed for training
python .\make_dataset.py --mode='TR'
python .\make_dataset.py --mode='TE'
python .\train.py
Download Weights in Baidu and put in the project path
python .\predict.py --dataset_path='./assets/Lytro' --model_path='./checkpoint.ckpt' --is_gray=False
python .\predict.py --dataset_path='./assets/MFFW' --model_path='./checkpoint.ckpt' --is_gray=False
python .\predict.py --dataset_path='./assets/MFI-WHU' --model_path='./checkpoint.ckpt' --is_gray=False
python .\predict.py --dataset_path='your path' --model_path='your path' --is_gray=False/True
Method | Download link |
---|---|
CNN | https://github.com/yuliu316316/CNN-Fusion |
ECNN | https://github.com/mostafaaminnaji/ECNN |
SESF | https://github.com/Keep-Passion/SESF-Fuse |
MFIF-GAN | https://github.com/ycwang-libra/MFIF-GAN |
MSFIN | https://github.com/yuliu316316/MSFIN-Fusion |
ZMFF | https://github.com/junjun-jiang/ZMFF |
IFCNN-MAX | https://github.com/uzeful/IFCNN |
U2Fusion | https://github.com/hanna-xu/U2Fusion |
SDNet | https://github.com/HaoZhang1018/SDNet |
MFF-GAN | https://github.com/HaoZhang1018/MFF-GAN |
SwinFusion | https://github.com/Linfeng-Tang/SwinFusion |
FusionDiff | https://github.com/lmn-ning/ImageFusion |
Result of various learning-based methods compared can be download in Baidu
Includes traditional methods download in https://github.com/yuliu316316/MFIF
The research was supported by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City (No: 2021JJLH0079), Innovational Fund for Scientific and Technological Personnel of Hainan Province (NO. KJRC2023D19), and the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City (No. 2021CXLH0020). Thanks for help by Hainan Provincial Observatory of Ecological Environment and Fishery Resource in Yazhou Bay. Also, we want to thank Chloe Alex Schaff for her contribution in polishing the article.
@article{xie2024swinmff,
title={SwinMFF: toward high-fidelity end-to-end multi-focus image fusion via swin transformer-based network},
author={Xie, Xinzhe and Guo, Buyu and Li, Peiliang and He, Shuangyan and Zhou, Sangjun},
journal={The Visual Computer},
pages={1--24},
year={2024},
publisher={Springer}
}