Pytorch implementation of CEST-VN paper Accelerating Chemical Exchange Saturation Transfer Imaging Using a Model-based Deep Neural Network With Synthetic Training Data
If you use this code and provided data, please refer to:
@misc{xu2023accelerating,
title={Accelerating Chemical Exchange Saturation Transfer Imaging Using a Model-based Deep Neural Network With Synthetic Training Data},
author={Jianping Xu and Tao Zu and Yi-Cheng Hsu and Xiaoli Wang and Kannie W. Y. Chan and Yi Zhang},
year={2023},
eprint={2205.10265},
archivePrefix={arXiv},
primaryClass={physics.med-ph}
}
Setup environment
We provide an environment file CEST_VN/env.yml
. A new conda environment can be created with
conda env create -f env.yml
This will create a working environment named "CEST_VN"
To obtain sufficient CEST raw data for network training, we provide a pipeline based on the Bloch-McConnell model that synthesizes multi-coil CEST k-space data from the publicly available fastMRI[2] brain dataset:
Data_Simulation/BM_3pool_simu_normal.m
: Simulate z-spectra for normal tissues using Bloch-McConnell equation.Data_Simulation/BM_3pool_simu_tumor.m
: Simulate z-spectra for tumor tissues using Bloch-McConnell equation.Data_Simulation/main.m
: Generate simulated CEST k-space data from FastMRI data.
Data_Simulation/Data/Natural_image
: Several examples of natural-scene image, used to generate textures.Data_Simulation/Data/FastMRI
: Examples of pre-processed FastMRI data (from 2 scans, the central 10 slices were used).Data_Simulation/Data/Z_spectra
: Simulated z-spectra will be stored in this directory.
An example of network training can be started as follows.
python main.py --mode train --Resure False --gpus 0,1,2,3 --batch_size 4
We provide trained network parameters at ./models. An example of network testing can be started as follows.
python main_test.py --gpus 0 --test_data Healthy.mat --mask Mask_54_96_96_acc_4_New.mat --model model_acc=4.pth --save_name Healthy_acc=4.mat
[1]. Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T, Knoll F. Learning a variational network for reconstruction of accelerated MRI data. Magnetic Resonance in Medicine 2018;79(6):3055-3071.
[2]. Zbontar J, Knoll F, Sriram A, Murrell T, Huang Z, Muckley MJ, Defazio A, Stern R, Johnson P, Bruno M. fastMRI: An open dataset and benchmarks for accelerated MRI. 2018. arXiv preprint arXiv:1811.08839.