Skip to content

[Add] Consequences of identity for monoids #2692

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 52 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 30 commits
Commits
Show all changes
52 commits
Select commit Hold shift + click to select a range
0fc076f
Adds reasonig combinator for semigroup
jmougeot Apr 1, 2025
3399c61
Adds reasonig combinator for semigroup
jmougeot Apr 1, 2025
90fe273
Adds reasonig combinator for semigroup
jmougeot Apr 1, 2025
ef3282f
Adds reasonig combinator for semigroup
jmougeot Apr 1, 2025
63e88cc
Add some more missing reasoning combinators
jmougeot Apr 1, 2025
bb7ce15
add module Extends
jmougeot Apr 1, 2025
885d7a0
rename SemiGroup to Semigroup
jmougeot Apr 1, 2025
ad54a5b
fix-whitespace
jmougeot Apr 1, 2025
2b511c2
Update CHANGELOG.md
jmougeot Apr 2, 2025
8151123
New names
jmougeot Apr 3, 2025
2361b40
improve syntx
jmougeot Apr 3, 2025
503c693
fix-whitespace
jmougeot Apr 3, 2025
0d5c9ed
Name changes
jmougeot Apr 7, 2025
1a67eb9
Names change
jmougeot Apr 7, 2025
002cfad
Space
jmougeot Apr 7, 2025
a47bcc5
Proof of assoc with PUshes and Pulles
jmougeot Apr 8, 2025
ca9f576
Proof of assoc with PUshes and Pulles
jmougeot Apr 8, 2025
e07f81b
white space
jmougeot Apr 9, 2025
86b06e0
Update src/Algebra/Properties/Semigroup/Reasoning.agda
jmougeot Apr 10, 2025
7b72ff2
Reasoning to Semigroup and explicit variables
jmougeot Apr 11, 2025
13b5f0e
fix bug
jmougeot Apr 11, 2025
f58aceb
space
jmougeot Apr 11, 2025
f8ab744
Add reasonining combinators for monoids
jmougeot Apr 1, 2025
4cb6076
chore: move imports around in Algebra.Definitions
jmougeot Apr 1, 2025
6d6a494
Syntax modification
jmougeot Apr 1, 2025
0a36d34
rebase
jmougeot Apr 11, 2025
c0ea255
update semigroup
jmougeot Apr 8, 2025
b874357
One line proof
jmougeot Apr 9, 2025
6381e8d
move importation
jmougeot Apr 10, 2025
ec1030c
fix-whitespace
jmougeot Apr 10, 2025
74607d5
Update src/Algebra/Properties/Semigroup.agda
jmougeot Apr 14, 2025
e3b2550
Update CHANGELOG.md
jmougeot Apr 14, 2025
e63afbd
Update src/Algebra/Properties/Semigroup.agda
jmougeot Apr 14, 2025
b2bfa03
Update src/Algebra/Properties/Semigroup.agda
jmougeot Apr 14, 2025
14224b9
Update src/Algebra/Properties/Semigroup.agda
jmougeot Apr 14, 2025
76b6637
Update src/Algebra/Properties/Semigroup.agda
jmougeot Apr 14, 2025
06af327
Update src/Algebra/Properties/Semigroup.agda
jmougeot Apr 14, 2025
a22f97d
variables
jmougeot Apr 14, 2025
c9487ef
Add reasonining combinators for monoids
jmougeot Apr 1, 2025
f0e0101
chore: move imports around in Algebra.Definitions
jmougeot Apr 1, 2025
9926a29
Syntax modification
jmougeot Apr 1, 2025
11a54eb
rebase
jmougeot Apr 14, 2025
f1335e6
update semigroup
jmougeot Apr 8, 2025
821fdf3
One line proof
jmougeot Apr 9, 2025
f964914
move importation
jmougeot Apr 10, 2025
08688ea
fix-whitespace
jmougeot Apr 10, 2025
9711485
test
jmougeot Apr 14, 2025
a8aa378
explicit varaibles
jmougeot Apr 14, 2025
1c788a0
used of semigroup propreties
jmougeot Apr 14, 2025
bbf6645
update
jmougeot Apr 16, 2025
1260c29
Update CHANGELOG.md
JacquesCarette Apr 21, 2025
1ae1e27
Update CHANGELOG.md
JacquesCarette Apr 21, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -123,7 +123,15 @@ New modules

* `Data.Sign.Show` to show a sign

<<<<<<< HEAD
* `Algebra.Properties.Semigroup` adding consequences for associtvity for semigroups
=======
* `Algebra.Propreties.Semigroup.Reasoning` adding reasoning combinators for semigroups

* `Algebra.Propreties.Monoid.Reasoning` adding reasoning combinators for monoids

Additions to existing modules
>>>>>>> e149b4b39 (move from Reasoning to Propreties)
-----------------------------

* In `Algebra.Construct.Pointwise`:
Expand Down
2 changes: 1 addition & 1 deletion src/Algebra/Definitions.agda
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@
{-# OPTIONS --cubical-compatible --safe #-}

open import Relation.Binary.Core using (Rel; _Preserves_⟶_; _Preserves₂_⟶_⟶_)
open import Relation.Nullary.Negation.Core using (¬_)

module Algebra.Definitions
{a ℓ} {A : Set a} -- The underlying set
Expand All @@ -26,6 +25,7 @@ module Algebra.Definitions
open import Algebra.Core using (Op₁; Op₂)
open import Data.Product.Base using (_×_; ∃-syntax)
open import Data.Sum.Base using (_⊎_)
open import Relation.Nullary.Negation.Core using (¬_)

------------------------------------------------------------------------
-- Properties of operations
Expand Down
68 changes: 68 additions & 0 deletions src/Algebra/Properties/Monoid/Reasoning.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
------------------------------------------------------------------------
-- The Agda standard library
--
-- Equational reasoning for monoids
-- (Utilities for identity and cancellation reasoning, extending semigroup reasoning)
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Algebra.Bundles using (Monoid)

module Algebra.Properties.Monoid.Reasoning {o ℓ} (M : Monoid o ℓ) where
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

As usual: these lemmas belong in Algebra.Properties.Monoid, not in a separate module as you have it.

By all means do initial development in that style before raising a PR, or else mark it as DRAFT (and hence not ready-for-review) but once you do raise the PR/ask for review, we do need it to be compatible both with the existing stdlib hierarchy/structure, but also with the style-guide, or else we will expend a lot of extra reviewing energy on things which should have been fixed ahead of time.


open Monoid M
using (Carrier; _∙_; _≈_; setoid; isMagma; semigroup; ε; sym; identityˡ
; identityʳ ; ∙-cong; refl; assoc; ∙-congˡ; ∙-congʳ; trans)
open import Relation.Binary.Reasoning.Setoid setoid
open import Algebra.Properties.Semigroup.Reasoning semigroup public

module Identity {a : Carrier } where
Copy link
Contributor

@jamesmckinna jamesmckinna Apr 12, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

... So that there is no need here for either the implicit module scope, the module name, or even the declaration of any module at all!

id-unique : (∀ b → b ∙ a ≈ b) → a ≈ ε
id-unique b∙a≈b = trans (sym (identityˡ a)) (b∙a≈b ε)

id-comm : a ∙ ε ≈ ε ∙ a
id-comm = trans (identityʳ a) (sym (identityˡ a))
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Against the above comment, this may need a to be explicit... try some tests to see in eg. Data.Nat.Properties?


id-comm-sym : ε ∙ a ≈ a ∙ ε
id-comm-sym = sym id-comm
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I now think that these explicit symmetric forms are excessive/superfluous.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

id-comm-sym (and id-comm) are used surprisingly often in agda-categories. But I think that might be an artifact of how classical category theory is "formalized" in textbooks that when actually formalized adds a ridiculous number of id that need to be shuffled around.

It also happens when doing naive foldr or naive partial evaluation: you get spurious ids, and sometimes you need to shuffle these around. So while I'm not claiming id-comm-sym would pay its weight here, there's a good reason why it is being proposed.

Copy link
Contributor

@jamesmckinna jamesmckinna Apr 16, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Interesting, thanks for the insight. All of this seems only further evidence towards developing Solver-style/normal form equational reasoning as in #2629 ... downstream ;-)


open Identity public

module IntroElim {a b : Carrier} (a≈ε : a ≈ ε) where
Copy link
Contributor

@jamesmckinna jamesmckinna Apr 12, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

My instincts tell me:

  • a can be implicit, and covered by a variable declaration
  • b should be explicit (just as the argument to identityˡ and identityʳ is...)

elimʳ : b ∙ a ≈ b
elimʳ = trans (∙-congˡ a≈ε) (identityʳ b)

elimˡ : a ∙ b ≈ b
elimˡ = trans (∙-congʳ a≈ε) (identityˡ b)

introʳ : a ≈ ε → b ≈ b ∙ a
introʳ a≈ε = sym elimʳ

introˡ : a ≈ ε → b ≈ a ∙ b
introˡ a≈ε = sym elimˡ
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Argument a≈ε : a ≈ ε is already covered by the module telescope. Delete here.

Suggested change
introʳ : a ≈ ε b ≈ b ∙ a
introʳ a≈ε = sym elimʳ
introˡ : a ≈ ε b ≈ a ∙ b
introˡ a≈ε = sym elimˡ
introʳ : b ≈ b ∙ a
introʳ = sym elimʳ
introˡ : b ≈ a ∙ b
introˡ = sym elimˡ


introcenter : ∀ c → b ∙ c ≈ b ∙ (a ∙ c)
introcenter c = trans (∙-congˡ (sym (identityˡ c))) (∙-congˡ (∙-congʳ (sym a≈ε)))
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I wonder if we should use a superscript m (for 'middle') or c (for, indeed, 'center') instead of spelling it out?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Meta: a good general point that, besides 'left' and 'right' (modulo collective mutual misunderstanding/inconsistency about what such conventions might even mean #2654 ), we don't have good heuristics about super-/sub-scripts and their intended semantics. I think I'd be happy with or ... but nervous about establishing a precedent without further thought/discussion?


open IntroElim public

module Cancellers {a b c : Carrier} (inv : a ∙ c ≈ ε) where
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Implicits a, c via variables again... but b should be explicit, I think.


cancelʳ : (b ∙ a) ∙ c ≈ b
cancelʳ = trans (assoc b a c) (trans (∙-congˡ inv) (identityʳ b))

cancelˡ : a ∙ (c ∙ b) ≈ b
cancelˡ = trans (sym (assoc a c b)) (trans (∙-congʳ inv) (identityˡ b))

insertˡ : b ≈ a ∙ (c ∙ b)
insertˡ = sym cancelˡ

insertʳ : b ≈ (b ∙ a) ∙ c
insertʳ = sym cancelʳ

cancelInner : ∀ {g} → (b ∙ a) ∙ (c ∙ g) ≈ b ∙ g
cancelInner {g = g} = trans (sym (assoc (b ∙ a) c g)) (∙-congʳ cancelʳ)

insertInner : ∀ {g} → b ∙ g ≈ (b ∙ a) ∙ (c ∙ g)
insertInner = sym cancelInner
96 changes: 95 additions & 1 deletion src/Algebra/Properties/Semigroup.agda
Original file line number Diff line number Diff line change
Expand Up @@ -10,9 +10,15 @@ open import Algebra using (Semigroup)

module Algebra.Properties.Semigroup {a ℓ} (S : Semigroup a ℓ) where

open import Data.Product.Base using (_,_)

open Semigroup S
open import Algebra.Definitions _≈_
open import Data.Product.Base using (_,_)
open import Relation.Binary.Reasoning.Setoid setoid

private
variable
u v w x y z : Carrier

x∙yz≈xy∙z : ∀ x y z → x ∙ (y ∙ z) ≈ (x ∙ y) ∙ z
x∙yz≈xy∙z x y z = sym (assoc x y z)
Expand All @@ -28,3 +34,91 @@ alternative = alternativeˡ , alternativeʳ

flexible : Flexible _∙_
flexible x y = assoc x y x

module _ (uv≈w : u ∙ v ≈ w) where
uv≈w⇒xu∙v≈xw : ∀ x → (x ∙ u) ∙ v ≈ x ∙ w
uv≈w⇒xu∙v≈xw x = trans (assoc x u v) (∙-congˡ uv≈w)

uv≈w⇒u∙vx≈wx : ∀ x → u ∙ (v ∙ x) ≈ w ∙ x
uv≈w⇒u∙vx≈wx x = trans (sym (assoc u v x)) (∙-congʳ uv≈w)

uv≈w⇒u[vx∙y]≈w∙xy : ∀ x y → u ∙ ((v ∙ x) ∙ y) ≈ w ∙ (x ∙ y)
uv≈w⇒u[vx∙y]≈w∙xy x y = trans (∙-congˡ (assoc v x y)) (uv≈w⇒u∙vx≈wx (x ∙ y))

uv≈w⇒x[uv∙y]≈x∙wy : ∀ x y → x ∙ (u ∙ (v ∙ y)) ≈ x ∙ (w ∙ y)
uv≈w⇒x[uv∙y]≈x∙wy x y = ∙-congˡ (uv≈w⇒u∙vx≈wx y)

uv≈w⇒[x∙yu]v≈x∙yw : ∀ x y → (x ∙ (y ∙ u)) ∙ v ≈ x ∙ (y ∙ w)
uv≈w⇒[x∙yu]v≈x∙yw x y = trans (assoc x (y ∙ u) v) (∙-congˡ (uv≈w⇒xu∙v≈xw y))

uv≈w⇒[xu∙v]y≈x∙wy : ∀ x y → ((x ∙ u) ∙ v) ∙ y ≈ x ∙ (w ∙ y)
uv≈w⇒[xu∙v]y≈x∙wy x y = trans (∙-congʳ (uv≈w⇒xu∙v≈xw x)) (assoc _ _ _)

uv≈w⇒[xy∙u]v≈x∙yw : ∀ x y → ((x ∙ y) ∙ u) ∙ v ≈ x ∙ (y ∙ w)
uv≈w⇒[xy∙u]v≈x∙yw x y = trans (∙-congʳ (assoc x y u)) (uv≈w⇒[x∙yu]v≈x∙yw x y )

module _ (uv≈w : u ∙ v ≈ w) where
uv≈w⇒xw≈xu∙v : x ∙ w ≈ (x ∙ u) ∙ v
uv≈w⇒xw≈xu∙v = sym (uv≈w⇒xu∙v≈xw uv≈w _)

uv≈w⇒wx≈u∙vx : w ∙ x ≈ u ∙ (v ∙ x)
uv≈w⇒wx≈u∙vx = sym (uv≈w⇒u∙vx≈wx uv≈w _)

uv≈w⇒w∙xy≈u[vx∙y] : ∀ x y → w ∙ (x ∙ y) ≈ u ∙ ((v ∙ x) ∙ y)
uv≈w⇒w∙xy≈u[vx∙y] x y = sym (uv≈w⇒u[vx∙y]≈w∙xy uv≈w x y)

uv≈w⇒x∙wy≈x[u∙vy] : ∀ x y → x ∙ (w ∙ y) ≈ x ∙ (u ∙ (v ∙ y))
uv≈w⇒x∙wy≈x[u∙vy] x y = sym (uv≈w⇒x[uv∙y]≈x∙wy uv≈w x y)

uv≈w⇒x∙yw≈[x∙yu]v : ∀ x y → x ∙ (y ∙ w) ≈ (x ∙ (y ∙ u)) ∙ v
uv≈w⇒x∙yw≈[x∙yu]v x y = sym (uv≈w⇒[x∙yu]v≈x∙yw uv≈w x y)

uv≈w⇒xu∙vy≈x∙wy : (x ∙ u) ∙ (v ∙ y) ≈ x ∙ (w ∙ y)
uv≈w⇒xu∙vy≈x∙wy = uv≈w⇒xu∙v≈xw (uv≈w⇒u∙vx≈wx uv≈w _) _

uv≈w⇒xy≈z⇒u[vx∙y]≈wz : ∀ z → x ∙ y ≈ z → u ∙ ((v ∙ x) ∙ y) ≈ w ∙ z
uv≈w⇒xy≈z⇒u[vx∙y]≈wz z xy≈z = trans (∙-congˡ (uv≈w⇒xu∙v≈xw xy≈z v)) (uv≈w⇒u∙vx≈wx uv≈w z)

uv≈w⇒x∙wy≈x∙[u∙vy] : x ∙ (w ∙ y) ≈ x ∙ (u ∙ (v ∙ y))
uv≈w⇒x∙wy≈x∙[u∙vy] = sym (uv≈w⇒x[uv∙y]≈x∙wy uv≈w _ _)

module _ {u v w x : Carrier} where
[uv∙w]x≈u[vw∙x] : ((u ∙ v) ∙ w) ∙ x ≈ u ∙ ((v ∙ w) ∙ x)
[uv∙w]x≈u[vw∙x] = uv≈w⇒[xu∙v]y≈x∙wy refl u x

[uv∙w]x≈u[v∙wx] : ((u ∙ v) ∙ w) ∙ x ≈ u ∙ (v ∙ (w ∙ x))
[uv∙w]x≈u[v∙wx] = uv≈w⇒[xy∙u]v≈x∙yw refl u v

[u∙vw]x≈uv∙wx : (u ∙ (v ∙ w)) ∙ x ≈ (u ∙ v) ∙ (w ∙ x)
[u∙vw]x≈uv∙wx = trans (sym (∙-congʳ (assoc u v w))) (assoc (u ∙ v) w x)

[u∙vw]x≈u[v∙wx] : (u ∙ (v ∙ w)) ∙ x ≈ u ∙ (v ∙ (w ∙ x))
[u∙vw]x≈u[v∙wx] = uv≈w⇒[x∙yu]v≈x∙yw refl u v

uv∙wx≈u[vw∙x] : (u ∙ v) ∙ (w ∙ x) ≈ u ∙ ((v ∙ w) ∙ x)
uv∙wx≈u[vw∙x] = uv≈w⇒xu∙vy≈x∙wy refl

uv∙wx≈[u∙vw]x : (u ∙ v) ∙ (w ∙ x) ≈ (u ∙ (v ∙ w)) ∙ x
uv∙wx≈[u∙vw]x = sym [u∙vw]x≈uv∙wx

u[vw∙x]≈[uv∙w]x : u ∙ ((v ∙ w) ∙ x) ≈ ((u ∙ v) ∙ w) ∙ x
u[vw∙x]≈[uv∙w]x = sym [uv∙w]x≈u[vw∙x]

u[vw∙x]≈uv∙wx : u ∙ ((v ∙ w) ∙ x) ≈ (u ∙ v) ∙ (w ∙ x)
u[vw∙x]≈uv∙wx = sym uv∙wx≈u[vw∙x]

u[v∙wx]≈[uv∙w]x : u ∙ (v ∙ (w ∙ x)) ≈ ((u ∙ v) ∙ w) ∙ x
u[v∙wx]≈[uv∙w]x = sym [uv∙w]x≈u[v∙wx]

u[v∙wx]≈[u∙vw]x : u ∙ (v ∙ (w ∙ x)) ≈ (u ∙ (v ∙ w)) ∙ x
u[v∙wx]≈[u∙vw]x = sym [u∙vw]x≈u[v∙wx]

module _ {u v w x : Carrier} (uv≈wx : u ∙ v ≈ w ∙ x) where
uv≈wx⇒yu∙v≈yw∙x : ∀ y → (y ∙ u) ∙ v ≈ (y ∙ w) ∙ x
uv≈wx⇒yu∙v≈yw∙x y = trans (uv≈w⇒xu∙v≈xw uv≈wx y) (sym (assoc y w x))

uv≈wx⇒u∙vy≈w∙xy : ∀ y → u ∙ (v ∙ y) ≈ w ∙ (x ∙ y)
uv≈wx⇒u∙vy≈w∙xy y = trans (uv≈w⇒u∙vx≈wx uv≈wx y) (assoc w x y)

uv≈wx⇒yu∙vz≈yw∙xz : ∀ y z → (y ∙ u) ∙ (v ∙ z) ≈ (y ∙ w) ∙ (x ∙ z)
uv≈wx⇒yu∙vz≈yw∙xz y z = trans (uv≈w⇒xu∙v≈xw (uv≈wx⇒u∙vy≈w∙xy z) y)(sym (assoc y w (x ∙ z)))
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Space

Suggested change
uv≈wx⇒yu∙vz≈yw∙xz y z = trans (uv≈w⇒xu∙v≈xw (uv≈wx⇒u∙vy≈w∙xy z) y)(sym (assoc y w (x ∙ z)))
uv≈wx⇒yu∙vz≈yw∙xz y z = trans (uv≈w⇒xu∙v≈xw (uv≈wx⇒u∙vy≈w∙xy z) y) (sym (assoc y w (x ∙ z)))

Loading