-
Notifications
You must be signed in to change notification settings - Fork 128
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add a tagger that adds attributes for code-prose-other composition of files based on line classifications.
- Loading branch information
Showing
1 changed file
with
98 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
""" | ||
Code Prose Composition Classifier. | ||
This tagger classifies the composition of code and prose in a given text slice | ||
at the document level. It uses a FastText model trained on code and prose | ||
composition data. | ||
Tags include information about the number of code-prose boundaries, the | ||
composition of code and prose in the text, and the entropy of the predicted | ||
labels. | ||
@robertb | ||
""" | ||
|
||
import math | ||
from typing import Dict, Iterable, List, Tuple | ||
|
||
from ..core.data_types import TextSlice | ||
from ..core.ft_tagger import BaseFastTextTagger, Prediction | ||
from ..core.registry import TaggerRegistry | ||
|
||
|
||
@TaggerRegistry.add("code-prose-composition") | ||
class CodeProseCompositionClassifier(BaseFastTextTagger): | ||
MODEL_PATH = "hf://techarb/code-prose-composition/code-comment-prose-model.bin" # noqa: E501 | ||
|
||
def __init__(self): | ||
super().__init__(model_path=self.MODEL_PATH, model_mode=self.DOCUMENT_LEVEL_TAGGER) | ||
|
||
def calculate_entropy(self, distribution: List[float]) -> float: | ||
entropy = 0.0 | ||
for p in distribution: | ||
if p > 0: | ||
entropy -= p * math.log2(p) | ||
return entropy | ||
|
||
def mean_entropy(self, list_of_distributions: List[List[float]]) -> float: | ||
if not list_of_distributions: | ||
return 0 | ||
|
||
total_entropy = 0.0 | ||
for dist in list_of_distributions: | ||
total_entropy += self.calculate_entropy(dist) | ||
return total_entropy / len(list_of_distributions) | ||
|
||
def line_label(self, line: str) -> Tuple[str, List[float]]: | ||
label = "other" | ||
probabilities = [] | ||
if len(line) > 3: | ||
labels, probabilities = self.classifier.predict(line, k=-1) | ||
|
||
label = labels[0].lstrip("__label__") | ||
return label, probabilities | ||
|
||
def predictions( | ||
self, | ||
code_prose_boundaries: int, | ||
class_counts: Dict[str, int], | ||
prediction_distributions: Dict[str, List[List[float]]], | ||
) -> Iterable[Prediction]: | ||
composition = {} | ||
for label, count in class_counts.items(): | ||
composition[label] = round((count / sum(class_counts.values())), 2) | ||
|
||
out = [Prediction(label="code_prose_boundaries", score=code_prose_boundaries)] | ||
|
||
for label in composition.keys(): | ||
out.append(Prediction(label=f"{label}_composition", score=composition[label])) | ||
out.append(Prediction(label=f"{label}_count", score=class_counts.get(label, 0))) | ||
out.append( | ||
Prediction( | ||
label=f"{label}_mean_entropy", score=self.mean_entropy(prediction_distributions.get(label, [])) | ||
) | ||
) | ||
|
||
return out | ||
|
||
def predict_slice(self, text_slice: TextSlice) -> Iterable[Prediction]: | ||
class_counts: Dict[str, int] = {} | ||
prediction_distributions: Dict[str, List[List[float]]] = {} | ||
active_class, code_prose_boundaries = None, 0 | ||
|
||
for line in [line.strip() for line in text_slice.text.splitlines()]: | ||
if not line: | ||
continue | ||
|
||
label, probabilities = self.line_label(line) | ||
|
||
prediction_distributions.setdefault(label, []).append(probabilities) | ||
class_counts[label] = class_counts.get(label, 0) + 1 | ||
|
||
if active_class in ["code", "prose"] and label in ["code", "prose"] and label != active_class: | ||
code_prose_boundaries += 1 | ||
active_class = label | ||
|
||
return self.predictions(code_prose_boundaries, class_counts, prediction_distributions) |