Skip to content

arvkevi/img2cmap

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

img2cmap

Usage

Create colormaps from images in three lines of code!

First, ImageConverter class converts images to arrays of RGB values.
Then, generate_cmap creates a matplotlib ListedColormap.
from img2cmap import ImageConverter

# Can be a local file or URL
converter = ImageConverter("tests/images/south_beach_sunset.jpg")
cmap = converter.generate_cmap(n_colors=5, palette_name="south_beach_sunset", random_state=42)

Now, use the colormap in your plots!

import matplotlib.pyplot as plt

colors = cmap.colors

with plt.style.context("dark_background"):
    for i, color in enumerate(colors):
        plt.plot(range(10), [_+i+1 for _ in range(10)], color=color, linewidth=4)

images/img2cmap_demo.png

Plot the image and a colorbar side by side.

import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable

fig, ax = plt.subplots(figsize=(7, 5))

ax.axis("off")
img = plt.imread("tests/images/south_beach_sunset.jpg")
im = ax.imshow(img, cmap=cmap)

divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="10%", pad=0.05)

cb = fig.colorbar(im, cax=cax, orientation="vertical", label=cmap.name)
cb.set_ticks([])

images/colorbar.png

Advanced

generate_optimal_cmap

You can extract the optimal number of colors from the image using the generate_optimal_cmap method. Under the hood this performs the elbow method <https://en.wikipedia.org/wiki/Elbow_method_(clustering)> to determine the optimal number of clusters based on the sum of the squared distances between each pixel and it's cluster center.

cmaps, best_n_colors, ssd = converter.generate_optimal_cmap(max_colors=10, random_state=42)

best_cmap = cmaps[best_n_colors]

remove_transparent

In an image of the Los Angeles Lakers logo, the background is transparent. These pixels contribute to noise when generating the colors. Running the remove_transparent method will remove transparent pixels. Here's a comparison of the colormaps generated by the same image, without and with transparency removed.

Make two ImageConverter objects:

from img2cmap import ImageConverter

image_url = "https://loodibee.com/wp-content/uploads/nba-los-angeles-lakers-logo.png"

# Create two ImageConverters, one with transparency removed and one without
converter_with_transparent = ImageConverter(image_url)
converter_with_transparent.remove_transparent()

converter_no_transparent = ImageConverter(image_url)

cmap_with_transparent = converter_with_transparent.generate_cmap(
    n_colors=3, palette_name="with_transparent", random_state=42
)
cmap_no_transparent = converter_no_transparent.generate_cmap(
    n_colors=3, palette_name="no_transparent", random_state=42
)

Plot both colormaps with the image:

import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable

for cmap in [cmap_with_transparent, cmap_no_transparent]:
    fig, ax = plt.subplots(figsize=(7, 5))

    ax.axis("off")
    img = converter_no_transparent.image
    im = ax.imshow(img, cmap=cmap)

    divider = make_axes_locatable(ax)
    cax = divider.append_axes("right", size="10%", pad=0.05)

    cb = fig.colorbar(im, cax=cax, orientation="vertical", label=cmap.name)
    cb.set_ticks([])

images/lakers_with_transparent.png

images/lakers_no_transparent.png

Notice, only after removing the transparent pixels, does the classic purple and gold show in the colormap.

resize

There is a method of the ImageConverter class to resize images. It will preserve the aspect ratio, but reduce the size of the image.

def test_resize():
    imageconverter = ImageConverter("tests/images/south_beach_sunset.jpg")
    imageconverter.resize(size=(512, 512))
    # preserves aspect ratio
    assert imageconverter.image.size == (512, 361)

hexcodes

When running the generate_cmap or the generate_optimal_cmap methods the ImageConverter object will automatically capture the resulting hexcodes from the colormap and store them as an attribute.

from img2cmap import ImageConverter

image_url = "https://static1.bigstockphoto.com/3/2/3/large1500/323952496.jpg"

converter = ImageConverter(image_url)
converter.generate_cmap(n_colors=4, palette_name="with_transparent", random_state=42)
print(converter.hexcodes)

Output:

['#ba7469', '#dfd67d', '#5d536a', '#321e28']

Installation

pip install img2cmap

You can also install the in-development version with:

pip install https://github.com/arvkevi/img2cmap/archive/main.zip

Documentation

https://img2cmap.readthedocs.io/

Web App

Check out the web app at https://img2cmap.fly.dev

images/webapp_image.png

Status

docs Documentation Status
tests
package

Development

Install the development requirements:

pip install img2cmap[dev]

To run all the tests run:

tox

Note, to combine the coverage data from all the tox environments run:

Windows
set PYTEST_ADDOPTS=--cov-append
tox
Other
PYTEST_ADDOPTS=--cov-append tox