Skip to content

atelili/2BiVQA

Repository files navigation

2BiVQA

License

2BiVQA: Double Bi-LSTM based Video Quality Assessment of UGC Videos

This repository contains the code of our paper 2BiVQA: Double Bi-LSTM based Video Quality Assessment of UGC Videos. If you use any part of our code, please cite:

@article{telili20222bivqa,
  title={2BiVQA: Double Bi-LSTM based Video Quality Assessment of UGC Videos},
  author={Telili, Ahmed and Fezza, Sid Ahmed and Hamidouche, Wassim and Meftah, Hanene FZ},
  journal={arXiv preprint arXiv:2208.14774},
  year={2022}
}

Requirements

pip install -r requirements.txt

Features extraction

Please note that the meta-data should be a csv file with two columns: video name and MOS.

python3 extract_features.py [-h] [-v 'path to videos directory']
                                   [-f 'path to meta-data csv file']
                                   [-o 'overlapping between patches']
                                   [-fl 'flag: 0 for videos and 1 for images']

To extract features from images, please set flag to 1.

ResNet50 is used for features extractions.

Model Training (optional):

This step can be skipped, and directly test the model in the next section with pre-trained models.

To train your own model:

python End2End_train.py [-h] [-nf number of frames to be extracted] [-b batch_size]
                                         

To train your own spatial pooling model on other image datasets:

python spatial_train.py [-h] [-p number of patches] [-b batch_size]
                                         

Test:

To test the model:

a-On KonViD-1K:

python test_model.py --dataset konvid 
Methods SROCC PLCC KROCC RMSE
2BiVQA 0.8463 0.8404 0.6529 0.3620

b-On LIVE_VQC:

python test_model.py --dataset live  
Methods SROCC PLCC KROCC RMSE
2BiVQA 0.7614 0.8325 0.6212 9.9799

Demo:

To predict the quality of your own dataset using pre-trained model:

python demo.py  [-h] [-nf number of frames to be extracted] [-m path to pretrained model] [-f path to videos dir]

Evaluate:

To evaluate the model:

Please note that your csv file should have two columns: 'Mos' and 'Predicted'.

python evaluate.py  --mos_pred konvid.csv

Performance Benchmark:

KonViD-1K [1]:
Methods SROCC PLCC KROCC RMSE
BRISQUE 0.6567 0.6576 0.4761 0.4813
NIQE 0.5417 0.5530 0.3790 0.5336
ILNIQE 0.5264 0.5400 0.3692 0.5406
VIIDEO 0.2988 0.3002 0.2036 0.6101
GM-LOG 0.6578 0.6636 0.4770 0.4818
HIGRADE 0.7206 0.7269 0.5319 0.4391
FRIQUEE 0.7472 0.7482 0.5509 0.4252
CORNIA 0.7169 0.7135 0.5231 0.4486
HOSA 0.7654 0.7664 0.5690 0.4142
V-BLIINDS 0.7101 0.7037 0.5188 0.4595
TLVQM 0.7729 0.7688 0.5770 0.4102
ResNet-50 0.8018 0.8104 0.6100 0.3749
VGG-19 0.7741 0.7845 0.5841 0.3958
KonCept512 0.7349 0.7489 0.5425 0.4260
VIDEVAL 0.7832 0.7803 0.5845 0.4026
RAPIQUE 0.8072 0.8175 0.6189 0.3623
2BiVQA 0.8463 0.8404 0.6529 0.3620
LIVE VQC [2]:
Methods SROCC PLCC KROCC RMSE
BRISQUE 0.5925 0.6380 0.4162 13.100
NIQE 0.5957 0.6286 0.4252 13.110
ILNIQE 0.5037 0.5437 0.3555 14.148
VIIDEO 0.0332 0.0231 0.2146 16.654
GM-LOG 0.5881 0.6212 0.4180 13.223
HIGRADE 0.6103 0.6332 0.4391 13.027
FRIQUEE 0.6579 0.7000 0.4770 12.198
CORNIA 0.6719 0.7183 0.4849 11.832
HOSA 0.6873 0.7414 0.5033 11.353
V-BLIINDS 0.6939 0.7178 0.5078 11.765
TLVQM 0.7988 0.8025 0.6080 10.145
ResNet-50 0.6636 0.7205 0.4786 11.591
VGG-19 0.6568 0.7160 0.4722 11.783
KonCept512 0.6645 0.7278 0.4793 11.626
VIDEVAL 0.7522 0.7514 0.5639 11.100
RAPIQUE 0.7415 0.7659 0.5576 10.6653
2BiVQA 0.7614 0.8325 0.6212 9.9799
YouTube-UGC [3]:
Methods SROCC PLCC KROCC RMSE
BRISQUE 0.3820 0.3952 0.2635 0.5919
NIQE 0.2379 0.2776 0.1600 0.6174
ILNIQE 0.2918 0.3302 0.1980 0.6052
VIIDEO 0.0580 0.1534 0.0389 0.6359
GM-LOG 0.3678 0.3920 0.2517 0.5896
HIGRADE 0.7376 0.7216 0.5478 0.4471
FRIQUEE 0.7652 0.7571 0.5688 0.4169
CORNIA 0.5972 0.6057 0.4211 0.5136
HOSA 0.6025 0.6047 0.4257 0.5132
V-BLIINDS 0.5590 0.5551 0.3899 0.5356
TLVQM 0.6693 0.6590 0.4816 0.4849
ResNet-50 0.7183 0.7097 0.5229 0.4538
VGG-19 0.7025 0.6997 0.5091 0.4562
KonCept512 0.5872 0.5940 0.4101 0.5135
VIDEVAL 0.7787 0.7733 0.5830 0.4049
RAPIQUE 0.7610 0.7620 0.5610 0.4060
2BiVQA 0.7716 0.7904 0.5812 0.4047
All-Combined:
Methods SROCC PLCC KROCC RMSE
BRISQUE 0.5695 0.5861 0.4030 0.5617
NIQE 0.4622 0.4773 0.322 0.6112
ILNIQE 0.4592 0.4741 0.3213 0.6119
VIIDEO 0.1039 0.1621 0.0688 0.6804
GM-LOG 0.5650 0.5942 0.3995 0.5588
HIGRADE 0.7398 0.7368 0.5471 0.4674
FRIQUEE 0.7568 0.7550 0.5651 0.4549
CORNIA 0.6764 0.6974 0.4846 0.4946
HOSA 0.6957 0.7082 0.5038 0.4893
V-BLIINDS 0.6545 0.6599 0.4739 0.5200
TLVQM 0.7271 0.7342 0.5347 0.4705
ResNet-50 0.7557 0.7747 0.5613 0.4385
VGG-19 0.7321 0.7482 0.5399 0.4610
KonCept512 0.6608 0.6763 0.4759 0.5091
VIDEVAL 0.7960 0.7939 0.6032 0.4268
RAPIQUE 0.8086 0.8186 0.6148 0.4076
2BiVQA 0.8003 0.7941 0.6088 0.4218

References

[1] V. Hosu, F. Hahn, M. Jenadeleh, H. Lin, H. Men, T. Szirányi, S. Li,and D. Saupe, “The konstanz natural video database (konvid-1k),” in2017 Ninth international conference on quality of multimedia experience(QoMEX).  IEEE, 2017, pp. 1–6.

[2] Z. Sinno and A. C. Bovik, “Large-scale study of perceptual videoquality,”IEEE Transactions on Image Processing, vol. 28, no. 2, pp.612–627, 2018.

[3] Y. Wang, S. Inguva, and B. Adsumilli, “Youtube ugc dataset for videocompression research,” in2019 IEEE 21st International Workshop onMultimedia Signal Processing (MMSP).  IEEE, 2019, pp. 1–5.

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages