Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

upgrade liger to 0.4.0 #1973

Merged
merged 13 commits into from
Nov 7, 2024
3 changes: 2 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -562,7 +562,8 @@ plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_glu_activation: true
winglian marked this conversation as resolved.
Show resolved Hide resolved
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
```

Expand Down
2 changes: 1 addition & 1 deletion examples/deepseek-v2/qlora-fsdp-2_5.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ strict: false
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rms_norm: true
liger_swiglu: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true

chat_template: deepseek_v2
Expand Down
2 changes: 1 addition & 1 deletion examples/llama-3/fft-8b-liger-fsdp.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true

strict: false
Expand Down
6 changes: 3 additions & 3 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -1,10 +1,10 @@
--extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
packaging==23.2
peft==0.13.2
transformers==4.46.0
transformers==4.46.1
tokenizers>=0.20.1
bitsandbytes==0.44.1
accelerate==1.0.1
accelerate==1.1.0
datasets==3.0.1
deepspeed==0.15.3
pydantic==2.6.3
Expand Down Expand Up @@ -34,7 +34,7 @@ tensorboard
python-dotenv==1.0.1
autoawq>=0.2.5
triton>=2.3.0
liger-kernel==0.3.0
liger-kernel==0.4.0

mamba-ssm==1.2.0.post1

Expand Down
4 changes: 2 additions & 2 deletions src/axolotl/core/trainer_builder.py
Original file line number Diff line number Diff line change
Expand Up @@ -896,13 +896,13 @@ def store_metrics(
for key, value in metrics.items():
self._stored_metrics[train_eval][key].append(value)

def _save_checkpoint(self, model, trial, metrics=None):
def _save_checkpoint(self, model, trial, **kwargs):
# make sure the checkpoint dir exists, since trainer is flakey
checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
run_dir = self._get_output_dir(trial=trial)
output_dir = os.path.join(run_dir, checkpoint_folder)
os.makedirs(output_dir, exist_ok=True)
return super()._save_checkpoint(model, trial, metrics=metrics)
return super()._save_checkpoint(model, trial, **kwargs)


class AxolotlMambaTrainer(AxolotlTrainer):
Expand Down
140 changes: 31 additions & 109 deletions src/axolotl/integrations/liger/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,20 +18,23 @@
Liger Kernel is the collection of Triton-native kernels for LLM Training.
It is designed to be performant, correct, and light-weight.
"""
import inspect
import logging
import sys
from functools import partial

from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss
from liger_kernel.transformers.geglu import LigerGEGLUMLP
from liger_kernel.transformers.monkey_patch import MODEL_TYPE_TO_APPLY_LIGER_FN
from liger_kernel.transformers.rms_norm import LigerRMSNorm
from liger_kernel.transformers.rope import liger_rotary_pos_emb
from liger_kernel.transformers.swiglu import LigerSwiGLUMLP

from axolotl.integrations.base import BasePlugin

from ...utils.distributed import zero_only
from .args import LigerArgs # pylint: disable=unused-import. # noqa: F401

LOG = logging.getLogger("axolotl.integrations.liger")


class LigerPlugin(BasePlugin):
"""
Expand All @@ -42,59 +45,31 @@ def get_input_args(self):
return "axolotl.integrations.liger.LigerArgs"

def pre_model_load(self, cfg):
if cfg.model_config_type == "llama":
from liger_kernel.transformers.model.llama import (
lce_forward as llama_lce_forward,
)
from transformers.models.llama import modeling_llama

if cfg.liger_rope:
modeling_llama.apply_rotary_pos_emb = liger_rotary_pos_emb
if cfg.liger_rms_norm:
modeling_llama.LlamaRMSNorm = LigerRMSNorm
if cfg.liger_swiglu:
modeling_llama.LlamaMLP = LigerSwiGLUMLP
if cfg.liger_cross_entropy:
modeling_llama.CrossEntropyLoss = LigerCrossEntropyLoss
elif cfg.liger_fused_linear_cross_entropy:
modeling_llama.LlamaForCausalLM.forward = llama_lce_forward

elif cfg.model_config_type == "mistral":
from liger_kernel.transformers.model.mistral import (
lce_forward as mistral_lce_forward,
)
from transformers.models.mistral import modeling_mistral

if cfg.liger_rope:
modeling_mistral.apply_rotary_pos_emb = liger_rotary_pos_emb
if cfg.liger_rms_norm:
modeling_mistral.MistralRMSNorm = LigerRMSNorm
if cfg.liger_swiglu:
modeling_mistral.MistralMLP = LigerSwiGLUMLP
if cfg.liger_cross_entropy:
modeling_mistral.CrossEntropyLoss = LigerCrossEntropyLoss
if cfg.liger_fused_linear_cross_entropy:
modeling_mistral.MistralForCausalLM.forward = mistral_lce_forward

elif cfg.model_config_type == "gemma":
from liger_kernel.transformers.model.gemma import (
lce_forward as gemma_lce_forward,
)
from transformers.models.gemma import modeling_gemma

if cfg.liger_rope:
modeling_gemma.apply_rotary_pos_emb = liger_rotary_pos_emb
if cfg.liger_rms_norm:
modeling_gemma.GemmaRMSNorm = partial(
LigerRMSNorm, offset=1.0, init_fn="zeros", casting_mode="gemma"
if cfg.model_config_type in MODEL_TYPE_TO_APPLY_LIGER_FN:
apply_liger_fn = MODEL_TYPE_TO_APPLY_LIGER_FN[cfg.model_config_type]
liger_fn_sig = inspect.signature(apply_liger_fn)
kwargs = {}
if "rope" in liger_fn_sig.parameters:
kwargs["rope"] = cfg.liger_rope
if "cross_entropy" in liger_fn_sig.parameters:
kwargs["cross_entropy"] = cfg.liger_cross_entropy
if "fused_linear_cross_entropy" in liger_fn_sig.parameters:
kwargs[
"fused_linear_cross_entropy"
] = cfg.liger_fused_linear_cross_entropy
if "rms_norm" in liger_fn_sig.parameters:
kwargs["rms_norm"] = cfg.liger_rms_norm
if "layer_norm" in liger_fn_sig.parameters:
kwargs["layer_norm"] = cfg.liger_layer_norm
if "geglu" in liger_fn_sig.parameters:
kwargs["geglu"] = cfg.liger_glu_activation
elif "swiglu" in liger_fn_sig.parameters:
kwargs["swiglu"] = cfg.liger_glu_activation
with zero_only():
LOG.info(
f"Applying LIGER to {cfg.model_config_type} with kwargs: {kwargs}"
)
if cfg.liger_swiglu:
modeling_gemma.GemmaMLP = LigerGEGLUMLP
if cfg.liger_cross_entropy:
modeling_gemma.CrossEntropyLoss = LigerCrossEntropyLoss
if cfg.liger_fused_linear_cross_entropy:
modeling_gemma.GemmaForCausalLM.forward = gemma_lce_forward

apply_liger_fn(**kwargs)
elif cfg.model_config_type == "jamba":
winglian marked this conversation as resolved.
Show resolved Hide resolved
from transformers.models.jamba import modeling_jamba

Expand All @@ -104,30 +79,12 @@ def pre_model_load(self, cfg):
modeling_jamba.apply_rotary_pos_emb = liger_rotary_pos_emb
if cfg.liger_rms_norm:
modeling_jamba.JambaRMSNorm = LigerRMSNorm
if cfg.liger_swiglu:
if cfg.liger_glu_activation:
modeling_jamba.JambaMLP = LigerSwiGLUMLP
if cfg.liger_cross_entropy:
modeling_jamba.CrossEntropyLoss = LigerCrossEntropyLoss
if cfg.liger_fused_linear_cross_entropy:
modeling_jamba.JambaForCausalLM.forward = jamba_lce_forward

elif cfg.model_config_type == "qwen2":
from liger_kernel.transformers.model.qwen2 import (
lce_forward as qwen2_lce_forward,
)
from transformers.models.qwen2 import modeling_qwen2

if cfg.liger_rope:
modeling_qwen2.apply_rotary_pos_emb = liger_rotary_pos_emb
if cfg.liger_rms_norm:
modeling_qwen2.Qwen2RMSNorm = LigerRMSNorm
if cfg.liger_swiglu:
modeling_qwen2.Qwen2MLP = LigerSwiGLUMLP
if cfg.liger_cross_entropy:
modeling_qwen2.CrossEntropyLoss = LigerCrossEntropyLoss
if cfg.liger_fused_linear_cross_entropy:
modeling_qwen2.Qwen2ForCausalLM.forward = qwen2_lce_forward

elif cfg.model_config_type == "deepseek_v2":
from accelerate import init_empty_weights
from transformers import AutoModelForCausalLM
Expand All @@ -146,44 +103,9 @@ def pre_model_load(self, cfg):
logging.warning("Fused liger_rope is not supported for DeepseekV2.")
if cfg.liger_rms_norm:
modeling_mod.DeepseekV2RMSNorm = LigerRMSNorm
if cfg.liger_swiglu:
if cfg.liger_glu_activation:
modeling_mod.DeepseekV2MLP.forward = LigerSwiGLUMLP.forward
if cfg.liger_cross_entropy:
modeling_mod.CrossEntropyLoss = LigerCrossEntropyLoss
if cfg.liger_fused_linear_cross_entropy:
modeling_mod.DeepseekV2ForCausalLM.forward = deepseekv2_lce_forward

elif cfg.model_config_type == "gemma2":
from transformers.models.gemma2 import modeling_gemma2

if cfg.liger_rope:
modeling_gemma2.apply_rotary_pos_emb = liger_rotary_pos_emb
if cfg.liger_rms_norm:
modeling_gemma2.Gemma2RMSNorm = partial(
LigerRMSNorm, offset=1.0, init_fn="zeros", casting_mode="gemma"
)
if cfg.liger_swiglu:
modeling_gemma2.Gemma2MLP = LigerGEGLUMLP
if cfg.liger_cross_entropy:
modeling_gemma2.CrossEntropyLoss = LigerCrossEntropyLoss
if cfg.liger_fused_linear_cross_entropy:
logging.warning(
"Fused linear cross entropy is not supported for Gemma 2."
)

elif cfg.model_config_type == "phi3":
from liger_kernel.transformers.model.phi3 import (
lce_forward as phi3_lce_forward,
)
from transformers.models.phi3 import modeling_phi3

if cfg.liger_rope:
modeling_phi3.apply_rotary_pos_emb = liger_rotary_pos_emb
if cfg.liger_rms_norm:
modeling_phi3.Phi3RMSNorm = LigerRMSNorm
if cfg.liger_swiglu:
modeling_phi3.Phi3MLP = LigerSwiGLUMLP
if cfg.liger_cross_entropy:
modeling_phi3.CrossEntropyLoss = LigerCrossEntropyLoss
if cfg.liger_fused_linear_cross_entropy:
modeling_phi3.Phi3ForCausalLM.forward = phi3_lce_forward
23 changes: 22 additions & 1 deletion src/axolotl/integrations/liger/args.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,9 +15,12 @@
"""
Module for handling LIGER input arguments.
"""
import logging
from typing import Optional

from pydantic import BaseModel
from pydantic import BaseModel, model_validator

LOG = logging.getLogger("axolotl.integrations.liger.args")


class LigerArgs(BaseModel):
Expand All @@ -27,6 +30,24 @@ class LigerArgs(BaseModel):

liger_rope: Optional[bool] = None
liger_rms_norm: Optional[bool] = None
liger_layer_norm: Optional[bool] = None
liger_swiglu: Optional[bool] = None
liger_glu_activation: Optional[bool] = None
liger_cross_entropy: Optional[bool] = None
liger_fused_linear_cross_entropy: Optional[bool] = None

@model_validator(mode="before")
@classmethod
def check_deprecated_swiglu(cls, data):
if data.get("liger_swiglu") is not None:
if data.get("liger_glu_activation") is not None:
raise ValueError(
"You cannot have both `liger_swiglu` and `liger_glu_activation` set."
)

LOG.warning(
"The 'liger_swiglu' argument is deprecated and will be removed in a future release. "
"Please use 'liger_glu_activation' instead."
)
data["liger_glu_activation"] = data.pop("liger_swiglu")
return data
1 change: 0 additions & 1 deletion tests/e2e/integrations/liger.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
"""
Simple end-to-end test for Liger integration
"""

import unittest
from pathlib import Path

Expand Down
Empty file added tests/integrations/__init__.py
Empty file.
80 changes: 80 additions & 0 deletions tests/integrations/liger.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
"""
config validation tests for swiglu args
"""
# pylint: disable=duplicate-code
import logging
from typing import Optional

import pytest

from axolotl.utils.config import validate_config
from axolotl.utils.dict import DictDefault


@pytest.fixture(name="minimal_base_cfg")
def fixture_cfg():
return DictDefault(
{
"base_model": "TinyLlama/TinyLlama-1.1B-Chat-v0.6",
"learning_rate": 0.000001,
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
}
],
"micro_batch_size": 1,
"gradient_accumulation_steps": 1,
}
)


class BaseValidation:
"""
Base validation module to setup the log capture
"""

_caplog: Optional[pytest.LogCaptureFixture] = None

@pytest.fixture(autouse=True)
def inject_fixtures(self, caplog):
self._caplog = caplog


# pylint: disable=too-many-public-methods
class TestValidation(BaseValidation):
"""
Test the validation module for liger
"""

winglian marked this conversation as resolved.
Show resolved Hide resolved
def test_deprecated_swiglu(self, minimal_cfg):
test_cfg = DictDefault(
{
"liger_swiglu": False,
}
| minimal_cfg
)

with self._caplog.at_level(logging.WARNING):
updated_cfg = validate_config(test_cfg)
assert (
"The 'liger_swiglu' argument is deprecated"
in self._caplog.records[0].message
)
assert updated_cfg.liger_swiglu is None
assert updated_cfg.liger_glu_activations is False

def test_conflict_swiglu_ligergluactivation(self, minimal_cfg):
test_cfg = DictDefault(
{
"liger_swiglu": False,
"liger_glu_activations": True,
}
| minimal_cfg
)

with pytest.raises(
ValueError,
match=r".*You cannot have both `liger_swiglu` and `liger_glu_activation` set.*",
):
validate_config(test_cfg)
4 changes: 4 additions & 0 deletions tests/test_datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -306,6 +306,10 @@ def test_load_hub_with_revision(self):
"""Verify that processing data from the hub works with a specific revision"""
with tempfile.TemporaryDirectory() as tmp_dir:
prepared_path = Path(tmp_dir) / "prepared"

# make sure prepared_path is empty
shutil.rmtree(prepared_path, ignore_errors=True)

cfg = DictDefault(
{
"tokenizer_config": "huggyllama/llama-7b",
Expand Down
Loading