Skip to content

PyTorch tutorials, examples and some books I found 【不定期更新】整理的PyTorch 最新版教程、例子和书籍

License

Notifications You must be signed in to change notification settings

bat67/pytorch-tutorials-examples-and-books

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Nov 21, 2020
c8d1650 · Nov 21, 2020
May 23, 2019
May 25, 2019
May 25, 2019
May 25, 2019
May 25, 2019
May 25, 2019
May 25, 2019
May 25, 2019
May 25, 2019
May 25, 2019
May 25, 2019
May 25, 2019
May 25, 2019
May 25, 2019
May 25, 2019
May 25, 2019
May 25, 2019
Nov 18, 2020
May 30, 2019
Jan 5, 2019
Jan 10, 2019
Nov 20, 2020
Nov 10, 2018
Dec 19, 2018
Nov 21, 2020
Feb 19, 2019

Repository files navigation

PyTorch tutorials, examples and books

Table of Contents / 目录:

PyTorch 1.x tutorials and examples

Note: some of these are old version; 下面的书籍部分还不是1.x版本。

该目录更新可能有延迟,全部资料请看该文件夹内文件

  • Automatic differentiation in PyTorch.pdf
  • A brief summary of the PTDC ’18 PyTorch 1.0 Preview and Promise - Hacker Noon.pdf
  • Deep Architectures.pdf
  • Deep Architectures.pptx
  • Deep Learning Toolkits II pytorch example.pdf
  • Deep Learning with PyTorch - Vishnu Subramanian.pdf
  • Deep-Learning-with-PyTorch.pdf
  • Deep_Learning_with_PyTorch_Quick_Start_Guide.pdf
  • First steps towards deep learning with pytorch.pdf
  • Introduction to Tensorflow, PyTorch and Caffe.pdf
  • pytorch 0.4 - tutorial - 有目录版.pdf
  • PyTorch 0.4 中文文档 - 翻译.pdf
  • PyTorch 1.0 Bringing research and production together Presentation.pdf
  • PyTorch Recipes - A Problem-Solution Approach - Pradeepta Mishra.pdf
  • PyTorch under the hood A guide to understand PyTorch internals.pdf
  • pytorch-internals.pdf
  • PyTorch_tutorial_0.0.4_余霆嵩.pdf
  • PyTorch_tutorial_0.0.5_余霆嵩.pdf
  • pytorch卷积、反卷积 - download from internet.pdf
  • PyTorch深度学习实战 - 侯宜军.epub
  • PyTorch深度学习实战 - 侯宜军.pdf
  • 深度学习之Pytorch - 廖星宇.pdf
  • 深度学习之PyTorch实战计算机视觉 - 唐进民.pdf
  • 深度学习入门之PyTorch - 廖星宇(有目录).pdf
  • 深度学习框架PyTorch:入门与实践 - 陈云.pdf
  • Udacity: Deep Learning with PyTorch
    展开查看
    * Part 1: Introduction to PyTorch and using tensors
    * Part 2: Building fully-connected neural networks with PyTorch
    * Part 3: How to train a fully-connected network with backpropagation on MNIST
    * Part 4: Exercise - train a neural network on Fashion-MNIST
    * Part 5: Using a trained network for making predictions and validating networks
    * Part 6: How to save and load trained models
    * Part 7: Load image data with torchvision, also data augmentation
    * Part 8: Use transfer learning to train a state-of-the-art image classifier for dogs and cats
      
  • PyTorch-Zero-To-All:Slides-newest from Google Drive
    展开查看
    * Lecture 01_ Overview.pptx
    * Lecture 02_ Linear Model.pptx
    * Lecture 03_ Gradient Descent.pptx
    * Lecture 04_ Back-propagation and PyTorch autograd.pptx
    * Lecture 05_ Linear regression  in PyTorch way.pptx
    * Lecture 06_ Logistic Regression.pptx
    * Lecture 07_ Wide _ Deep.pptx
    * Lecture 08_ DataLoader.pptx
    * Lecture 09_ Softmax Classifier.pptx
    * Lecture 10_ Basic CNN.pptx
    * Lecture 11_ Advanced CNN.pptx
    * Lecture 12_ RNN.pptx
    * Lecture 13_ RNN II.pptx
    * Lecture 14_ Seq2Seq.pptx
    * Lecture 15_ NSML, Smartest ML Platform.pptx
      
  • Deep Learning Course Slides and Handout - fleuret.org
    展开查看
    * 1-1-from-anns-to-deep-learning.pdf
    * 1-2-current-success.pdf
    * 1-3-what-is-happening.pdf
    * 1-4-tensors-and-linear-regression.pdf
    * 1-5-high-dimension-tensors.pdf
    * 1-6-tensor-internals.pdf
    * 2-1-loss-and-risk.pdf
    * 2-2-overfitting.pdf
    * 2-3-bias-variance-dilemma.pdf
    * 2-4-evaluation-protocols.pdf
    * 2-5-basic-embeddings.pdf
    * 3-1-perceptron.pdf
    * 3-2-LDA.pdf
    * 3-3-features.pdf
    * 3-4-MLP.pdf
    * 3-5-gradient-descent.pdf
    * 3-6-backprop.pdf
    * 4-1-DAG-networks.pdf
    * 4-2-autograd.pdf
    * 4-3-modules-and-batch-processing.pdf
    * 4-4-convolutions.pdf
    * 4-5-pooling.pdf
    * 4-6-writing-a-module.pdf
    * 5-1-cross-entropy-loss.pdf
    * 5-2-SGD.pdf
    * 5-3-optim.pdf
    * 5-4-l2-l1-penalties.pdf
    * 5-5-initialization.pdf
    * 5-6-architecture-and-training.pdf
    * 5-7-writing-an-autograd-function.pdf
    * 6-1-benefits-of-depth.pdf
    * 6-2-rectifiers.pdf
    * 6-3-dropout.pdf
    * 6-4-batch-normalization.pdf
    * 6-5-residual-networks.pdf
    * 6-6-using-GPUs.pdf
    * 7-1-CV-tasks.pdf
    * 7-2-image-classification.pdf
    * 7-3-object-detection.pdf
    * 7-4-segmentation.pdf
    * 7-5-dataloader-and-surgery.pdf
    * 8-1-looking-at-parameters.pdf
    * 8-2-looking-at-activations.pdf
    * 8-3-visualizing-in-input.pdf
    * 8-4-optimizing-inputs.pdf
    * 9-1-transposed-convolutions.pdf
    * 9-2-autoencoders.pdf
    * 9-3-denoising-and-variational-autoencoders.pdf
    * 9-4-NVP.pdf
    * 10-1-GAN.pdf
    * 10-2-Wasserstein-GAN.pdf
    * 10-3-conditional-GAN.pdf
    * 10-4-persistence.pdf
    * 11-1-RNN-basics.pdf
    * 11-2-LSTM-and-GRU.pdf
    * 11-3-word-embeddings-and-translation.pdf
      

以下是一些独立的教程

展开查看

展开查看

How to run? 推荐的运行方式

Some code in this repo is separated in blocks using #%%. A block is as same as a cell in Jupyter Notebook. So editors/IDEs supporting this functionality is recommanded.

Such as: