|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Determine derivatives of angular sequence to rotation matrix\n", |
| 8 | + "\n", |
| 9 | + "SymPy code to evaluate the mappings from rotation angle sequences to rotation matrix, then compute the derivatives to determine the mapping from angular rates to angular velocity.\n", |
| 10 | + "\n", |
| 11 | + "Adjust the next cell to choose the particular angle sequence." |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": 225, |
| 17 | + "metadata": {}, |
| 18 | + "outputs": [], |
| 19 | + "source": [ |
| 20 | + "angle_names = ('alpha', 'beta', 'gamma')\n", |
| 21 | + "func = eul2r\n", |
| 22 | + "\n", |
| 23 | + "#angle_names = ('phi', 'theta', 'psi')\n", |
| 24 | + "#func = lambda Gamma: rpy2r(Gamma, order='xyz')" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "code", |
| 29 | + "execution_count": 226, |
| 30 | + "metadata": {}, |
| 31 | + "outputs": [], |
| 32 | + "source": [ |
| 33 | + "from spatialmath.base import *\n", |
| 34 | + "from sympy import *" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "markdown", |
| 39 | + "metadata": {}, |
| 40 | + "source": [ |
| 41 | + "Define a symbol for time" |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "code", |
| 46 | + "execution_count": 227, |
| 47 | + "metadata": {}, |
| 48 | + "outputs": [], |
| 49 | + "source": [ |
| 50 | + "t = symbols('t')" |
| 51 | + ] |
| 52 | + }, |
| 53 | + { |
| 54 | + "cell_type": "markdown", |
| 55 | + "metadata": {}, |
| 56 | + "source": [ |
| 57 | + "Define arrays of symbols for the angles, angle as function of time, time derivative of angle as a function of time" |
| 58 | + ] |
| 59 | + }, |
| 60 | + { |
| 61 | + "cell_type": "code", |
| 62 | + "execution_count": 228, |
| 63 | + "metadata": {}, |
| 64 | + "outputs": [], |
| 65 | + "source": [ |
| 66 | + "angle = [] # names of angles, eg. theta\n", |
| 67 | + "anglet = [] # angles as function of time, eg. theta(t)\n", |
| 68 | + "angled = [] # derivative of above, eg. d theta(t) / dt\n", |
| 69 | + "angledn = [] # symbol to represent above, eg. theta_dot\n", |
| 70 | + "for i in angle_names:\n", |
| 71 | + " angle.append(symbols(i))\n", |
| 72 | + " anglet.append(Function(i)(t))\n", |
| 73 | + " angled.append(anglet[-1].diff(t))\n", |
| 74 | + " angledn.append(i + '_dot')" |
| 75 | + ] |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "markdown", |
| 79 | + "metadata": {}, |
| 80 | + "source": [ |
| 81 | + "Compute the rotation matrix" |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "code", |
| 86 | + "execution_count": 229, |
| 87 | + "metadata": {}, |
| 88 | + "outputs": [ |
| 89 | + { |
| 90 | + "data": { |
| 91 | + "text/latex": [ |
| 92 | + "$\\displaystyle \\left[\\begin{matrix}- \\sin{\\left(\\alpha{\\left(t \\right)} \\right)} \\sin{\\left(\\gamma{\\left(t \\right)} \\right)} + \\cos{\\left(\\alpha{\\left(t \\right)} \\right)} \\cos{\\left(\\beta{\\left(t \\right)} \\right)} \\cos{\\left(\\gamma{\\left(t \\right)} \\right)} & - \\sin{\\left(\\alpha{\\left(t \\right)} \\right)} \\cos{\\left(\\gamma{\\left(t \\right)} \\right)} - \\sin{\\left(\\gamma{\\left(t \\right)} \\right)} \\cos{\\left(\\alpha{\\left(t \\right)} \\right)} \\cos{\\left(\\beta{\\left(t \\right)} \\right)} & \\sin{\\left(\\beta{\\left(t \\right)} \\right)} \\cos{\\left(\\alpha{\\left(t \\right)} \\right)}\\\\\\sin{\\left(\\alpha{\\left(t \\right)} \\right)} \\cos{\\left(\\beta{\\left(t \\right)} \\right)} \\cos{\\left(\\gamma{\\left(t \\right)} \\right)} + \\sin{\\left(\\gamma{\\left(t \\right)} \\right)} \\cos{\\left(\\alpha{\\left(t \\right)} \\right)} & - \\sin{\\left(\\alpha{\\left(t \\right)} \\right)} \\sin{\\left(\\gamma{\\left(t \\right)} \\right)} \\cos{\\left(\\beta{\\left(t \\right)} \\right)} + \\cos{\\left(\\alpha{\\left(t \\right)} \\right)} \\cos{\\left(\\gamma{\\left(t \\right)} \\right)} & \\sin{\\left(\\alpha{\\left(t \\right)} \\right)} \\sin{\\left(\\beta{\\left(t \\right)} \\right)}\\\\- \\sin{\\left(\\beta{\\left(t \\right)} \\right)} \\cos{\\left(\\gamma{\\left(t \\right)} \\right)} & \\sin{\\left(\\beta{\\left(t \\right)} \\right)} \\sin{\\left(\\gamma{\\left(t \\right)} \\right)} & \\cos{\\left(\\beta{\\left(t \\right)} \\right)}\\end{matrix}\\right]$" |
| 93 | + ], |
| 94 | + "text/plain": [ |
| 95 | + "Matrix([\n", |
| 96 | + "[-sin(alpha(t))*sin(gamma(t)) + cos(alpha(t))*cos(beta(t))*cos(gamma(t)), -sin(alpha(t))*cos(gamma(t)) - sin(gamma(t))*cos(alpha(t))*cos(beta(t)), sin(beta(t))*cos(alpha(t))],\n", |
| 97 | + "[ sin(alpha(t))*cos(beta(t))*cos(gamma(t)) + sin(gamma(t))*cos(alpha(t)), -sin(alpha(t))*sin(gamma(t))*cos(beta(t)) + cos(alpha(t))*cos(gamma(t)), sin(alpha(t))*sin(beta(t))],\n", |
| 98 | + "[ -sin(beta(t))*cos(gamma(t)), sin(beta(t))*sin(gamma(t)), cos(beta(t))]])" |
| 99 | + ] |
| 100 | + }, |
| 101 | + "execution_count": 229, |
| 102 | + "metadata": {}, |
| 103 | + "output_type": "execute_result" |
| 104 | + } |
| 105 | + ], |
| 106 | + "source": [ |
| 107 | + "R = Matrix(func(anglet))\n", |
| 108 | + "R" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "markdown", |
| 113 | + "metadata": {}, |
| 114 | + "source": [ |
| 115 | + "Compute its time derivative" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "code", |
| 120 | + "execution_count": 230, |
| 121 | + "metadata": {}, |
| 122 | + "outputs": [ |
| 123 | + { |
| 124 | + "data": { |
| 125 | + "text/latex": [ |
| 126 | + "$\\displaystyle \\left[\\begin{matrix}- \\sin{\\left(\\alpha{\\left(t \\right)} \\right)} \\cos{\\left(\\beta{\\left(t \\right)} \\right)} \\cos{\\left(\\gamma{\\left(t \\right)} \\right)} \\frac{d}{d t} \\alpha{\\left(t \\right)} - \\sin{\\left(\\alpha{\\left(t \\right)} \\right)} \\cos{\\left(\\gamma{\\left(t \\right)} \\right)} \\frac{d}{d t} \\gamma{\\left(t \\right)} - \\sin{\\left(\\beta{\\left(t \\right)} \\right)} \\cos{\\left(\\alpha{\\left(t \\right)} \\right)} \\cos{\\left(\\gamma{\\left(t \\right)} \\right)} \\frac{d}{d t} \\beta{\\left(t \\right)} - \\sin{\\left(\\gamma{\\left(t \\right)} \\right)} \\cos{\\left(\\alpha{\\left(t \\right)} \\right)} \\cos{\\left(\\beta{\\left(t \\right)} \\right)} \\frac{d}{d t} \\gamma{\\left(t \\right)} - \\sin{\\left(\\gamma{\\left(t \\right)} \\right)} \\cos{\\left(\\alpha{\\left(t \\right)} \\right)} \\frac{d}{d t} \\alpha{\\left(t \\right)} & \\sin{\\left(\\alpha{\\left(t \\right)} \\right)} \\sin{\\left(\\gamma{\\left(t \\right)} \\right)} \\cos{\\left(\\beta{\\left(t \\right)} \\right)} \\frac{d}{d t} \\alpha{\\left(t \\right)} + \\sin{\\left(\\alpha{\\left(t \\right)} \\right)} \\sin{\\left(\\gamma{\\left(t \\right)} \\right)} \\frac{d}{d t} \\gamma{\\left(t \\right)} + \\sin{\\left(\\beta{\\left(t \\right)} \\right)} \\sin{\\left(\\gamma{\\left(t \\right)} \\right)} \\cos{\\left(\\alpha{\\left(t \\right)} \\right)} \\frac{d}{d t} \\beta{\\left(t \\right)} - \\cos{\\left(\\alpha{\\left(t \\right)} \\right)} \\cos{\\left(\\beta{\\left(t \\right)} \\right)} \\cos{\\left(\\gamma{\\left(t \\right)} \\right)} \\frac{d}{d t} \\gamma{\\left(t \\right)} - \\cos{\\left(\\alpha{\\left(t \\right)} \\right)} \\cos{\\left(\\gamma{\\left(t \\right)} \\right)} \\frac{d}{d t} \\alpha{\\left(t \\right)} & - \\sin{\\left(\\alpha{\\left(t \\right)} \\right)} \\sin{\\left(\\beta{\\left(t \\right)} \\right)} \\frac{d}{d t} \\alpha{\\left(t \\right)} + \\cos{\\left(\\alpha{\\left(t \\right)} \\right)} \\cos{\\left(\\beta{\\left(t \\right)} \\right)} \\frac{d}{d t} \\beta{\\left(t \\right)}\\\\- \\sin{\\left(\\alpha{\\left(t \\right)} \\right)} \\sin{\\left(\\beta{\\left(t \\right)} \\right)} \\cos{\\left(\\gamma{\\left(t \\right)} \\right)} \\frac{d}{d t} \\beta{\\left(t \\right)} - \\sin{\\left(\\alpha{\\left(t \\right)} \\right)} \\sin{\\left(\\gamma{\\left(t \\right)} \\right)} \\cos{\\left(\\beta{\\left(t \\right)} \\right)} \\frac{d}{d t} \\gamma{\\left(t \\right)} - \\sin{\\left(\\alpha{\\left(t \\right)} \\right)} \\sin{\\left(\\gamma{\\left(t \\right)} \\right)} \\frac{d}{d t} \\alpha{\\left(t \\right)} + \\cos{\\left(\\alpha{\\left(t \\right)} \\right)} \\cos{\\left(\\beta{\\left(t \\right)} \\right)} \\cos{\\left(\\gamma{\\left(t \\right)} \\right)} \\frac{d}{d t} \\alpha{\\left(t \\right)} + \\cos{\\left(\\alpha{\\left(t \\right)} \\right)} \\cos{\\left(\\gamma{\\left(t \\right)} \\right)} \\frac{d}{d t} \\gamma{\\left(t \\right)} & \\sin{\\left(\\alpha{\\left(t \\right)} \\right)} \\sin{\\left(\\beta{\\left(t \\right)} \\right)} \\sin{\\left(\\gamma{\\left(t \\right)} \\right)} \\frac{d}{d t} \\beta{\\left(t \\right)} - \\sin{\\left(\\alpha{\\left(t \\right)} \\right)} \\cos{\\left(\\beta{\\left(t \\right)} \\right)} \\cos{\\left(\\gamma{\\left(t \\right)} \\right)} \\frac{d}{d t} \\gamma{\\left(t \\right)} - \\sin{\\left(\\alpha{\\left(t \\right)} \\right)} \\cos{\\left(\\gamma{\\left(t \\right)} \\right)} \\frac{d}{d t} \\alpha{\\left(t \\right)} - \\sin{\\left(\\gamma{\\left(t \\right)} \\right)} \\cos{\\left(\\alpha{\\left(t \\right)} \\right)} \\cos{\\left(\\beta{\\left(t \\right)} \\right)} \\frac{d}{d t} \\alpha{\\left(t \\right)} - \\sin{\\left(\\gamma{\\left(t \\right)} \\right)} \\cos{\\left(\\alpha{\\left(t \\right)} \\right)} \\frac{d}{d t} \\gamma{\\left(t \\right)} & \\sin{\\left(\\alpha{\\left(t \\right)} \\right)} \\cos{\\left(\\beta{\\left(t \\right)} \\right)} \\frac{d}{d t} \\beta{\\left(t \\right)} + \\sin{\\left(\\beta{\\left(t \\right)} \\right)} \\cos{\\left(\\alpha{\\left(t \\right)} \\right)} \\frac{d}{d t} \\alpha{\\left(t \\right)}\\\\\\sin{\\left(\\beta{\\left(t \\right)} \\right)} \\sin{\\left(\\gamma{\\left(t \\right)} \\right)} \\frac{d}{d t} \\gamma{\\left(t \\right)} - \\cos{\\left(\\beta{\\left(t \\right)} \\right)} \\cos{\\left(\\gamma{\\left(t \\right)} \\right)} \\frac{d}{d t} \\beta{\\left(t \\right)} & \\sin{\\left(\\beta{\\left(t \\right)} \\right)} \\cos{\\left(\\gamma{\\left(t \\right)} \\right)} \\frac{d}{d t} \\gamma{\\left(t \\right)} + \\sin{\\left(\\gamma{\\left(t \\right)} \\right)} \\cos{\\left(\\beta{\\left(t \\right)} \\right)} \\frac{d}{d t} \\beta{\\left(t \\right)} & - \\sin{\\left(\\beta{\\left(t \\right)} \\right)} \\frac{d}{d t} \\beta{\\left(t \\right)}\\end{matrix}\\right]$" |
| 127 | + ], |
| 128 | + "text/plain": [ |
| 129 | + "Matrix([\n", |
| 130 | + "[-sin(alpha(t))*cos(beta(t))*cos(gamma(t))*Derivative(alpha(t), t) - sin(alpha(t))*cos(gamma(t))*Derivative(gamma(t), t) - sin(beta(t))*cos(alpha(t))*cos(gamma(t))*Derivative(beta(t), t) - sin(gamma(t))*cos(alpha(t))*cos(beta(t))*Derivative(gamma(t), t) - sin(gamma(t))*cos(alpha(t))*Derivative(alpha(t), t), sin(alpha(t))*sin(gamma(t))*cos(beta(t))*Derivative(alpha(t), t) + sin(alpha(t))*sin(gamma(t))*Derivative(gamma(t), t) + sin(beta(t))*sin(gamma(t))*cos(alpha(t))*Derivative(beta(t), t) - cos(alpha(t))*cos(beta(t))*cos(gamma(t))*Derivative(gamma(t), t) - cos(alpha(t))*cos(gamma(t))*Derivative(alpha(t), t), -sin(alpha(t))*sin(beta(t))*Derivative(alpha(t), t) + cos(alpha(t))*cos(beta(t))*Derivative(beta(t), t)],\n", |
| 131 | + "[-sin(alpha(t))*sin(beta(t))*cos(gamma(t))*Derivative(beta(t), t) - sin(alpha(t))*sin(gamma(t))*cos(beta(t))*Derivative(gamma(t), t) - sin(alpha(t))*sin(gamma(t))*Derivative(alpha(t), t) + cos(alpha(t))*cos(beta(t))*cos(gamma(t))*Derivative(alpha(t), t) + cos(alpha(t))*cos(gamma(t))*Derivative(gamma(t), t), sin(alpha(t))*sin(beta(t))*sin(gamma(t))*Derivative(beta(t), t) - sin(alpha(t))*cos(beta(t))*cos(gamma(t))*Derivative(gamma(t), t) - sin(alpha(t))*cos(gamma(t))*Derivative(alpha(t), t) - sin(gamma(t))*cos(alpha(t))*cos(beta(t))*Derivative(alpha(t), t) - sin(gamma(t))*cos(alpha(t))*Derivative(gamma(t), t), sin(alpha(t))*cos(beta(t))*Derivative(beta(t), t) + sin(beta(t))*cos(alpha(t))*Derivative(alpha(t), t)],\n", |
| 132 | + "[ sin(beta(t))*sin(gamma(t))*Derivative(gamma(t), t) - cos(beta(t))*cos(gamma(t))*Derivative(beta(t), t), sin(beta(t))*cos(gamma(t))*Derivative(gamma(t), t) + sin(gamma(t))*cos(beta(t))*Derivative(beta(t), t), -sin(beta(t))*Derivative(beta(t), t)]])" |
| 133 | + ] |
| 134 | + }, |
| 135 | + "execution_count": 230, |
| 136 | + "metadata": {}, |
| 137 | + "output_type": "execute_result" |
| 138 | + } |
| 139 | + ], |
| 140 | + "source": [ |
| 141 | + "Rdot = Matrix(R).diff(t)\n", |
| 142 | + "Rdot" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "cell_type": "markdown", |
| 147 | + "metadata": {}, |
| 148 | + "source": [ |
| 149 | + "Get angular velocity vector in terms of angles and angle rates" |
| 150 | + ] |
| 151 | + }, |
| 152 | + { |
| 153 | + "cell_type": "code", |
| 154 | + "execution_count": 231, |
| 155 | + "metadata": {}, |
| 156 | + "outputs": [], |
| 157 | + "source": [ |
| 158 | + "omega = Matrix(vex(Rdot * R.T))" |
| 159 | + ] |
| 160 | + }, |
| 161 | + { |
| 162 | + "cell_type": "markdown", |
| 163 | + "metadata": {}, |
| 164 | + "source": [ |
| 165 | + "For each element of this 3x1 matrix get the coefficients of each angle derivative" |
| 166 | + ] |
| 167 | + }, |
| 168 | + { |
| 169 | + "cell_type": "code", |
| 170 | + "execution_count": 232, |
| 171 | + "metadata": {}, |
| 172 | + "outputs": [], |
| 173 | + "source": [ |
| 174 | + "A = Matrix.zeros(3,3)\n", |
| 175 | + "for i in range(3):\n", |
| 176 | + " e = omega[i,0].expand()\n", |
| 177 | + " for j in range(3):\n", |
| 178 | + " A[i, j] = e.coeff(angled[j])" |
| 179 | + ] |
| 180 | + }, |
| 181 | + { |
| 182 | + "cell_type": "markdown", |
| 183 | + "metadata": {}, |
| 184 | + "source": [ |
| 185 | + "The result is a 3x3 matrix. Mapping from angle rates to angular velocity. We subsitute angle as a function of time to plain angle, then simplify." |
| 186 | + ] |
| 187 | + }, |
| 188 | + { |
| 189 | + "cell_type": "code", |
| 190 | + "execution_count": 233, |
| 191 | + "metadata": {}, |
| 192 | + "outputs": [], |
| 193 | + "source": [ |
| 194 | + "A = trigsimp(A.subs(a for a in zip(anglet, angle)))" |
| 195 | + ] |
| 196 | + }, |
| 197 | + { |
| 198 | + "cell_type": "markdown", |
| 199 | + "metadata": {}, |
| 200 | + "source": [ |
| 201 | + "Compute the inverse and simplify. Mapping from angular velocity to angle rates." |
| 202 | + ] |
| 203 | + }, |
| 204 | + { |
| 205 | + "cell_type": "code", |
| 206 | + "execution_count": 234, |
| 207 | + "metadata": {}, |
| 208 | + "outputs": [], |
| 209 | + "source": [ |
| 210 | + "Ai = trigsimp(A.inv())" |
| 211 | + ] |
| 212 | + }, |
| 213 | + { |
| 214 | + "cell_type": "markdown", |
| 215 | + "metadata": {}, |
| 216 | + "source": [ |
| 217 | + "Render as code" |
| 218 | + ] |
| 219 | + }, |
| 220 | + { |
| 221 | + "cell_type": "code", |
| 222 | + "execution_count": 235, |
| 223 | + "metadata": {}, |
| 224 | + "outputs": [ |
| 225 | + { |
| 226 | + "data": { |
| 227 | + "text/plain": [ |
| 228 | + "'np.array([[0, -math.sin(alpha), math.sin(beta)*math.cos(alpha)], [0, math.cos(alpha), math.sin(alpha)*math.sin(beta)], [1, 0, math.cos(beta)]])'" |
| 229 | + ] |
| 230 | + }, |
| 231 | + "execution_count": 235, |
| 232 | + "metadata": {}, |
| 233 | + "output_type": "execute_result" |
| 234 | + } |
| 235 | + ], |
| 236 | + "source": [ |
| 237 | + "pycode(A).replace('ImmutableDenseMatrix', 'np.array')" |
| 238 | + ] |
| 239 | + }, |
| 240 | + { |
| 241 | + "cell_type": "code", |
| 242 | + "execution_count": 236, |
| 243 | + "metadata": {}, |
| 244 | + "outputs": [ |
| 245 | + { |
| 246 | + "data": { |
| 247 | + "text/plain": [ |
| 248 | + "'np.array([[-math.cos(alpha)/math.tan(beta), -math.sin(alpha)/math.tan(beta), 1], [-math.sin(alpha), math.cos(alpha), 0], [math.cos(alpha)/math.sin(beta), math.sin(alpha)/math.sin(beta), 0]])'" |
| 249 | + ] |
| 250 | + }, |
| 251 | + "execution_count": 236, |
| 252 | + "metadata": {}, |
| 253 | + "output_type": "execute_result" |
| 254 | + } |
| 255 | + ], |
| 256 | + "source": [ |
| 257 | + "pycode(Ai).replace('ImmutableDenseMatrix', 'np.array')" |
| 258 | + ] |
| 259 | + }, |
| 260 | + { |
| 261 | + "cell_type": "markdown", |
| 262 | + "metadata": {}, |
| 263 | + "source": [ |
| 264 | + "Compute the time derivative of `Ai`, from angular acceleration to angle acceleration" |
| 265 | + ] |
| 266 | + }, |
| 267 | + { |
| 268 | + "cell_type": "code", |
| 269 | + "execution_count": 237, |
| 270 | + "metadata": {}, |
| 271 | + "outputs": [], |
| 272 | + "source": [ |
| 273 | + "Ai = Ai.subs(a for a in zip(angle, anglet))" |
| 274 | + ] |
| 275 | + }, |
| 276 | + { |
| 277 | + "cell_type": "code", |
| 278 | + "execution_count": 238, |
| 279 | + "metadata": {}, |
| 280 | + "outputs": [ |
| 281 | + { |
| 282 | + "data": { |
| 283 | + "text/latex": [ |
| 284 | + "$\\displaystyle \\left[\\begin{matrix}\\frac{\\alpha_{dot} \\sin{\\left(\\alpha \\right)}}{\\tan{\\left(\\beta \\right)}} + \\frac{\\beta_{dot} \\cos{\\left(\\alpha \\right)}}{\\sin^{2}{\\left(\\beta \\right)}} & - \\frac{\\alpha_{dot} \\cos{\\left(\\alpha \\right)}}{\\tan{\\left(\\beta \\right)}} + \\frac{\\beta_{dot} \\sin{\\left(\\alpha \\right)}}{\\sin^{2}{\\left(\\beta \\right)}} & 0\\\\- \\alpha_{dot} \\cos{\\left(\\alpha \\right)} & - \\alpha_{dot} \\sin{\\left(\\alpha \\right)} & 0\\\\- \\frac{\\alpha_{dot} \\sin{\\left(\\alpha \\right)} + \\frac{\\beta_{dot} \\cos{\\left(\\alpha \\right)} \\cos{\\left(\\beta \\right)}}{\\sin{\\left(\\beta \\right)}}}{\\sin{\\left(\\beta \\right)}} & \\frac{\\alpha_{dot} \\cos{\\left(\\alpha \\right)} - \\frac{\\beta_{dot} \\sin{\\left(\\alpha \\right)} \\cos{\\left(\\beta \\right)}}{\\sin{\\left(\\beta \\right)}}}{\\sin{\\left(\\beta \\right)}} & 0\\end{matrix}\\right]$" |
| 285 | + ], |
| 286 | + "text/plain": [ |
| 287 | + "Matrix([\n", |
| 288 | + "[ alpha_dot*sin(alpha)/tan(beta) + beta_dot*cos(alpha)/sin(beta)**2, -alpha_dot*cos(alpha)/tan(beta) + beta_dot*sin(alpha)/sin(beta)**2, 0],\n", |
| 289 | + "[ -alpha_dot*cos(alpha), -alpha_dot*sin(alpha), 0],\n", |
| 290 | + "[-(alpha_dot*sin(alpha) + beta_dot*cos(alpha)*cos(beta)/sin(beta))/sin(beta), (alpha_dot*cos(alpha) - beta_dot*sin(alpha)*cos(beta)/sin(beta))/sin(beta), 0]])" |
| 291 | + ] |
| 292 | + }, |
| 293 | + "execution_count": 238, |
| 294 | + "metadata": {}, |
| 295 | + "output_type": "execute_result" |
| 296 | + } |
| 297 | + ], |
| 298 | + "source": [ |
| 299 | + "Ai_dot = trigsimp(Ai.diff(t).subs(a for a in zip(angled, angledn)).subs(a for a in zip(anglet, angle)))\n", |
| 300 | + "Ai_dot" |
| 301 | + ] |
| 302 | + }, |
| 303 | + { |
| 304 | + "cell_type": "code", |
| 305 | + "execution_count": 239, |
| 306 | + "metadata": {}, |
| 307 | + "outputs": [ |
| 308 | + { |
| 309 | + "data": { |
| 310 | + "text/plain": [ |
| 311 | + "'np.array([[alpha_dot*math.sin(alpha)/math.tan(beta) + beta_dot*math.cos(alpha)/math.sin(beta)**2, -alpha_dot*math.cos(alpha)/math.tan(beta) + beta_dot*math.sin(alpha)/math.sin(beta)**2, 0], [-alpha_dot*math.cos(alpha), -alpha_dot*math.sin(alpha), 0], [-(alpha_dot*math.sin(alpha) + beta_dot*math.cos(alpha)*math.cos(beta)/math.sin(beta))/math.sin(beta), (alpha_dot*math.cos(alpha) - beta_dot*math.sin(alpha)*math.cos(beta)/math.sin(beta))/math.sin(beta), 0]])'" |
| 312 | + ] |
| 313 | + }, |
| 314 | + "execution_count": 239, |
| 315 | + "metadata": {}, |
| 316 | + "output_type": "execute_result" |
| 317 | + } |
| 318 | + ], |
| 319 | + "source": [ |
| 320 | + "pycode(Ai_dot).replace('ImmutableDenseMatrix', 'np.array')" |
| 321 | + ] |
| 322 | + }, |
| 323 | + { |
| 324 | + "cell_type": "code", |
| 325 | + "execution_count": null, |
| 326 | + "metadata": {}, |
| 327 | + "outputs": [], |
| 328 | + "source": [] |
| 329 | + } |
| 330 | + ], |
| 331 | + "metadata": { |
| 332 | + "kernelspec": { |
| 333 | + "display_name": "Python 3", |
| 334 | + "language": "python", |
| 335 | + "name": "python3" |
| 336 | + }, |
| 337 | + "language_info": { |
| 338 | + "codemirror_mode": { |
| 339 | + "name": "ipython", |
| 340 | + "version": 3 |
| 341 | + }, |
| 342 | + "file_extension": ".py", |
| 343 | + "mimetype": "text/x-python", |
| 344 | + "name": "python", |
| 345 | + "nbconvert_exporter": "python", |
| 346 | + "pygments_lexer": "ipython3", |
| 347 | + "version": "3.8.5" |
| 348 | + }, |
| 349 | + "varInspector": { |
| 350 | + "cols": { |
| 351 | + "lenName": 16, |
| 352 | + "lenType": 16, |
| 353 | + "lenVar": 40 |
| 354 | + }, |
| 355 | + "kernels_config": { |
| 356 | + "python": { |
| 357 | + "delete_cmd_postfix": "", |
| 358 | + "delete_cmd_prefix": "del ", |
| 359 | + "library": "var_list.py", |
| 360 | + "varRefreshCmd": "print(var_dic_list())" |
| 361 | + }, |
| 362 | + "r": { |
| 363 | + "delete_cmd_postfix": ") ", |
| 364 | + "delete_cmd_prefix": "rm(", |
| 365 | + "library": "var_list.r", |
| 366 | + "varRefreshCmd": "cat(var_dic_list()) " |
| 367 | + } |
| 368 | + }, |
| 369 | + "types_to_exclude": [ |
| 370 | + "module", |
| 371 | + "function", |
| 372 | + "builtin_function_or_method", |
| 373 | + "instance", |
| 374 | + "_Feature" |
| 375 | + ], |
| 376 | + "window_display": false |
| 377 | + } |
| 378 | + }, |
| 379 | + "nbformat": 4, |
| 380 | + "nbformat_minor": 4 |
| 381 | +} |
0 commit comments